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Abstract Irrationality measures are given for the values of the series
∑∞

n=0 tn/Wan+b, where

a, b ∈ Z+, 1 ≤ b ≤ a, (a, b) = 1 and Wn is a rational valued Fibonacci or Lucas form,

satisfying a second order linear recurrence. In particular, we prove irrationality of all the

numbers

∞∑
n=0

1

fan+b
,

∞∑
n=0

1

lan+b
,

where fn and ln are the Fibonacci and Lucas numbers, respectively.
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1. Introduction and results

Let

Wn = Wn(r, s) = γαn + δβn, n ∈ N, (1)

be a Fibonacci Fn = (αn − βn)/(α − β) or Lucas Ln = αn + βn form.
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250 T. Matala-Aho and M. Prévost

In the sequel we will investigate some arithmetical properties of the values of the mero-

morphic function

W (t) =
∞∑

n=0

tn

Wan+b
, t ∈ C \ {

αa(n+1)/βan
∣∣ n ∈ N

}
, (2)

where α = (r + √
r2 + 4s)/2, β = (r − √

r2 + 4s)/2, a, b ∈ Z+, r, s ∈ Q∗ and r2 + 4s >

0. Here we may suppose without a loss of generality that |α| > |β| and hence Fn Ln �= 0 for

all n ∈ Z+.

André-Jeannin [1] proved the irrationality of the series (2) in the Fibonacci case, where

a = b = 1, and soon after followed some irrationality measure considerations of the series

(2) in the case a = 1, see [4, 9, 12, 13]. However, not much is known about the arithmetic

character of the series (2) with arbitrary parameters a, b except the transcendence coming

from Nesterenko’s method [6, 10] for the numbers

∞∑
n=0

1

Ln
,

∞∑
n=0

1

F2n+1

,

∞∑
n=0

1

L2n
,

where α and β are algebraic numbers satisfying αβ = 1 in the first case and αβ = −1 for

the other two cases. When the indices grow at geometrical rate or more, the situation is

dramatically different because Mahler’s method applies. Namely, let r, s ∈ Z \ {0} and let

W0, W1 ∈ Z be not both zero. Then Nishioka’s general arguments [11] lead even to algebraic

independence results, for example of the numbers

θ (d, l) =
∞∑

n=0

1

Wdn+l
, d, l ∈ Z+, d ≥ 3.

In order to present our Theorem 1 we first define c = c(W ) by

c(F)−1 = 1

2
+

(
φ(a)

2a2
− 3

π2

a−1∑
l=1,(l,a)=1

1

l2

) ∏
p|a

p2

p2 − 1

and respectively

c(L)−1 = 1

2
+

(
φ(a)κ2

6a2
− 4

π2

a−1∑
l=1,(l,2a)=1

1

l2

) ∏
p|a,p≥3

p2

p2 − 1
, κ = gcd(a, 2).

Also we set r = R/d and s = S/d, where d, R ∈ Z+ and S ∈ Z \ {0}. In the following let I
be an imaginary quadratic field and let ZI be it’s ring of integers.

Theorem 1. Let a, b ∈ Z+, 1 ≤ b ≤ a, gcd(a, b) = 1 and let Wn be a Fibonacci or Lucas
form, where d, R and S satisfy

R > |d S|c(W ) − d S

|d S|c(W )
. (3)
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Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers 251

Take t ∈ I∗ \ {αa(n+1)/(dβan)| n ∈ N}. Then for every ε > 0 there exists a positive constant
N0 = N0(ε) such that for all M, N ∈ ZI with |N | ≥ N0

∣∣∣∣∣ ∞∑
n=0

tn

Wan+b
− M

N

∣∣∣∣∣ > |N |−mW (a)−ε, (4)

with mW (a) = log(|α|2/|d S|)/log(|α|1/c(W )/|d S|).

Corollary 1. Let r ∈ Z \ {0}, if s = 1, and r ∈ Z \ {0, ±1, ±2}, if s = −1; take
t ∈ I∗ \ {αa(n+1)/βan| n ∈ N}. Then m F (2) = 3π2

π2−6
= 7.65163 . . . , m F (3) = 64π2

20π2−135
=

10.12395 . . . , m F (6) = 1200π2

325π2−2808
= 29.63686 . . . , mL (2) = 3π2

π2−6
= 7.65163 . . . ,

mL (3) = 48π2

13π2−108
= 23.3314 . . . , mL (6) = 1200π2

13(25π2−216)
= 29.6368 . . . .

2. Common multiples and factors

The following results are essential for our method even in proving just the irrationality of the

numbers

∞∑
n=0

1

fan+b
,

∞∑
n=0

1

lan+b
.

Moreover, Lemmas 2 and 3 imply almost optimal common multiples and big common fac-

tors for the coefficients in the Padé approximation formulae (61) thus yielding the sharp

irrationality measures listed in Corollary 1.

Lemma 1. Let (a, b) = 1, κ = (a, 2), let p be a prime and let φ(n) and μ(d) denote the
Euler and the Möbius functions, respectively. Then

∞∑
d=1,(d,a)=1

μ(d)

d2
= 6

π2

∏
p|a

p2

p2 − 1
, (5)

n∑
j=0

φ(aj) = n2 3a

π2

∏
p|a

p

p + 1
+ O(n log n) (6)

n∑
j=0

φ(aj + b) = n2 3a

π2

∏
p|a

p2

p2 − 1
+ O(n log n), (7)

n∑
j=0

φ(2(aj + b)) = n2 4a

π2

∏
p|a,p≥3

p2

p2 − 1
+ O(n log n) (8)
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252 T. Matala-Aho and M. Prévost

and

n∑
d=1,d≡l (mod a)

[n

d

]
φ(d) = n2

2a

∏
p|a

p2

p2 − 1
+ O(n log2 n) (9)

n∑
d=1,d≡l (mod a)

[nκ

2d

]
φ(2d) = n2κ2

6a

∏
p|a,p≥3

p2

p2 − 1
+ O(n log2 n) (10)

for all (l, a) = 1.

The result (5) is well known and (6–7) are proved in Bavencoffe [2], see also Bézivin [3].

Accordingly, we consider just the claims (8), (9), and (10).

Proof: First we consider (8). Let

S =
n∑

j=0

φ(2(aj + b))

If 2|a, then (2, aj + b) = 1 for all j ≥ 0. Thus

S =
n∑

j=0

φ(aj + b) = n2 3a

π2

∏
p|a

p2

p2 − 1
+ O(n log n)

= n2 4a

π2

∏
p|a,p≥3

p2

p2 − 1
+ O(n log n) (11)

by (7). If 2 � a, then

S =
n∑

j=0

∑
d|2(aj+b)

μ(d)
2(aj + b)

d
=

∑
dl=2(aj+b)

μ(d)l = S1 + S2 + S3, (12)

where

S1 =
∑

dl=2(aj+b),2�d
μ(d)l, S2 =

∑
dl=2(aj+b),2||d

μ(d)l

and

S3 =
∑

dl=2(aj+b),4|d
μ(d)l.

Here

S1 =
2(an+b)∑

d=1,(d,2a)=1

μ(d)

[ 2(an+b)
d ]∑

l≡2b/d (mod 2a)

l = an2
∑

(d,2a)=1

μ(d)

d2
+ O(n log n), (13)
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where we use (5) to get

S1 = n2 6a

π2

∏
p|2a

p2

p2 − 1
+ O(n log n) = n2 8a

π2

∏
p|a,p≥3

p2

p2 − 1
+ O(n log n). (14)

Similarly

S2 =
an+b∑

d ′=1,(d ′,2a)=1

μ(2d ′)

[
an+b

d′
]∑

l≡b/d ′ (mod a)

l = −an2

2

∑
(d ′,2a)=1

μ(d ′)
d ′2 + O(n log n)

= −n2 3a

π2

∏
p|2a

p2

p2 − 1
+ O(n log n) = −n2 4a

π2

∏
p|a,p≥3

p2

p2 − 1
+ O(n log n). (15)

Because S3 = 0 we get (8).

We next consider (9) by writing

Hl =
n∑

d=1,d≡l (mod a)

[n

d

]
φ(d) =

n∑
k=1

k
∑

n/(k+1)<ia+l≤n/k

φ(ia + l) (16)

and using (7) to get

Hl = 3a

π2

∏
p|a

p2

p2 − 1

n∑
k=1

k

((
n

ka

)2

−
(

n

(k + 1)a

)2)

+O

(
n∑

k=1

k

(
n

ka
log

n

ka
− n

(k + 1)a
log

n

(k + 1)a

))

= 3n2

π2a

∏
p|a

p2

p2 − 1

(
n∑

k=1

1

k2
− n

(n + 1)2

)
+ O

(
n

a

n+1∑
k=1

1

k
log

n

ka

)

= n2

2a

∏
p|a

p2

p2 − 1
+ O(n log2 n). (17)

The proof of (10) follows by an argument similar to that just given. �

Now set

Ek = Ek(α, β) = βφ(k)�k(α/β), (18)

where �d = �d (x) is the dth cyclotomic polynomial. If r, s ∈ Z, then Ek(α, β) ∈
Z for all k ∈ N, (k ≥ 2), see Carmichael [5]. We also note that Fibonacci and Lucas forms

are given by

Fk = αk − βk

α − β
= βk xk − 1

α − β
=

∏
d|k

Ed (α, β) (19)
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and

Lk = αk + βk = F2k

Fk
=

∏
d�k,d|2k

Ed (α, β). (20)

Lemma 2. Let r ∈ Z+, s ∈ Z \ {0} and let Wn be a Fibonacci or Lucas form. Then there
exists Mn ∈ Z+ such that

lcm[Wb, Wa+b, . . . , Wan+b]
∣∣Mn ∀n ∈ Z+ , (21)

and

Mn ≤ |αa |MW (a)n2+O(n log n) (22)

with

MF (a) = 3

π2

∏
p|a

p2

p2 − 1

a−1∑
l=1,(l,a)=1

1

l2
<

1

2
(23)

and

ML (a) = 4

π2

∏
p|a,p≥3

p2

p2 − 1

a−1∑
l=1,(l,2a)=1

1

l2
<

1

2
. (24)

Proof: If W = F , then we may choose a common multiple

Mn =
an+b∏
d=1

d|ak+b for some k≤n

Ed . (25)

Suppose the numbers 1 ≤ bl ≤ a − 1, (l, a) = 1 satisfy

bl ≡ b/ l (mod a) for all l, 1 ≤ l ≤ a − 1. (26)

Thus d ≡ bl (mod a) for every divisor d satisfying dl = ak + b. Hence

Mn =
a−1∏

l=1,(l,a)=1

[n/ l−(lbl−b)/(la)]∏
j=0

Eaj+bl

∣∣∣∣∣ a−1∏
l=1,(l,a)=1

[n/ l]∏
j=0

Eaj+bl , (27)

where

degα

n∏
j=0

Eaj+b =
n∑

j=0

φ(aj + b) = n2 3a

π2

∏
p|a

p2

p2 − 1
+ O(n log n), (28)
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yielding

degα Mn = n2 3a

π2

∏
p|a

p2

p2 − 1

a−1∑
l=1,(l,a)=1

1

l2
+ O(n log n). (29)

If W = L we continue similarly to the case W = F . First we note that, if 2|l in dl =
ak + b, then

ak + b = 2l ′d, l ′ ∈ Z+ (30)

and if d|ak ′ + b , where k ′ ≥ k, then

ak ′ + b = 2hl ′d (31)

for some h ∈ Z+. From the representation

Lak ′+b =

∏
D|4hl ′d

ED∏
D|2hl ′d

ED

(32)

we see that the term E2d cancels. Thus we obtain a common multiple

Mn =
an+b∏
d=1

dl=ak+b, 2 � l, for some k≤n

E2d . (33)

We now choose

Mn =
a−1∏

l=1,(l,2a)=1

[n/ l+(b−lbl )/(la)]∏
j=0

E2(aj+bl )

∣∣∣∣∣ a−1∏
l=1,(l,2a)=1

[n/ l]∏
j=0

E2(aj+bl ), (34)

where

degα

n∏
j=0

E2(aj+b) =
n∑

j=0

φ(2(aj + b)) = n2 4a

π2

∏
p|a,p≥3

p2

p2 − 1
+ O(n log n). (35)

Thus

degα Mn = n2 4a

π2

∏
p|a,p≥3

p2

p2 − 1

a−1∑
l=1,(l,2a)=1

1

l2
+ O(n log n). (36)

It is now clear that

�n(x) =
∏
d|n

(xn/d − 1)μ(d), (37)

together with (29) and (36) implies (22), (23), and (24).
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256 T. Matala-Aho and M. Prévost

To complete our argument we note that

ML (a) = 3

π2

∏
p|2a

p2

p2 − 1

a−1∑
l=1,(l,2a)=1

1

l2

= 3

π2

∏
p|2a

∞∑
k=0

1

(pk)2

a−1∑
l=1,(l,2a)=1

1

l2
<

3

π2

∞∑
L=1

1

L2
= 1

2
(38)

and hence that MW (a) < 1/2 in both cases. �

Lemma 3. Set r ∈ Z+, s ∈ Z \ {0} and let Wn be a Fibonacci or Lucas form. Then there
exists Gn ∈ Z+ such that

Gn

∣∣∣ n∏
j=1

Wa(h+ j)+b for all h ∈ N (39)

and

Gn ≥ |αa |GW (a)n2+O(n log2 n), (40)

with

G F (a) = φ(a)

2a2

∏
p|a

p2

p2 − 1
(41)

and

GL (a) = φ(a)κ2

6a2

∏
p|a,p≥3

p2

p2 − 1
. (42)

Proof: Let W = F . It is known that

Ed |Fa(h+ j)+b if and only if d | a(h + j) + b (43)

and, if we suppose (a, d) = 1, then (43) holds exactly for every

j ≡ −h − b/a (mod d) (44)

and thus

#{1 ≤ j ≤ n : Ed | Fa(h+ j)+b} ≥
[n

d

]
. (45)

So we may choose

Gn =
n∏

d=1,(a,d)=1

E [n/d]
d , (46)
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which, by (9), has degree

degα Gn =
a−1∑

l=1,(l,a)=1

n∑
d=1,d≡l (mod a)

[n

d

]
φ(d)

= φ(a)
n2

2a

∏
p|a

p2

p2 − 1
+ O(n log2 n). (47)

Now set W = L . By (20) we know that

ED | Lk if and only if D | 2k and D � |k. (48)

We consider factors D = 2d, d|k and (d, a) = 1. Let k = a(h + j) + b. First we suppose

2|a, hence 2 � |d and D = 2d . So

#
{
1 ≤ j ≤ n : ED|La(h+ j)+b

} ≥
[n

d

]
. (49)

If 2 � |a, then we look only for the instances

k = (2l + 1)d = a(h + j) + b. (50)

Now we take

j0 = min{1 ≤ j ≤ n : a(h + j) ≡ b − d (mod 2d)}

and thus (50) holds exactly for every j ≡ j0 (mod 2d) giving

#
{
1 ≤ j ≤ n : E2d | La(h+ j)+b

} ≥
[ n

2d

]
. (51)

So

Gn =
n∏

d=1,(a,d)=1

E [nκ/2d]
2d , (52)

which by (10) has degree

degα Gn =
a−1∑

l=1,(l,a)=1

n∑
d=1,d≡l (mod a)

[nκ

2d

]
φ(2d)

= φ(a)
n2κ2

6a

∏
p|a,p≥3

p2

p2 − 1
+ O(n log2 n). (53)

�
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3. Padé approximations

In the following Padé approximations the q-series factorials

(b, a)0 = 1, (b, a)n = (b − a)(b − aq) . . . (b − aqn−1), n ∈ Z+,

(a)n = (1, a)n and the q-binomial coefficients[n

k

]
= (q)n

(q)k(q)n−k
(54)

are used with the W -nomials (Fibonomials)[n

k

]
W

=
[n

k

]
W (α,β)

, degα

[n

k

]
W

= k(n − k)

defined by

[n

0

]
W

=
[n

n

]
W

= 1,
[n

k

]
W

= W1 · · · Wn

W1 · · · Wk W1 · · · Wn−k

for all k, n ∈ N with 1 ≤ k ≤ n − 1 for any form Wn . More generally, for a given m ∈ Z+

we set [n

k

]
Wm×

=
[n

k

]
Z

, Zh = Wmh for all h ∈ Z+. (55)

If r, s ∈ Z and m ∈ Z+ then (see [9])[n

k

]
Fm×

∈ Z for all k, n ∈ Z (0 ≤ k ≤ n). (56)

The series

f (z) =
∞∑

n=0

(B)n

(C)n
zn

is a special case of Heine’s q-series for which closed form (n, n) Padé approximations were

constructed in [7].

Lemma 4. Let

Q∗
n(z) =

n∑
k=0

[n

k

]
q(k

2)(Bqn−k+1)k(Cqn)n−k(−z)k, (57)

and

R∗
n (z) = z2n+1qn2 (q)n(B)n+1(B, C)n

(C)2n+1

∞∑
i=0

(qn+1)i (Bqn+1)i

(q)i (Cq2n+1)i
zi . (58)
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Then there exists a polynomial P∗
n (z) of degree ≤ n such that

Q∗
n(z) f (z) − P∗

n (z) = R∗
n (z). (59)

In the equations above we set

B = − δ

γ

(
β

α

)b

, C = Bq, q =
(

β

α

)a

, z = t

αa
(60)

to get the approximation formula

Qn(t)W (t) − Pn(t) = Rn(t), (61)

where

Qn(t) =
n∑

k=0

qn,k tk =
n∑

k=0

[n

k

]
Fa×

Wa(n−k+1)+b · · · Wa(2n−k)+b(αβ)a(k
2)(−t)k, (62)

Pn(t) =
n∑

k=0

pn,k tk, pn,k =
∑

i+ j=k

qn,i/Waj+b (63)

and

Rn(t) = (−δ)nt2n+1βan2+bnαa(n2−3n−2)/2Sn(t), (64)

with

Sn(t) = (1 − B)(q)2
n

(Bqn+1)n+1

∞∑
i=0

(qn+1)i (Bqn+1)i

(q)i (Bq2n+2)i

(
t

αa

)i

.

The following results follow similarly to the corresponding lemmas in [9].

Lemma 5. Let r, s ∈ Z \ {0} and let Wn be a Fibonacci or Lucas form. Then

qnk ∈ Z, Gn|qnk for all k, n ∈ N (0 ≤ k ≤ n) (65)

and

Mn pnk ∈ Z for all k, n ∈ N (0 ≤ k ≤ n). (66)

If we set t = u/v,

qn = vn MnG−1
n Qn(u/v), pn = vn MnG−1

n Pn(u/v),

rn = vn MnG−1
n Rn(u/v),
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260 T. Matala-Aho and M. Prévost

where u, v ∈ ZI \ {0}, we obtain the numerical approximations

qn W (u/v) − pn = rn, qn, pn ∈ ZI for all n ∈ N. (67)

Lemma 6. Let r, s ∈ Z \ {0} and let Wn be a Fibonacci or Lucas form. Then for every δ > 0

there exists n0 ∈ Z+ such that

|qn| ≤ |αa |(3/2+MW (a)−GW (a)+δ)n2

(68)

and

|rn| ≤ |βa |n2 |αa |(1/2+MW (a)−GW (a)+δ)n2

(69)

for all n ≥ n0.

Lemma 7. Let (Wn) be a series defined by (1) such that Wn �= 0 for all n ∈ Z+ and γ δrst �=
0. Then

qn pn+1 − pnqn+1 �= 0 ∀n ∈ Z+. (70)

4. Proof of Theorem 1

Lemma 8 below is standard and may be obtained as was Theorem 3.3 in [8].

Lemma 8. Let � ∈ C and y > 1. Let

qn� − pn = rn, qn, pn ∈ ZI ∀n ∈ N (71)

be numerical approximation forms satisfying

qn pn+1 − pnqn+1 �= 0, (72)

|qn| ≤ y An2

, |rn| ≤ y−Bn2

(73)

for all n ≥ n0 with some positive A and B. Then for every ε > 0 there exists a positive
constant N0 = N0(ε) such that ∣∣∣∣� − M

N

∣∣∣∣ > |N |−(1+A/B)−ε (74)

for all M, N ∈ ZI with |N | ≥ N0.

Thus we may call μ = (A + B)/B an irrationality measure for �. Our bounds in Lemma

6 are of the form

|qn| ≤ y(A+δ)n2

, |rn| ≤ y−(B−δ)n2

(75)
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where we are free to choose δ > 0. So we get an irrationality measure

μ = A + δ + B − δ

B − δ
≤ A + B

B
+ ε (76)

for every ε > 0 whenever δ ≤ B2ε/(A + B + Bε).Hence also in this case we call (A + B)/B
an irrationality measure of �.

Proof of Theorem 1: Let

c = cW (a) = 1/(1/2 + GW (a) − MW (a)). (77)

By Lemmas 2, 3, 5 and 6 we have

A = 3/2 + MW (a) − GW (a), (78)

B = GW (a) − MW (a) − 1/2 − log |β|/ log |α| > 0, (79)

and c > 0, which give

μ = 1 − log |β|/ log |α|
GW (a) − MW (a) − 1/2 − log |β|/ log |α| = log |α|/|β|

log |α|1/c−1/|β| .

This completes the proof of the theorem.
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