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Abstract: Analyzing prime factorization of Weil

numbers in the union of algebraic extensions

with bounded degree of the cyclotomic field

K of all p-power roots of unity, we show that

there are only finitely many Weil p-numbers of

a given weight for a prime p (upto roots of

unity). Applying this fact to Hecke eigenval-

ues of cusp forms in p-adic analytic families

of cusp forms of p-power level, we show that

the field generated by the eigenvalues over the

family has unbounded degree over K.
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§0.0. Hecke fields.

To me at least, one of the most mysterious

number fields is the Hecke field. For example,

in the space of modular forms on SL2(Z), for

each even weight 2k ≥ 4, we have Eisenstein

series

Ek = −B2k

2k
+
∞∑

n=1

(
∑

0<d|n
dk−1) exp(2πinz).

Its Hecke eigenvalue for the hecke operator

T(n) is the sum of divisors
∑

0<d|n dk−1. So its

Hecke field Q(Ek) generated by Hecke eigen-

values is Q nothing imressive. However cusp

forms are different. For example, S24(SL2(Z))

has two eigenforms f and fσ (a Galois conju-

gate, and Q(f) = Q(
√

144169).

Hecke eigenvalues of T(l) for a prime l is the

sum of a Weil l-number of weight 2k − 1 and

its complex conjugate; so, arithmetic of Weil

number is very important to analyze Hecke

fields.
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§0.1. What Hecke field means?

What is the meaning of this field Q(
√

144169).

Perhaps, the coefficients field of the unique

rank 2 motive over Q of Hodge weight (25,0)

“unramified” everywhere? After this, alway up

to weight thousands, Q(f2k) for a Hecke eigen-

form f2k of weight 2k has degree dimS2k(SL2(Z))

and conjugates of fk span S2k(SL2(Z)). This

is conjectured to be true by Maeda for all 2k.

Perhaps, if we have the moduli of motives of

given weight, raising weight and making coef-

ficient field bigger, it becomes more and more

complicated, and it would not have many Z-

points? Thus the coefficient field (= the Hecke

field) getting bigger?



§0.2. What we study?

Instead of raising weight, fixing the weight, I

want to study by growing level considering a

prime power level p. If Hecke eigenforms f

are p-adic analytically deformed over the (spec-

trum) of the Iwasawa algebra, we describe how

the degree [K(f) : K] grows for the cyclotomic

fields K of all p-powers root of unity.

Indeed, if the p-slope of the family is zero (an

ordinary family), we prove [K(f) : K] grows

indefinitely if f runs over infinite set of fixed

weight in the family.

We will come back to Maeda’s conjecture at

the end.



§1. What are Weil numbers.

A Weil l-number of weight k is an algebraic

integer α with |ασ| = lk/2 for all Galois conju-

gates ασ of α. Here l is a prime.

If E/Fl
is an elliptic curve and define al ∈ Z

by 1 + l − al = |P1(Fl)| − al = |E(Fl)|, then by

Hasse,

al = α + α and αα = l

for a Weil l-number α of weight 1. In other

words, X2−alX+l = (X−α)(X−α). Moreover

1 + ln − (αn + αn) = |E(Fln)| for all n.

Or α and α is the Frobenius eigenvalue acting

on TpE = lim←−n
E[pn](Fl) for another prime p 6=

l.



§2. Tate modules.

If E is defined by y2 = 4x3−g2x−g3 with gj ∈ Z,

by reducing its equation modulo a prime l, we

get an elliptic curve El/Fl
as long as l is prime

to the discriminant ∆E of 4x3 − g2x− g3.

Since TpE
∼= TpEl as Zp-modules, the action of

Frobebius (Frobl) on TpE has eigenvalues αl for

a Weil l-number α of weight 1, and αl + αl =

al ∈ Z as long as l - ∆E.

Define

L(s, E) =
∏

l

(1 + all
−s + l1−2s)−1

=
∏

l

[(1− αll
−s)(1− αll

−s)]−1,

and write L(s,E) =
∑

n ann−s as a Dirichlet

series.

Weil numbers appear also related to cusp forms

as we will see later.



§3. Prime decomposition in a cyclotomic

field.

Consider the group µpn of pn-th roots of unity.

The roots in µpn generates the cyclotomic field

Q(µpn) whose Galois group Gal(Q(µpn)/Q) is

isomorphic to (Z/pnZ)× = Aut(µpn). For µp∞ =
⋃

n µpn, Gal(Q(µp∞)/Q) ∼= Z×p = lim←−n
(Z/pnZ)×such

that

Gal(Q(µp∞)/Q) 3 Frobl (= Frobenius at prime l)

7→ l ∈ Z×p

as ζFrobl = ζl for all l ∈ µp∞. Thus the decom-

position group Dl at l is generated by l in Z×p ;

so, Dl is an open subgroup. Thus

There are finitely many primes

in Q(µp∞) above l.



§4. Not many Weil numbers.

Theorem 1 (finiteness). Let Q be the field of

all algebraic numbers in C. In
⋃

K;[K:Q(µp∞)]≤d

K ⊂ Q,

there are finitely many Weil l-numbers of a

given weight k up to roots of unity.

Assume first d = 1. Consider a Weil number

as above. Suppose l 6= p. Then (α) =
∏

l l
e(l)

for primes l in Q(µp∞). Since αα = lk, we

have e(l) + e(l) is bounded by k. Thus there

are finitely many possibilities of factorization.

If (α) = (β), writing α = ζβ, ζ is a unit of

the integer ring of Q(µp∞) with |ζσ| = 1 for all

σ ∈ Gal(Q/Q). By Kronecker, ζ has to be a

root of unity. If l = p, all equivalent to
√±pk.

General case can be similarly proven as (αd!) is

basically factorized into a product of primes in

a tamely ramified extension Ql(µp∞) of degree

≤ d, and such extensions are finitely many if

we bound the degree over Ql(µp∞).



§5. Power series hitting roots of unity over

roots of unity.

Pick Φ(T) ∈ W [[T ]] for a DVR finite over Zp.

Regard W [[T ]] = lim←−n
W [t, t−1]/(tp

n−1) for t =

1 + T ; so, Spf(Λ) = Ĝm/Zp
. Regard Φ as a

function of t (so, Φ(t) = Φ|T=t−1).

Lemma 1 (Binomial lemma). If Φ(1) = 1 and

Φ(ζ) ∈ µp∞ for infinitely many ζ ∈ µp∞, then

there exists s ∈ Zp such that Φ(t) = ts =
∑∞

n=0

(
s
n

)
Tn, where

(
s
n

)
= s(s−1)···(s−n+1)

n! if n >

0 and
(

s
0

)
= 1.

Proof. For simplicity, assume W = Zp. Note

Φ(ζσ) = Φ(ζ)σ for all σ ∈ Gal(Qp(µp∞)/Qp)

as long as ζ,Φ(ζ) ∈ µp∞. Since ζσ = ζz for

some z ∈ Z×p , we have Φ(tz) = Φ(t)z for all

z ∈ Z×p . The graph ΓΦ ⊂ Ĝm × Ĝm of Φ con-

tains (tn0,Φ(t0)
n) for all n prime to p for an

infinite order t0 ∈ Ĝm. From this, taking the

logarithm, it is not hard to conclude, ΓΦ is a

formal subgroup as in the lemma.



§6. Power series hitting Weil numbers over

roots of unity.

Lemma 2 (Degree lemma). Let Φ ∈ Λ×. Sup-

pose Φ(ζγk) for γ = 1+p ∈ 1+pZp and ζ ∈ Ω is

a Weil number of weight k for an infinite subset

Ω ⊂ µp∞. Then limsupζ∈Ω[Q(Φ(ζγk)) : Q] <∞
if and only if Φ(t) = cts for some s ∈ Zp and a

constant 0 6= c ∈ Q.

Proof. Suppose lim supζ∈Ω[Q(Φ(ζγk)) : Q] ≤
d. By the finiteness lemma, for an infinite sub-

set Ω1 ⊂ Ω, Φ(ζγk) = ζ ′α for a Weil number

α ∈ ⋃
ζ∈Ω Q(Φ(ζγk)). Note that α ∈ W is in-

vertible as Φ ∈ Λ×. Replacing Φ by α−1Φ and

making a varibale change, t 7→ tγ−k on Ĝm,

by Binomial formula lemma, we have Φ(T) =

α(γkt)s = cts.

To give a typical example of a power series

hitting Weil numbers over roots of unity, we

look into Hecke eigen modular forms.



§7. Cusp forms.

What are cusp forms? Define a group of nteger

matirces

Γ0(N) =
{
γ =

(
a b
c d

)

∣∣∣c ≡ 0 mod N,det(γ) = ad− bc = 1
}
.

Here N is a fixed positive integer. A cusp form

f ∈ Sk+1(N, χ) is a holomorphic function on

H = {z ∈ C|2 Im(z) = −i(z − z) > 0} satisfies

f(az+b
cz+d) = χ(a)−1f(z)(cz+d)k+1 for all

(
a b
c d

)
∈

Γ0(N) and |f(z) Im(z)(k+1)/2| bounded over H.

Here χ is a Dirichlet character modulo N .

Such f has Fourier expansion for a(n, f) ∈ C

and q = exp(2πiz)

f(z) =
∞∑

n=1

a(n, f) exp(2πinz) =
∞∑

n=1

a(n, f)qn.

Put Sk+1(N, χ;A) = Sk+1(N,χ)∩A[[q]] for A ⊂
C.



§8. Hecke operators.

Put T(n) =
{(

a b
c d

) ∣∣∣ad− bc = n, (a, N) = 1,N |c
}
,

Decompose T(n) =
⊔

α Γ0(N)α for finitely many

cosets Γ0(N)α. Starting from a cusp form f

on Γ0(N), define

f |T(n) =
∑

α
f |α (an average over the set T(n)).

Here f |α(z) = det(α)kχ(a)f(az+b
cz+d)(cz + d)−k−1

for α =
(

a b
c d

)
. Since T(n)Γ0(N) ⊂ Γ0(N),

f |T(n) ∈ Sk+1(Γ0(N), χ) and

T(n) : Sk+1(N, χ) → Sk+1(N, χ) is a linear op-

erator. By a computation,

a(n, f |T(m)) =
∑

0<d|(m,n),(d,N)=1

dkχ(d)a(
mn

d2
, f).

So T(n)T(m) = T(m)T(n),

and T(n) ∈ End(Sk+1(N, χ;Z[χ])) for the ring

Z[χ] generated by the values of χ: the eigen-

values of T(n) are algebraic integers.



§9. Hecke eigenvalues.

The algebra

hk+1(N, χ;A) = A[T(n)|n = 1,2, . . . ]

inside End(Sk+1(N, χ;A)) is commutative; so,

we can make T(n) simultaneously upper trian-

gular. Define (·, ·) : hk+1 × Sk+1 → A by

(h, f) = a(1, f |h)(⇒ (T(n), f) = a(n, f)).

By the above formula, this is a perfect duality

if A is a field or a DVR. For simplicity, assume

χ is primitive.

Suppose hereafter f |T(n) = anf (for all n).

Then a1 = 1 as T(1) is the identity. Since

a(n, f) = (T(n), f) = a(1, f |T(n)) = ana(1, f),

normalizing a(1, f) = 1, we have

an = a(n, f) for all n > 0.



§10. Weil numbers and L-function.

If p|N is a prime, ap is a Weil p-number of

weight k, and if l - N , roots αl and βl of X2 −
alX + χ(l)lk = 0 are Weil l-numbers of weight

k (Ramanujan-Petersson conjecture proven by

Eichler-Shimura/Deligne/Deligne-Serre in dif-

ferent settings). Put

L(s, f) =
∑

n
ann−s =

∏

l

(1− all
−s + lk−2s)−1.

As conjectured by Shimura–Taniyama and proven

Wiles–Taylor et al, for every elliptic curve E/Q,

there exists f = fE as abobe such that

L(s,E) = L(s, f)

and L(s,E) is analytically continued to the whole

C-plane. This fact is true for any simple abelian

variety A over Q such that End(A/Q)⊗Z Q is a

field of degree dimA.



§11. Galois representation

We fix an algebraic closure Qp which contains

an algebraic closure Q ⊂ C. For a subfield K

of Qp, define

K(f) = K(an|n = 1,2, . . . ),

which is called the Hecke field of f over K. By

Deligne/Deligne–Serre/Eichler–Shimura, we have

an irreducible representation

ρ = ρf : Gal(Q/Q)→ GL2(Qp(f))

unramified outside Np characterized by

det(1− ρ(Frobl)X) = 1− alX + χ(l)lkX2,

If |ap|p = pα with α = 0 (slope α = 0), we have

(ρ|
Gal(Qp/Qp)

)ss ∼= ε⊕ δ

with unramified character δ satisfying δ(Frobp) =

ap.



§12. p-adic deformation Now assume N =

Nr = Npr for a fixed prime p - N . Recall that

Ĝm = Spf(Λ) for Λ = W [[T ]] with t = 1 + T .

Let γ = 1 + p. The evaluation at t = ε(γ)γk:

Φ(t) 7→ Φ(ε(γ)γk) induces Pk,ε ∈ Ĝm(Qp) called

an arithmetic point of weight k, where ε : Z×p →
µp∞ is a p-power order character.

A formal expansion

F (q) =
∞∑

n=1

a(n, F )(t)qn ∈ Λ[[q]]

is called a Λ-adic form if

Fk,ε =
∑

n=1

a(n, F )(ε(γ)γk)qn

is a slope 0 Hecke eigenform in Sk+1(N, χεω−k;Q)

for all k ≥ 2 and ε, where ω : Z×p → µp−1 is the

Teichmüller character. Write S(Np, χ; Λ) for

the space of slope 0 Λ-adic forms, which is a

Λ-module. Then S(Np, χ; Λ) is free of finite

rank over Λ and by F 7→ Fk,ε,

S(Np,χ; Λ)⊗Λ,Pk,ε
Qp
∼= S0

k+1(Npr+1, χεω−k; Qp).



§13. Hecke eigenvalues of Λ-adic form.

Let T(n) acts on S(Np, χ; Λ) by

a(n, F |T(m)) =
∑

0<d|(m,n),(d,Np)=1

κ(d)χ(d)a(
mn

d2
, F ),

where κ(d)(t) = tlogp(d)/ logp(γ) for the p-adic

logarithm logp. Then κ(d)(ε(γ)γk) = dkω−k(d).

Thus we have a commutative diagram

S(Np, χ; Λ)
T (n)−−−→ S(Np, χ; Λ)

Pk,ε

y

yPk,ε

Sk+1(Nr, χεω−k;Qp)
T (n)−−−→ Sk+1(Nr, χεω−k; Qp).

Thus T(n) is a well defined Λ-linear operator

of S(Np, χ; Λ).



§14. Weil numbers and a(l, F ).

Hereafter we assume that F is a Hecke eigen-

form with F |T(n) = a(n, F )F for a(p, F ) ∈ Λ.

Then

a(p, F )(ε(γ)γk) = Pk,ε(a(p, F ))

= a(p, F )(ε(γ)γk) = ap

for Hecke eigenvalue ap of the specialized form

Fk,ε. In particular, a Weil p-number of weight

k.

If we take a root Al of X2−a(l, F )X +κ(l)χ(l),

similarly, Al(ε(γ)γk) is a Weil l-number of weight

k.

This is exactly the setting in the degree lemma.



§15. Λ-adic Galois representation.

We have a Galois representation

ρF : Gal(Q/Q)→ GL2(Λ)

interpolating Fk,ε. It is unramified outside Np

and is characterized by

det(1− ρF(Frobl)) = 1− a(l, F )X + κ(l)χ(l)X2

for all primes l - Np.

By the above formula,

Pk,ε(det(1− ρF (Frobl))

= 1− a(l, Fk,ε)X − χεω−k(l)X2

= det(1− ρFk,ε
(Frobl)).

Thus

Pk,ε ◦ ρF
∼= ρFk,ε

.



§16. Degree of Hecke fields; Horizontal

theorem.

Theorem 2. Assume N = 1. Fix a weight k

and put K = Q(µp∞). Then for any infinite set

Ω ⊂ Hom(Z×p , µp∞(Q)),

lim sup
ε∈Ω

[K(Fk,ε) : K] =∞.

If we use the filter made of complement of fi-

nite subsets of µp∞(Qp), we can replace “lim sup”

by “lim”.

If the limit is finite, by Degree lemma, Al = ctsl

for all l. Making slightly more effort, one can

show that there exists a finite extension field

L/Q such that Frobl in Gal(Q/L) satisfies

Tr(ρF(Frobl)) = tsl + ts
′
l

for sl, s
′
l ∈ Zp and det ρF = κχ.



§17. Abelian image.

The above formula implies

Tr(ρ
sym⊗2
F (Frobl)) = t2sl + t2s′l + κχ(Frobl)

= Tr(ρ2
F (Frobl)) + κχ(Frobl)

regarding κχ as a Galois character by the iden-

tiy Z×p = Gal(Q(µp∞)/Q). Thus the trace of

the square ρ2
F is equal to the trace of virtual

representation

ρ
sym⊗2
F − κχ.

It is an exercise to show that this happen only

when ρF |Gal(Q/L)
has abelian image.

By Ribet, if N = 1, the image of ρf contains

(an open subgroup of) SL2(Zp) and hence Pk,ε◦
ρF = ρFk,ε

can never be abelian over Gal(Q/L)

for any finite extension L/Q.



§18. Maeda’s conjecture again.

In the 1970s, Y. Maeda conjecured

Conjecture 1.Any Hecke eigenform f in Sk :=

Sk(SL2(Z)) are Galois conjugate each other;

so, d = dimQ Q(f) = dimC Sk for any weight k.

Moreover the Galois closure Q(f)gal has Galois

group isomorphic to the symmetric group of d

letters.

This conjecture has been numerically checked

up to a big weight in the order of thousand.

This would implies

Conjecture 2. If N = 1,

lim sup
k

[Q(Fk,1) : Q] =∞.



§19. Vertical theorem.

In the direction of Maeda’s conjecture, reduc-

ing it to the horizontal theorem, we can prove

Theorem 3. Let Fk = Fk,ε with ε = 1. Sup-

pose that F11 = ∆ (Ramanujan’s Delta func-

tion). Then [Q(Fk|k ∈ [11, m]) : Q] → ∞ as

m → ∞. Here Q(Fk|k ∈ [11,m]) is the com-

positum of Q(Fk) for all 11 ≤ k ≤ m.

If you have interested in the proof; see, my pa-

per in JAMS 24 (2011), 51–80 or Section 3.3

of my new book: “Elliptic Curves and Arith-

metic Invariants,” Springer Monographs in Math-

ematics, 2013 or a new preprint: “Hecke fields

of Hilbert modular analytic families” posted in

my web page http://www.math.ucla.edu/~hida/.


