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Chapter 1

Background Ideas

1.1 Brief History of Mathematical Finance

Rating

Everyone.

Section Starter Question

Name as many financial instruments as you can, and name or describe the
market where you would buy them. Also describe the instrument as high
risk or low risk.

Key Concepts

1. Finance theory is the study of economic agents’ behavior allocating
their resources across alternative financial instruments and in time in
an uncertain environment. Mathematics provides tools to model and
analyze that behavior in allocation and time, taking into account un-
certainty.

2. Louis Bachelier’s 1900 math dissertation on the theory of speculation
in the Paris markets marks the twin births of both the continuous time
mathematics of stochastic processes and the continuous time economics
of option pricing.

7



8 CHAPTER 1. BACKGROUND IDEAS

3. The most important development in terms of impact on practice was
the Black-Scholes model for option pricing published in 1973.

4. Since 1973 the growth in sophistication about mathematical models
and their adoption mirrored the extraordinary growth in financial in-
novation. Major developments in computing power made the numerical
solution of complex models possible. The increases in computer power
size made possible the formation of many new financial markets and
substantial expansions in the size of existing ones.

Vocabulary

1. Finance theory is the study of economic agents’ behavior allocating
their resources across alternative financial instruments and in time in
an uncertain environment.

2. A derivative is a financial agreement between two parties that depends
on something that occurs in the future, such as the price or performance
of an underlying asset. The underlying asset could be a stock, a bond, a
currency, or a commodity. Derivatives have become one of the financial
world’s most important risk-management tools. Derivatives can be
used for hedging, or for speculation.

3. Types of derivatives: Derivatives come in many types. There are
futures, agreements to trade something at a set price at a given date;
options, the right but not the obligation to buy or sell at a given
price; forwards, like futures but traded directly between two parties
instead of on exchanges; and swaps, exchanging one lot of obligations
for another. Derivatives can be based on pretty much anything as long
as two parties are willing to trade risks and can agree on a price [48].

Mathematical Ideas

Introduction

One sometime hears that “compound interest is the eighth wonder of the
world”, or the “stock market is just a big casino”. These are colorful say-
ings, maybe based in happy or bitter experience, but each focuses on only
one aspect of one financial instrument. The “time value of money” and
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uncertainty are the central elements that influence the value of financial in-
struments. When only the time aspect of finance is considered, the tools
of calculus and differential equations are adequate. When only the uncer-
tainty is considered, the tools of probability theory illuminate the possible
outcomes. When time and uncertainty are considered together we begin the
study of advanced mathematical finance.

Finance is the study of economic agents’ behavior in allocating financial
resources and risks across alternative financial instruments and in time in
an uncertain environment. Familiar examples of financial instruments are
bank accounts, loans, stocks, government bonds and corporate bonds. Many
less familiar examples abound. Economic agents are units who buy and sell
financial resources in a market, from individuals to banks, businesses, mutual
funds and hedge funds. Each agent has many choices of where to buy, sell,
invest and consume assets, each with advantages and disadvantages. Each
agent must distribute their resources among the many possible investments
with a goal in mind.

Advanced mathematical finance is often characterized as the study of the
more sophisticated financial instruments called derivatives. A derivative is
a financial agreement between two parties that depends on something that
occurs in the future, such as the price or performance of an underlying asset.
The underlying asset could be a stock, a bond, a currency, or a commod-
ity. Derivatives have become one of the financial world’s most important
risk-management tools. Finance is about shifting and distributing risk and
derivatives are especially efficient for that purpose [38]. Two such instru-
ments are futures and options. Futures trading, a key practice in modern
finance, probably originated in seventeenth century Japan, but the idea can
be traced as far back as ancient Greece. Options were a feature of the “tulip
mania” in seventeenth century Holland. Both futures and options are called
“derivatives”. (For the mathematical reader, these are called derivatives not
because they involve a rate of change, but because their value is derived from
some underlying asset.) Modern derivatives differ from their predecessors in
that they are usually specifically designed to objectify and price financial
risk.

Derivatives come in many types. There are futures, agreements to
trade something at a set price at a given dates; options, the right but not the
obligation to buy or sell at a given price; forwards, like futures but traded
directly between two parties instead of on exchanges; and swaps, exchanging
flows of income from different investments to manage different risk exposure.
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For example, one party in a deal may want the potential of rising income
from a loan with a floating interest rate, while the other might prefer the
predictable payments ensured by a fixed interest rate. This elementary swap
is known as a “plain vanilla swap”. More complex swaps mix the performance
of multiple income streams with varieties of risk [38]. Another more complex
swap is a credit-default swap in which a seller receives a regular fee from
the buyer in exchange for agreeing to cover losses arising from defaults on the
underlying loans. These swaps are somewhat like insurance [38]. These more
complex swaps are the source of controversy since many people believe that
they are responsible for the collapse or near-collapse of several large financial
firms in late 2008. Derivatives can be based on pretty much anything as long
as two parties are willing to trade risks and can agree on a price. Businesses
use derivatives to shift risks to other firms, chiefly banks. About 95% of the
world’s 500 biggest companies use derivatives. Derivatives with standardized
terms are traded in markets called exchanges. Derivatives tailored for specific
purposes or risks are bought and sold “over the counter” from big banks. The
“over the counter” market dwarfs the exchange trading. In November 2009,
the Bank for International Settlements put the face value of over the counter
derivatives at $604.6 trillion. Using face value is misleading, after off-setting
claims are stripped out the residual value is $3.7 trillion, still a large figure
[48].

Mathematical models in modern finance contain deep and beautiful ap-
plications of differential equations and probability theory. In spite of their
complexity, mathematical models of modern financial instruments have had
a direct and significant influence on finance practice.

Early History

The origins of much of the mathematics in financial models traces to Louis
Bachelier’s 1900 dissertation on the theory of speculation in the Paris mar-
kets. Completed at the Sorbonne in 1900, this work marks the twin births
of both the continuous time mathematics of stochastic processes and the
continuous time economics of option pricing. While analyzing option pric-
ing, Bachelier provided two different derivations of the partial differential
equation for the probability density for the Wiener process or Brown-
ian motion. In one of the derivations, he works out what is now called
the Chapman-Kolmogorov convolution probability integral. Along the way,
Bachelier derived the method of reflection to solve for the probability func-
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tion of a diffusion process with an absorbing barrier. Not a bad performance
for a thesis on which the first reader, Henri Poincaré, gave less than a top
mark! After Bachelier, option pricing theory laid dormant in the economics
literature for over half a century until economists and mathematicians re-
newed study of it in the late 1960s. Jarrow and Protter [24] speculate that
this may have been because the Paris mathematical elite scorned economics
as an application of mathematics.

Bachelier’s work was 5 years before Albert Einstein’s 1905 discovery of
the same equations for his famous mathematical theory of Brownian motion.
The editor of Annalen der Physik received Einstein’s paper on Brownian mo-
tion on May 11, 1905. The paper appeared later that year. Einstein proposed
a model for the motion of small particles with diameters on the order of 0.001
mm suspended in a liquid. He predicted that the particles would undergo
microscopically observable and statistically predictable motion. The English
botanist Robert Brown had already reported such motion in 1827 while ob-
serving pollen grains in water with a microscope. The physical motion is now
called Brownian motion in honor of Brown’s description.

Einstein calculated a diffusion constant to govern the rate of motion of
suspended particles. The paper was Einstein’s attempt to convince physicists
of the molecular and atomic nature of matter. Surprisingly, even in 1905 the
scientific community did not completely accept the atomic theory of matter.
In 1908, the experimental physicist Jean-Baptiste Perrin conducted a series
of experiments that empirically verified Einstein’s theory. Perrin thereby
determined the physical constant known as Avogadro’s number for which he
won the Nobel prize in 1926. Nevertheless, Einstein’s theory was very difficult
to rigorously justify mathematically. In a series of papers from 1918 to 1923,
the mathematician Norbert Wiener constructed a mathematical model of
Brownian motion. Wiener and others proved many surprising facts about
his mathematical model of Brownian motion, research that continues today.
In recognition of his work, his mathematical construction is often called the
Wiener process. [24]

Growth of Mathematical Finance

Modern mathematical finance theory begins in the 1960s. In 1965 the economist
Paul Samuelson published two papers that argue that stock prices fluctuate
randomly [24]. One explained the Samuelson and Fama efficient markets
hypothesis that in a well-functioning and informed capital market, asset-
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price dynamics are described by a model in which the best estimate of an
asset’s future price is the current price (possibly adjusted for a fair expected
rate of return.) Under this hypothesis, attempts to use past price data or
publicly available forecasts about economic fundamentals to predict security
prices are doomed to failure. In the other paper with mathematician Henry
McKean, Samuelson shows that a good model for stock price movements is
geometric Brownian motion. Samuelson noted that Bachelier’s model failed
to ensure that stock prices would always be positive, whereas geometric Brow-
nian motion avoids this error [24].

The most important development in terms of practice was the 1973 Black-
Scholes model for option pricing. The two economists Fischer Black and My-
ron Scholes (and simultaneously, and somewhat independently, the economist
Robert Merton) deduced an equation that provided the first strictly quan-
titative model for calculating the prices of options. The key variable is the
volatility of the underlying asset. These equations standardized the pricing of
derivatives in exclusively quantitative terms. The formal press release from
the Royal Swedish Academy of Sciences announcing the 1997 Nobel Prize in
Economics states that the honor was given “for a new method to determine
the value of derivatives. Robert C. Merton and Myron S. Scholes have, in
collaboration with the late Fischer Black developed a pioneering formula for
the valuation of stock options. Their methodology has paved the way for eco-
nomic valuations in many areas. It has also generated new types of financial
instruments and facilitated more efficient risk management in society.”

The Chicago Board Options Exchange (CBOE) began publicly trading
options in the United States in April 1973, a month before the official pub-
lication of the Black-Scholes model. By 1975, traders on the CBOE were
using the model to both price and hedge their options positions. In fact,
Texas Instruments created a hand-held calculator specially programmed to
produce Black-Scholes option prices and hedge ratios.

The basic insight underlying the Black-Scholes model is that a dynamic
portfolio trading strategy in the stock can replicate the returns from an
option on that stock. This is called “hedging an option” and it is the most
important idea underlying the Black-Scholes-Merton approach. Much of the
rest of the book will explain what that insight means and how it can be
applied and calculated.

The story of the development of the Black-Scholes-Merton option pricing
model is that Black started working on this problem by himself in the late
1960s. His idea was to apply the capital asset pricing model to value the
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option in a continuous time setting. Using this idea, the option value satis-
fies a partial differential equation. Black could not find the solution to the
equation. He then teamed up with Myron Scholes who had been thinking
about similar problems. Together, they solved the partial differential equa-
tion using a combination of economic intuition and earlier pricing formulas.

At this time, Myron Scholes was at MIT. So was Robert Merton, who
was applying his mathematical skills to various problems in finance. Merton
showed Black and Scholes how to derive their differential equation differently.
Merton was the first to call the solution the Black-Scholes option pricing
formula. Merton’s derivation used the continuous time construction of a
perfectly hedged portfolio involving the stock and the call option together
with the notion that no arbitrage opportunities exist. This is the approach
we will take. In the late 1970s and early 1980s mathematicians Harrison,
Kreps and Pliska showed that a more abstract formulation of the solution as
a mathematical model called a martingale provides greater generality.

By the 1980s, the adoption of finance theory models into practice was
nearly immediate. Additionally, the mathematical models used in financial
practice became as sophisticated as any found in academic financial research
[37].

There are several explanations for the different adoption rates of math-
ematical models into financial practice during the 1960s, 1970s and 1980s.
Money and capital markets in the United States exhibited historically low
volatility in the 1960s; the stock market rose steadily, interest rates were rel-
atively stable, and exchange rates were fixed. Such simple markets provided
little incentive for investors to adopt new financial technology. In sharp con-
trast, the 1970s experienced several events that led to market change and
increasing volatility. The most important of these was the shift from fixed
to floating currency exchange rates; the world oil price crisis resulting from
the creation of the Middle East cartel; the decline of the United States stock
market in 1973-1974 which was larger in real terms than any comparable
period in the Great Depression; and double-digit inflation and interest rates
in the United States. In this environment, the old rules of thumb and sim-
ple regression models were inadequate for making investment decisions and
managing risk [37].

During the 1970s, newly created derivative-security exchanges traded
listed options on stocks, futures on major currencies and futures on U.S.
Treasury bills and bonds. The success of these markets partly resulted from
increased demand for managing risks in a volatile economic market. This suc-
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cess strongly affected the speed of adoption of quantitative financial models.
For example, experienced traders in the over the counter market succeeded by
using heuristic rules for valuing options and judging risk exposure. However
these rules of thumb were inadequate for trading in the fast-paced exchange-
listed options market with its smaller price spreads, larger trading volume
and requirements for rapid trading decisions while monitoring prices in both
the stock and options markets. In contrast, mathematical models like the
Black-Scholes model were ideally suited for application in this new trading
environment [37].

The growth in sophisticated mathematical models and their adoption into
financial practice accelerated during the 1980s in parallel with the extraordi-
nary growth in financial innovation. A wave of de-regulation in the financial
sector was an important factor driving innovation.

Conceptual breakthroughs in finance theory in the 1980s were fewer and
less fundamental than in the 1960s and 1970s, but the research resources
devoted to the development of mathematical models was considerably larger.
Major developments in computing power, including the personal computer
and increases in computer speed and memory enabled new financial markets
and expansions in the size of existing ones. These same technologies made
the numerical solution of complex models possible. They also speeded up the
solution of existing models to allow virtually real-time calculations of prices
and hedge ratios.

Ethical considerations

According to M. Poovey [39], new derivatives were developed specifically to
take advantage of de-regulation. Poovey says that derivatives remain largely
unregulated, for they are too large, too virtual, and too complex for industry
oversight to police. In 1997-8 the Financial Accounting Standards Board (an
industry standards organization whose mission is to establish and improve
standards of financial accounting) did try to rewrite the rules governing the
recording of derivatives, but in the long run they failed: in the 1999-2000
session of Congress, lobbyists for the accounting industry persuaded Congress
to pass the Commodities Futures Modernization Act, which exempted or
excluded “over the counter” derivatives from regulation by the Commodity
Futures Trading Commission, the federal agency that monitors the futures
exchanges. Currently, only banks and other financial institutions are required
by law to reveal their derivatives positions. Enron, which never registered
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as a financial institution, was never required to disclose the extent of its
derivatives trading.

In 1995, the sector composed of finance, insurance, and real estate over-
took the manufacturing sector in America’s gross domestic product. By
the year 2000 this sector led manufacturing in profits. The Bank for In-
ternational Settlements estimates that in 2001 the total value of derivative
contracts traded approached one hundred trillion dollars, which is approx-
imately the value of the total global manufacturing production for the last
millennium. In fact, one reason that derivatives trades have to be electronic
instead of involving exchanges of capital is that the sums being circulated
exceed the total of the world’s physical currencies.

In the past, mathematical models had a limited impact on finance prac-
tice. But since 1973 these models have become central in markets around the
world. In the future, mathematical models are likely to have an indispensable
role in the functioning of the global financial system including regulatory and
accounting activities.

We need to seriously question the assumptions that make models of
derivatives work: the assumptions that the market follows probability mod-
els and the assumptions underneath the mathematical equations. But what
if markets are too complex for mathematical models? What if irrational and
completely unprecedented events do occur, and when they do – as we know
they do – what if they affect markets in ways that no mathematical model
can predict? What if the regularity that all mathematical models assume
ignores social and cultural variables that are not subject to mathematical
analysis? Or what if the mathematical models traders use to price futures
actually influence the future in ways that the models cannot predict and the
analysts cannot govern?

Any virtue can become a vice if taken to extreme, and just so with the
application of mathematical models in finance practice. At times, the mathe-
matics of the models becomes too interesting and we lose sight of the models’
ultimate purpose. Futures and derivatives trading depends on the belief that
the stock market behaves in a statistically predictable way; in other words,
that probability distributions accurately describe the market. The mathe-
matics is precise, but the models are not, being only approximations to the
complex, real world. The practitioner should apply the models only tenta-
tively, assessing their limitations carefully in each application. The belief
that the market is statistically predictable drives the mathematical refine-
ment, and this belief inspires derivative trading to escalate in volume every
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year.
Financial events since late 2008 show that many of the concerns of the

previous paragraphs have occurred. In 2009, Congress and the Treasury
Department considered new regulations on derivatives markets. Complex
derivatives called credit default swaps appear to have been based on faulty
assumptions that did not account for irrational and unprecedented events, as
well as social and cultural variables that encouraged unsustainable borrowing
and debt. Extremely large positions in derivatives which failed to account
for unlikely events caused bankruptcy for financial firms such as Lehman
Brothers and the collapse of insurance giants like AIG. The causes are com-
plex, but some of the blame has been fixed on the complex mathematical
models and the people who created them. This blame results from distrust
of that which is not understood. Understanding the models is a prerequisite
for correcting the problems and creating a future which allows proper risk
management.

Sources

This section is adapted from the articles “Influence of mathematical mod-
els in finance on practice: past, present and future” by Robert C. Merton
in Mathematical Models in Finance edited by S. D. Howison, F. P. Kelly,
and P. Wilmott, Chapman and Hall, 1995, (HF 332, M384 1995); “In Honor
of the Nobel Laureates Robert C. Merton and Myron S. Scholes: A Par-
tial Differential Equation that Changed the World” by Robert Jarrow in the
Journal of Economic Perspectives, Volume 13, Number 4, Fall 1999, pages
229-248; and R. Jarrow and P. Protter, “A short history of stochastic inte-
gration and mathematical finance the early years, 1880-1970”, IMS Lecture
Notes, Volume 45, 2004, pages 75-91. Some additional ideas are drawn from
the article “Can Numbers Ensure Honesty? Unrealistic Expectations and the
U.S. Accounting Scandal”, by Mary Poovey, in the Notice of the American
Mathematical Society, January 2003, pages 27-35.

Problems to Work for Understanding

Outside Readings and Links:

1. History of the Black Scholes Equation Accessed Thu Jul 23, 2009 6:07
AM

http://www.optiontradingpedia.com/free_black_scholes_model.htm
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2. Clip from “The Trillion Dollar Bet” Accessed Fri Jul 24, 2009 5:29 AM.

1.2 Options and Derivatives

Rating

Student: contains scenes of mild algebra or calculus that may require guid-
ance.

Section Starter Question

Suppose your rich neighbor offered an agreement to you today to sell his
classic Jaguar sports-car to you (and only you) a year from today at a rea-
sonable price agreed upon today. (Cash and car would be exchanged a year
from today.) What would be the advantages and disadvantages to you of
such an agreement? Would that agreement be valuable? How would you
determine how valuable that agreement is?

Key Concepts

1. A call option is the right to buy an asset at an established price at a
certain time.

2. A put option is the right to sell an asset at an established price at a
certain time.

3. A European option may only be exercised at the end of its life on the
expiry date, an American option may be exercised at any time during
its life up to the expiry date.

4. Six factors affect the price of a stock option:

(a) the current stock price S,

(b) the strike price K,

(c) the time to expiration T − t where T is the expiration time and t
is the current time.

(d) the volatility of the stock price σ,

(e) the risk-free interest rate r,

http://www.youtube.com/watch?v=xGfXyVtiB1E
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(f) the dividends expected during the life of the option.

Vocabulary

1. A call option is the right to buy an asset at an established price at a
certain time.

2. A put option is the right to sell an asset at an established price at a
certain time.

3. A future is a contract to buy (or sell) an asset at an established price
at a certain time.

4. Volatility is a measure of the variability and therefore the risk of a
price, usually the price of a security.

Mathematical Ideas

Definitions

A call option is the right to buy an asset at an established price at a certain
time. A put option is the right to sell an asset at an established price at a
certain time. Another slightly simpler financial instrument is a future which
is a contract to buy or sell an asset at an established price at a certain time.

More fully, a call option is an agreement or contract by which at a defi-
nite time in the future, known as the expiry date, the holder of the option
may purchase from the option writer an asset known as the underlying
asset for a definite amount known as the exercise price or strike price.
A put option is an agreement or contract by which at a definite time in
the future, known as the expiry date, the holder of the option may sell
to the option writer an asset known as the underlying asset for a defi-
nite amount known as the exercise price or strike price. A European
option may only be exercised at the end of its life on the expiry date. An
American option may be exercised at any time during its life up to the
expiry date. For comparison, in a futures contract the writer must buy (or
sell) the asset to the holder at the agreed price at the prescribed time. The
underlying assets commonly traded on options exchanges include stocks, for-
eign currencies, and stock indices. For futures, in addition to these kinds of
assets the common assets are commodities such as minerals and agricultural
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products. In this text we will usually refer to options based on stocks, since
stock options are easily described, commonly traded and prices are easily
found.

Jarrow and Protter [24, page 7] relate a story on the origin of the names
European options and American options. While writing his important 1965
article on modeling stock price movements as a geometric Brownian motion,
Paul Samuelson went to Wall Street to discuss options with financial profes-
sionals. His Wall Street contact informed him that there were two kinds of
options, one more complex that could be exercised at any time, the other
more simple that could be exercised only at the maturity date. The con-
tact said that only the more sophisticated European mind (as opposed to
the American mind) could understand the former more complex option. In
response, when Samuelson wrote his paper, he used these prefixes and re-
versed the ordering! Now in a further play on words, financial markets offer
many more kinds of options with geographic labels but no relation to that
place name. For example two common types are Asian options and Bermuda
options.

The Markets for Options

In the United States, some exchanges trading options are the Chicago Board
Options Exchange (CBOE), the American Stock Exchange (AMEX), and the
New York Stock Exchange (NYSE) among others. Not all options are traded
on exchanges. Over-the-counter options markets where financial institutions
and corporations trade directly with each other are increasingly popular.
Trading is particularly active in options on foreign exchange and interest
rates. The main advantage of an over-the-counter option is that it can be
tailored by a financial institution to meet the needs of a particular client. For
example,the strike price and maturity do not have to correspond to the set
standards of the exchanges. Other nonstandard features can be incorporated
into the design of the option. A disadvantage of over-the-counter options is
that the terms of the contract need not be open to inspection by others and
the contract may be so different from standard derivatives that it is hard to
evaluate in terms of risk and value.

A European put option allows the holder to sell the asset on a certain
date for a prescribed amount. The put option writer is obligated to buy the
asset from the option holder. If the underlying asset price goes below the
strike price, the holder makes a profit because the holder can buy the asset
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Figure 1.1: This is not the market for options!

at the current low price and sell it at the agreed higher price instead of the
current price. If the underlying asset price goes above the strike price, the
holder exercises the right not to sell. The put option has payoff properties
that are the opposite to those of a call. The holder of a call option wants the
asset price to rise, the higher the asset price, the higher the immediate profit.
The holder of a put option wants the asset price to fall as low as possible.
The further below the strike price, the more valuable is the put option.

The expiry date is specified by the month in which the expiration oc-
curs. The precise expiration date of exchange traded options is 10:59 PM
Central Time on the Saturday immediately following the third Friday of the
expiration month. The last day on which options trade is the third Friday
of the expiration month. Exchange traded options are typically offered with
lifetimes of 1, 2, 3, and 6 months.

Another item used to describe an option is the strike price, the price
at which the asset can be bought or sold. For exchange traded options on
stocks, the exchange typically chooses strike prices spaced $2.50, $5, or $10
apart. The usual rule followed by exchanges is to use a $2.50 spacing if the
stock price is below $25, $5 spacing when it is between $25 and $200, and
$10 spacing when it is above $200. For example, if Corporation XYZ has a
current stock price of 12.25, options traded on it may have strike prices of 10,
12.50, 15, 17.50 and 20. A stock trading at 99.88 may have options traded
at the strike prices of 90, 95, 100, 105, 110 and 115.
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Options are called in the money, at the money or out of the money.
An in-the-money option would lead to a positive cash flow to the holder if it
were exercised immediately. Similarly, an at-the-money option would lead to
zero cash flow if exercised immediately, and an out-of-the-money would lead
to negative cash flow if it were exercised immediately. If S is the stock price
and K is the strike price, a call option is in the money when S > K, at the
money when S = K and out of the money when S < K. Clearly, an option
will be exercised only when it is in the money.

Characteristics of Options

The intrinsic value of an option is the maximum of zero and the value it
would have if exercised immediately. For a call option, the intrinsic value
is therefore max(S − K, 0). Often it might be optimal for the holder of an
American option to wait rather than exercise immediately. The option is then
said to have time value. Note that the intrinsic value does not consider the
transaction costs or fees associated with buying or selling an asset.

The word “may” in the description of options, and the name “option”
itself implies that for the holder of the option or contract, the contract is a
right, and not an obligation. The other party of the contract, known as the
writer does have a potential obligation, since the writer must sell (or buy)
the asset if the holder chooses to buy (or sell) it. Since the writer confers on
the holder a right with no obligation an option has some value. This right
must be paid for at the time of opening the contract. Conversely, the writer
of the option must be compensated for the obligation he has assumed. Our
main goal is to answer the following question:

How much should one pay for that right? That is, what is the
value of an option? How does that value vary in time? How does
that value depend on the underlying asset?

Note that the value of the option contract depends essentially on the
characteristics of the underlying commodity. If the commodity is high priced
with large swings, then we might believe that the option contract would be
high-priced since there is a good chance the option will be in the money. The
option contract value is derived from the commodity price, and so we call it
a derivative.

Six factors affect the price of a stock option:

1. the current stock price S,
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Figure 1.2: Intrinsic value of a call option
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2. the strike price K,

3. the time to expiration T − t where T is the expiration time and t is the
current time.

4. the volatility of the stock price,

5. the risk-free interest rate,

6. the dividends expected during the life of the option.

Consider what happens to option prices when one of these factors changes
with all the others remain fixed. The results are summarized in the table. I
will explain only the changes regarding the stock price, the strike price, the
time to expiration and the volatility; the other variables are less important
for our considerations.

Variable European Call European Put American Call American Put
Stock Price increases + - + -
Strike Price increases - + - +
Time to Expiration increases ? ? + +
Volatility increases + + + +
Risk-free Rate increases + - + -
Dividends - + - +

If it is to be exercised at some time in the future, the payoff from a call
option will be the amount by which the stock price exceeds the strike price.
Call options therefore become more valuable as the stock price increases and
less valuable as the strike price increases. For a put option, the payoff on
exercise is the amount by which the strike price exceeds the stock price.
Put options therefore behave in the opposite way to call options. They
become less valuable as stock price increases and more valuable as strike
price increases.

Consider next the effect of the expiration date. Both put and call Amer-
ican options become more valuable as the time to expiration increases. The
owner of a long-life option has all the exercise options open to the short-
life option — and more. The long-life option must therefore, be worth at
least as much as the short-life option. European put and call options do not
necessarily become more valuable as the time to expiration increases. The
owner of a long-life European option can only exercise at the maturity of the
option.



24 CHAPTER 1. BACKGROUND IDEAS

Roughly speaking the volatility of a stock price is a measure of how much
future stock price movements may vary relative to the current price. As
volatility increases, the chance that the stock will either do very well or very
poorly also increases. For the owner of a stock, these two outcomes tend
to offset each other. However, this is not so for the owner of a put or call
option. The owner of a call benefits from price increases, but has limited
downside risk in the event of price decrease since the most that he or she can
lose is the price of the option. Similarly, the owner of a put benefits from
price decreases but has limited upside risk in the event of price increases.
The values of puts and calls therefore increase as volatility increases.

Sources

The ideas in this section are adapted from Options, Futures and other Deriva-
tive Securities by J. C. Hull, Prentice-Hall, Englewood Cliffs, New Jersey,
1993 and The Mathematics of Financial Derivatives by P. Wilmott, S. How-
ison, J. Dewynne, Cambridge University Press, 195, Section 1.4, “What are
options for?”, Page 13 and R. Jarrow and P. Protter, “A short history of
stochastic integration and mathematical finance the early years, 1880–1970”,
IMS Lecture Notes, Volume 45, 2004, pages 75–91.

Problems to Work for Understanding

1. (a) Find and write the definition of a “future”, also called a futures
contract. Graph the intrinsic value of a futures contract at its
contract date, or expiration date, as was done for the call option.

(b) Show that holding a call option and writing a put option on the
same asset, with the same strike price K is the same as having
a futures contract on the asset with strike price K. Drawing a
graph of the value of the combination and the value of the fu-
tures contract together with an explanation will demonstrate the
equivalence.

2. Puts and calls are not the only option contracts available, just the most
fundamental and the simplest. Puts and calls are designed to eliminate
risk of up or down price movements in the underlying asset. Some
other option contracts designed to eliminate other risks are created as
combinations of puts and calls.
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(a) Draw the graph of the value of the option contract composed of
holding a put option with strike price K1 and holding a call option
with strike price K2 where K1 < K2. (Assume both the put and
the call have the same expiration date.) The investor profits only
if the underlier moves dramatically in either direction. This is
known as a long strangle.

(b) Draw the graph of the value of an option contract composed of
holding a put option with strike price K and holding a call option
with the same strike price K. (Assume both the put and the call
have the same expiration date.) This is called an long straddle,
and also called a bull straddle.

(c) Draw the graph of the value of an option contract composed of
holding one call option with strike price K1 and the simultaneous
writing of a call option with strike price K2 with K1 < K2. (As-
sume both the options have the same expiration date.) This is
known as a bull call spread.

(d) Draw the graph of the value of an option contract created by si-
multaneously holding one call option with strike price K1, holding
another call option with strike price K2 where K1 < K2, and writ-
ing two call options at strike price (K1 +K2)/2. This is known as
a butterfly spread.

(e) Draw the graph of the value of an option contract created by
holding one put option with strike price K and holding two call
options on the same underlying security, strike price, and maturity
date. This is known as a triple option or strap

Outside Readings and Links:

1. What are stock options? An explanation from youtube.com

1.3 Speculation and Hedging

Rating

Student: contains scenes of mild algebra or calculus that may require guid-
ance.

http://www.youtube.com/watch?v=EH9RjItbR00
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Section Starter Question

Discuss examples in your experience of speculation. (Example: think of
“scalping tickets”.) A hedge is an investment that is taken out specifically
to reduce or cancel out risk. Discuss examples in your experience of hedges.

Key Concepts

1. Options have two primary uses, speculation and hedging.

2. Options can be a cheap way of exposing a portfolio to a large amount
of risk. Sometimes a large amount of risk is desirable. This is the use
of options and derivatives for speculation.

3. Options allow the investor to insure against adverse security value
movements while still benefiting from favorable movements. This is
use of options for hedging. Of course this insurance comes at the cost
of buying the option.

Vocabulary

1. Speculation is to assume a financial risk in anticipation of a gain,
especially to buy or sell in order to profit from market fluctuations.

2. Hedging is to protect oneself financially against loss by a counter-
balancing transaction, especially to buy or sell assets as a protection
against loss due to price fluctuation.

Mathematical Ideas

Options have two primary uses, speculation and hedging. Consider spec-
ulation first.

Example: Speculation on a stock with calls

An investor who believes that a particular stock, say XYZ, is going to rise
may purchase some shares in the company. If she is correct, she makes
money, if she is wrong she loses money. The investor is speculating. Suppose
the price of the stock goes from $2.50 to $2.70, then the investor makes $0.20
on each $2.50 investment, or a gain of 8%. If the price falls to $2.30, then
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the investor loses $0.20 on each $2.50 share, for a loss of 8%. These are both
standard calculations.

Alternatively, suppose the investor thinks that the share price is going
to rise within the next couple of months, and that the investor buys a call
option with exercise price of $2.50 and expiry date in three months’ time.

Now assume that it costs $0.10 to purchase a European call option on
stock XYZ with expiration date in three months and strike price $2.50. That
means in three months time, the investor could, if the investor chooses to,
purchase a share of XYZ at price $2.50 per share no matter what the current
price of XYZ stock is! Note that the price of $0.10 for this option may or may
not be an appropriate price for the option, I use $0.10 simply because it is
easy to calculate with. However, 3-month option prices are often about 5% of
the stock price, so this is reasonable. In three months time if the XYZ stock
price is $2.70, then the holder of the option may purchase the stock for $2.50.
This action is called exercising the option. It yields an immediate profit of
$0.20. That is, the option holder can buy the share for $2.50 and immediately
sell it in the market for $2.70. On the other hand if in three months time,
the XYZ share price is only $2.30, then it would not be sensible to exercise
the option. The holder lets the option expire. Now observe carefully: By
purchasing an option for $0.10, the holder can derive a net profit of $0.10
($0.20 revenue less $0.10 cost) or a loss of $0.10 (no revenue less $0.10 cost.)
The profit or loss is magnified to 100% with the same probability of change.
Investors usually buy options in quantities of hundreds, thousands, even tens
of thousands so the absolute dollar amounts can be quite large. Compared to
stocks, options offer a great deal of leverage, that is, large relative changes in
value for the same investment. Options expose a portfolio to a large amount
of risk cheaply. Sometimes a large degree of risk is desirable. This is the use
of options and derivatives for speculation.

Example: Speculation on a stock with calls

Consider the profit and loss of a investor who buys 100 call options on XYZ
stock with a strike price of $140. Suppose the current stock price is $138, the
expiration date of the option is two months, and the option price is $5. Since
the options are European, the investor can exercise only on the expiration
date. If the stock price on this date is less than $140, the investor will
clearly choose not to exercise the option since buying a stock at $140 that
has a market value less than $140 is not sensible. In these circumstances the
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investor loses the whole of the initial investment of $500. If the stock price
is above $140 on the expiration date, the options will be exercised. Suppose
for example,the stock price is $155. By exercising the options, the investor is
able to buy 100 shares for $140 per share. If the shares are sold immediately,
then the investor makes a gain of $15 per share, or $1500 ignoring transaction
costs. When the initial cost of the option is taken into account, the net profit
to the investor is $10 per option, or $1000 on an initial investment of $500.
This calculation ignores the time value of money.

Example: Speculation on a stock with puts

Consider an investor who buys 100 European put options on XYZ with a
strike price of $90. Suppose the current stock price is $86, the expiration
date of the option is in 3 months and the option price is $7. Since the
options are European, they will be exercised only if the stock price is below
$90 at the expiration date. Suppose the stock price is $65 on this date. The
investor can buy 100 shares for $65 per share, and under the terms of the put
option, sell the same stock for $90 to realize a gain of $25 per share, or $2500.
Again, transaction costs are ignored. When the initial cost of the option is
taken into account, the investor’s net profit is $18 per option, or $1800. This
is a profit of 257% even though the stock has only changed price $25 from
an initial of $90, or 28%. Of course, if the final price is above $90, the put
option expires worthless, and the investor loses $7 per option, or $700.

Example: Hedging with calls on foreign exchange rates

Suppose that a U.S. company knows that it is due to pay 1 million pounds to
a British supplier in 90 days. The company has significant foreign exchange
risk. The cost in U.S. dollars of making the payment depends on the exchange
rate in 90 days. The company instead can buy a call option contract to
acquire 1 million pounds at a certain exchange rate, say 1.7 in 90 days. If
the actual exchange rate in 90 days proves to be above 1.7, the company
exercises the option and buys the British pounds it requires for $1,700,000.
If the actual exchange rate proves to be below 1.7, the company buys the
pounds in the market in the usual way. This option strategy allows the
company to insure itself against adverse exchange rate increases while still
benefiting from favorable decreases. Of course this insurance comes at the
relatively small cost of buying the option on the foreign exchange rate.
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Example: Hedging with a portfolio with puts and calls

Since the value of a call option rises when an asset price rises, what happens
to the value of a portfolio containing both shares of stock of XYZ and a
negative position in call options on XYZ stock? If the stock price is rising,
the call option value will also rise, the negative position in calls will become
greater, and the net portfolio should remain approximately constant if the
positions are held in the right ratio. If the stock price is falling then the call
option value price is also falling. The negative position in calls will become
smaller. If held in the proper amounts, the total value of the portfolio should
remain constant! The risk (or more precisely, the variation) in the portfolio
is reduced! The reduction of risk by taking advantage of such correlations
is called hedging. Used carefully, options are an indipensable tool of risk
management.

Consider a stock currently selling at $100 and having a standard deviation
in its price fluctuations of 10%. We can use the Black-Scholes formula derived
later in the course to show that a call option with a strike price of $100 and
a time to expiration of one year would sell for $11.84. A 1 percent rise in the
stock from $100 to $101 would drive the option price to $12.73.

Suppose a trader has an original portfolio comprised of 8944 shares of
stock selling at $100 per share. (The unusual number of 8944 shares will be
calculated later from the Black-Scholes formula as a hedge ratio. ) Assume
also that a trader short sells call options on 10,000 shares at the current price
of $11.84. That is, the short seller borrows the options from another trader
and must later repay it, creating a negative position in the option value.
Once the option is borrowed, the short seller sells it and takes the money
from the sale. The transaction is called short selling because the trader sells
a good he or she does not actually own and must later pay it back. In the
table this short position in the option is indicated by a minus sign. The
entire portfolio of shares and options has a net value of $776,000.

Now consider the effect of a 1 percent change in the price of the stock. If
the stock increases 1 percent,the shares will be worth $903,344. The option
price will increase from $11.84 to $12.73. But since the portfolio also involves
a short position in 10,000 options, this creates a loss of $8,900. This is the
additional value of what the borrowed options are now worth, so it must
additionally be paid back! After these two effects are taken into account,
the value of the portfolio will be $776,044. This is virtually identical to the
original value. The slight discrepancy of $44 is rounding error due to the fact
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that the number of stock shares calculated from the hedge ratio is rounded
to an integer number of shares, and the change in option value is rounded to
the nearest penny.

On the other hand of the stock price falls by 1 percent, there will be a
loss in the stock of $8944. The price on this option will fall from $11.84 to
$10.95 and this means that the entire drop in the price of the 10,000 options
will be $8900. Taking both of these effects into account, the portfolio will
then be worth $776,956. The overall value of the portfolio will not change
regardless of what happens to the stock price. If the stock price increases,
there is an offsetting loss on the option, if the stock price falls, there is an
offsetting gain on the option.

Original Portfolio S = 100, C = $11.84
8,944 shares of stock $894,400
Short position on 10,000 options -$118,400
Total value $776,000

Stock Price rises 1% S = 101, C = $12.73
8,944 shares of stock $903,344
Short position on 10,000 options -$127,300
Total value $776,044

Stock price falls 1% S = 99, C = $10.95
8,944 shares of stock $885,456
Short position on options -$109,500
Total value $775,956

This example is not intended to illustrate a prudent investment strat-
egy. If an investor desired to maintain a constant amount of money, instead
putting the sum of money invested in shares into the bank or in Treasury
bills would safeguard the sum and even pay a modest amount of interest.
If the investor wished to maximize the investment, then investing in stocks
solely and enduring a probable 10% loss in value would still leave a larger
total investment.

This example is a first example of short selling. It is also an illustration of
how holding an asset and short selling a related asset in carefully calibrated
ratios can hold a total investment constant. The technique of holding and
short-selling to hold a portfolio constant will later be an important compo-
nent in deriving the Black-Scholes formula.
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Sources

The ideas in this section are adapted from Options, Futures and other Deriva-
tive Securities by J. C. Hull, Prentice-Hall, Englewood Cliffs, New Jersey,
1993 and The Mathematics of Financial Derivatives by P. Wilmott, S. How-
ison, J. Dewynne, Cambridge University Press, 1995, Section 1.4, “What are
options for?”, Page 13, and Financial Derivatives by Robert Kolb, New York
Institute of Finance, New York, 1994, page 110.

Problems to Work for Understanding

1. You would like to speculate on a rise in the price of a certain stock.
The current stock price is $29 and a 3-month call with strike of $30
costs $2.90. You have $5,800 to invest. Identify two alternative strate-
gies, one involving investment in the stock, and the other involving
investment in the option. What are the potential gains and losses from
each?

2. A company knows it is to receive a certain amount of foreign currency
in 4 months. What type of option contract is appropriate for hedging?
Please be very specific.

3. The current price of a stock is $94 and 3-month call options with a
strike price of $95 currently sell for $4.70. An investor who feels that
the price of the stock will increase is trying to decide between buying
100 shares and buying 2,000 call options. Both strategies involve an
investment of $9,400. Write and solve an inequality to determine how
high the stock price must rise for the option strategy to be the more
profitable. What advice would you give?

Outside Readings and Links:

• Speculation and Hedging A short youtube video on speculation and
hedging, from “The Trillion Dollar Bet”.

• More Speculation and Hedging A short youtube video on speculation
and hedging.

http://www.youtube.com/watch?v=G17rx7H3DtI
http://www.youtube.com/watch?v=xxZtWDJGEvA
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1.4 Arbitrage

Rating

Student: contains scenes of mild algebra or calculus that may require guid-
ance.

Section Starter Question

It’s the day of the big game. You know that your rich neighbor really wants
to buy tickets, in fact you know he’s willing to pay $50 a ticket. While on
campus, you see a hand lettered sign offering “two general-admission tickets
at $25 each, inquire immediately at the mathematics department”. You have
your phone with you, what should you do? Discuss whether this is a frequent
occurrence, and why or why not? Is this market efficient? Is there any risk
in this market?

Key Concepts

1. An arbitrage opportunity is a circumstance where the simultaneous pur-
chase and sale of related securities is guaranteed to produce a riskless
profit. Arbitrage opportunities should be rare, but in a world-wide
market they can occur.

2. Prices change as the investors move to take advantage of such an op-
portunity. As a consequence, the arbitrage opportunity disappears.
This becomes an economic principle: in an efficient market there are
no arbitrage opportunities.

3. The basis of arbitrage pricing is that any two investments with identical
payout streams must have the same price.

Vocabulary

1. Arbitrage is locking in a riskless profit by simultaneously entering into
transactions in two or more markets, exploiting mismatches in pricing.
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Mathematical Ideas

The notion of arbitrage is crucial in the modern theory of finance. It is the
cornerstone of the Black, Scholes and Merton option pricing theory, devel-
oped in 1973, for which Scholes and Merton received the Nobel Prize in 1997
(Fisher Black died in 1995).

An arbitrage opportunity is a circumstance where the simultaneous pur-
chase and sale of related securities is guaranteed to produce a riskless profit.
Arbitrage opportunities should be rare, but on a world-wide basis some do
occur.

This section illustrates the concept of arbitrage with simple examples.

An arbitrage opportunity in exchange rates

Consider a stock that is traded in both New York and London. Suppose that
the stock price is $172 in New York and £100 in London at a time when
the exchange rate is $1.7500 per pound. An arbitrageur in New York could
simultaneously buy 100 shares of the stock in New York and sell them in
London to obtain a risk-free profit of

100shares× 100£/share× 1.75$/£− 100shares× 172$/share = $300

in the absence of transaction costs. Transaction costs would probably elim-
inate the profit on a small transaction like this. However, large investment
houses face low transaction costs in both the stock market and the foreign
exchange market. Trading firms would find this arbitrage opportunity very
attractive and would try to take advantage of it in quantities of many thou-
sands of shares.

The shares in New York are underpriced relative to the shares in London
with the exchange rate taken into consideration. However, note that the
demand for the purchase of many shares in New York would soon drive
the price up. The sale of many shares in London would soon drive the price
down. The market would soon reach a point where the arbitrage opportunity
disappears.

An arbitrage opportunity in gold contracts

Suppose that the current market price (called the spot price) of an ounce of
gold is $398 and that an agreement to buy gold in three months time would
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set the price at $390 per ounce (called a forward contract). Suppose that
the price for borrowing gold (actually the annualized 3-month interest rate
for borrowing gold, called the convenience price) is 10%. Additionally
assume that the annualized interest rate on 3-month deposits (such as a
certificate of deposit at a bank) is 4%. This set of economic circumstances
creates an arbitrage opportunity. The arbitrageur can borrow one ounce of
gold, immediately sell the borrowed gold at its current price of $398 (this
is called shorting the gold), lend this money out for three months and
simultaneously enter into the forward contract to buy one ounce of gold at
$390 in 3 months. The cost of borrowing the ounce of gold is

$398× 0.10× 1/4 = $9.95

and the interest on the 3-month deposit amounts to

$398× 0.04× 1/4 = $3.98.

The investor will therefore have 398.00+3.98−9.95 = 392.03 in the bank ac-
count after 3 months. Purchasing an ounce of gold in 3 months, at the forward
price of $390 and immediately returning the borrowed gold, he will make a
profit of $2.03. This example ignores transaction costs and assumes interests
are paid at the end of the lending period. Transaction costs would probably
consume the profits in this one ounce example. However, large-volume gold-
trading arbitrageurs with low transaction costs would take advantage of this
opportunity by purchasing many ounces of gold.

This transaction can be pictured with the following diagram. Time is on
the horizontal axis, and cash flow is vertical, with the arrow up if cash comes
in to the investor, and the arrow down if cash flows out from the investor.

Discussion about arbitrage

Arbitrage opportunities as just described cannot last for long. In the first
example, as arbitrageurs buy the stock in New York, the forces of supply
and demand will cause the New York dollar price to rise. Similarly as the
arbitrageurs sell the stock in London, the London sterling price will be driven
down. The two stock prices will quickly become equivalent at the current
exchange rate. Indeed the existence of profit-hungry arbitrageurs (usually
pictured as frenzied traders carrying on several conversations at once!) makes
it unlikely that a major disparity between the sterling price and the dollar
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Figure 1.3: A diagram of the cash flow in the gold arbitrage

price could ever exist in the first place. In the second example, once arbi-
trageurs start to sell gold at the current price of $398, the price will drop.
The demand for the 3-month forward contracts at $390 will cause the price
to rise. Although arbitrage opportunities can arise in financial markets, they
cannot last long.

Generalizing, the existence of arbitrageurs means that in practice, only
tiny arbitrage opportunities are observed only for short times in most fi-
nancial markets. As soon as sufficiently many observant investors find the
arbitrage, the prices quickly change as the investors buy and sell to take
advantage of such an opportunity. As a consequence, the arbitrage opportu-
nity disappears. The principle can stated as follows: in an efficient market
there are no arbitrage opportunities. In this course, most of our arguments
will be based on the assumption that arbitrage opportunities do not exist,
or equivalently, that we are operating in an efficient market.

A joke illustrates this principle very well: A mathematical economist and
a financial analyst are walking down the street together. Suddenly each spots
a $100 bill lying in the street at the curb! The financial analyst yells “Wow, a
$100 bill, grab it quick!”. The mathematical economist says “Don’t bother, if
it were a real $100 bill, somebody would have picked it up already.” Arbitrage
opportunities do exist in real life, but one has to be quick and observant. For
purposes of mathematical modeling, we can treat arbitrage opportunities as
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non-existent as $100 bills lying in the street. It might happen, but we don’t
base our activities on the expectation.

The basis of arbitrage pricing is that any two investments with identical
payout streams must have the same price. If this were not so, we could
simultaneously sell the more the expensive instrument and buy the cheaper
one; the payment stream from our sale meets the payments for our purchase.
We can make an immediate profit.

Before the 1970s most economists approached the valuation of a security
by considering the probability of the stock going up or down. Economists
now determine the price of a security by arbitrage without the consideration
of probabilities. We will use the concept of arbitrage pricing extensively in
this text.

Sources

The ideas in this section are adapted from Options, Futures and other Deriva-
tive Securities by J. C. Hull, Prentice-Hall, Englewood Cliffs, New Jersey,
1993, Stochastic Calculus and Financial Applications, by J. Michael Steele,
Springer, New York, 2001, pages 153–156, the article “What is a . . . Free
Lunch” by F. Delbaen and W. Schachermayer, Notices of the American
Mathematical Society, Vol. 51, Number 5, pages 526–528, and Quantita-
tive Modeling of Derivative Securities, by M. Avellaneda and P. Laurence,
Chapman and Hall, Boca Raton, 2000.

Problems to Work for Understanding

1. Consider the hypothetical country of Elbonia, where the government
has declared a “currency band” policy, in which the exchange rate
between the domestic currency, the Elbonian Bongo Buck, denoted by
EBB, and the US Dollar is guaranteed to fluctuate in a prescribed band,
namely:

0.95USD ≤ EBB ≤ 1.05USD

for at least one year. Suppose also that the Elbonian government has
issued 1-year notes denominated in the EBB that pay a continuously
compounded interest rate of 30%. Assuming that the corresponding
continuously compounded interest rate for US deposits is 6%, show
that there is an arbitrage opportunity. (Adapted from Quantitative
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Modeling of Derivative Securities, by M. Avellaneda and P. Laurence,
Chapman and Hall, Boca Raton, 2000, Exercises 1.7.1, page 18).

2. The current exchange rate between the U.S. Dollar and the Euro is
1.4280, that is, it costs $1.4280 to buy one Euro. The current 1-year
Fed Funds rate, (the bank-to-bank lending rate), in the United States
is 4.7500% (assume it is compounded continuously). The forward rate
(the exchange rate in a forward contract that allows you to buy Euros
in a year) for purchasing Euros 1 year from today is 1.4312. What
is the corresponding bank-to-bank lending rate in Europe (assume it
is compounded continuously), and what principle allows you to claim
that value?

3. According to the article “Bullion bulls” on page 81 in the October 8,
2009 issue of The Economist, gold has risen from about $510 per ounce
in January 2006 to about $1050 per ounce in October 2009, 46 months
later.

(a) What is the continuously compounded annual rate of increase of
the price of gold over this period?

(b) In October 2009, one can borrow or lend money at 5% interest,
again assume it compounded continuously. In view of this, de-
scribe a strategy that will make a profit in October 2010, involving
borrowing or lending money, assuming that the rate of increase in
the price gold stays constant over this time.

(c) The article suggests that the rate of increase for gold will stay
constant. In view of this, what do you expect to happen to interest
rates and what principle allows you to conclude that?

4. Consider a market that has a security and a bond so that money can
be borrowed or loaned at an annual interest rate of r compounded
continuously. At the end of a time period T , the security will have
increased in value by a factor U to SU , or decreased in value by a
factor D to value SD. Show that a forward contract with strike price
k that, is, a contract to buy the security which has potential payoffs
SU − k and SD − k should have the strike price set at S exp(rT ) to
avoid an arbitrage opportunity.
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Outside Readings and Links:

1. A lecture on currency arbitrage A link to a youtube video.

1.5 Mathematical Modeling

Rating

Student: contains scenes of mild algebra or calculus that may require guid-
ance.

Section Starter Question

Do you believe in the ideal gas law? Does it make sense to “believe in” an
equation? What do we really mean when we say we “believe in” an equation?

Key Concepts

1. All mathematical models are wrong, but some mathematical models
are useful.

2. If the modeling assumptions are satisfied, proper mathematical models
should predict well given a wide range of conditions corresponding to
the assumptions.

3. When observed outcomes deviate from predicted ideal behavior in hon-
est scientific or engineering work, then we must then alter our assump-
tions, re-derive the quantitative relationships, perhaps with more so-
phisticated mathematics or introducing more quantities and begin the
cycle of modeling again.

Vocabulary

1. A mathematical model is a mathematical structure (often an equa-
tion) expressing a relationship among a limited number of quantifiable
elements from the “real world” or some isolated portion of it.

http://www.youtube.com/watch?v=ElstQlIb_sI


1.5. MATHEMATICAL MODELING 39

Mathematical Ideas

Remember the following proverb: All mathematical models are wrong, but
some mathematical models are useful.

Mathematical Modeling

Mathematical modeling involves two equally important activities:

• Building a mathematical structure, a model, based on hypotheses about
relations among the quantities that describe the real world situation,
and then deriving new relations,

• Evaluating the model, comparing the new relations with the real world
and making predictions from the model.

Good mathematical modeling explains the hypotheses, the development of
the model and its solutions, and then supports the findings by comparing
them mathematically with the actual circumstances. Successful modeling
requires a balance between so much complexity that making predictions from
the model may be intractable and so little complexity that the predictions
are unrealistic and useless. A successful model must allow a user to consider
the effects of different policies.

At a more detailed level, mathematical modeling involves successive steps
in the cycle of modeling:

1. Factors and observations,

2. Mathematical structure,

3. Testing and sensitivity analysis,

4. Effects and observations.

Consider the diagram in Figure 1.4 which illustrates the cycle of modeling.
Steps 1 and 2 in the more detailed cycle are the first activity described above
and steps 3 and 4 are the second activity.
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Figure 1.4: The cycle of modeling
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Modeling

A good description of the model will begin with an organized and complete
description of important factors and observations. The description will often
use data gathered from observations of the problem. It will also include the
statement of scientific laws and relations that apply to the important factors.
From there, the model must summarize and condense the observations into
a small set of hypotheses that capture the essence of the observations. The
small set of hypotheses is a restatement of the problem, changing the problem
from a descriptive, even colloquial, question into a precise formulation that
moves the statement from the general to the specific. This sets the stage for
the modeler to demonstrate a clear link between the listed assumptions and
the building of the model.

The hypotheses translate into a mathematical structure that becomes the
heart of the mathematical model. Many mathematical models, particularly
those from physics and engineering, become a single equation but mathe-
matical models need not be a single concise equation. Mathematical models
may be a regression relation, either a linear regression, an exponential re-
gression or a polynomial regression. The choice of regression model should
explicitly follow from the hypotheses since the growth rate is an important
consequence of the observations. The mathematical model may be a linear or
nonlinear optimization model, consisting of an objective function and a set
of constraints. Again the choice of linear or nonlinear functions for the ob-
jective and constraints should explicitly follow from the nature of the factors
and the observations. For dynamic situations, the observations often involve
some quantity and its rates of change. The hypotheses express some con-
nection between these quantities and the mathematical model then becomes
a differential equation, either linear or nonlinear depending on the explicit
details of the scientific laws relating the factors considered. For discretely
sampled data instead of continuous time expressions the model may become
a difference equation. If an important feature of the observations and factors
is noise or randomness, then the model may be a probability distribution or
a stochastic process. The classical models from science and engineering usu-
ally take one of these classical equation-like forms but not all mathematical
models need to follow this format. Models may be a connectivity graph, or
a group of transformations.

If the number of variables is more than a few, or the relations are compli-
cated to write in a concise mathematical expression then the model can be a
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computer program. Programs written in either high-level languages such as
C, FORTRAN or Basic and very-high-level languages such as MATLAB or a
computer algebra system are mathematical models. Spreadsheets combining
the data and the calculations are a popular and efficient way to construct a
mathematical model. The collection of calculations in the spreadsheet ex-
press the laws connecting the factors which are represented by the data in
the rows and columns of the spreadsheet. Some mathematical models may
be expressed by using more elaborate software specifically designed for mod-
eling. Some software allows the user to describe the connections between
factors graphically to create and alter a model.

Although this set of examples of mathematical models varies in theoretical
sophistication and the equipment used, the core of each is to connect the data
and the relations into a mechanism that allows the user to vary elements
of the model. Creating a model, whether a single equation, a complicated
mathematical structure, a quick spreadsheet, or a large program is the essence
of the first step connecting the boxes labeled 1 and 2 above.

First models need not be sophisticated or detailed. For beginning anal-
ysis “back of the envelope calculations” and “dimensional analysis” will be
as effective as spending time setting up an elaborate model or solving equa-
tions with advanced mathematics. Unit analysis to check consistency and
outcomes of relations is important to check the harmony of the modeling
assumptions. A good model pays attention to units, the quantities should be
sensible and match. Even more important, a non-dimensionalizized model
reveals significant relationships, and major influences. Unit analysis is an
important part of modeling, and goes far beyond simple checking to make
sure “units cancel.” [34, 32]

Mathematical Solution

Once the modelers have created the model, then they should derive some
new relations among the important quantities selected to describe the real
world situation. This is the step connecting the boxes labeled 2 and 3 in the
diagram. If the model is an equation, for instance the Ideal Gas Law, then
one can solve the equation for one of the variables in terms of the others.
In the Ideal Gas Law, solving for one of the gas parameters is quite easy.
A regression equation model may require almost no mathematical solution,
although it might be useful to find auxiliary quantities such as rates of growth
or maxima or minima. For an optimization problem the solution is the set of
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optima or the rates of change of optima with respect to the constraints. If the
model is a differential equation or a difference equation, then the solution may
have some mathematical substance. For instance, for a ballistics problem, the
model may be a differential equation and the solution by calculus methods
yields the equation of motion. For a problem with randomness, the derivation
may find the mean or the variance. For a connectivity graph, one might be
interested in the number of cycles, components or the diameter of the graph.
If the model is a computer program, then this step usually involves running
the program to obtain the output.

It is easy for students to focus most attention on this stage of the process,
since the usual methods are the core of the typical mathematical curriculum.
This step usually requires no interpretation, the model dictates the methods
that must be used. This step is often the easiest in the sense that it is the
clearest on how to proceed, although the mathematical procedures may be
daunting.

Testing and Sensitivity

Once this step is done, the model is ready for testing and sensitivity analysis.
This is the step that connects the boxes labeled 3 and 4. At the least,
the modelers should try to verify, even with common sense, the results of
the solution. Typically for a mathematical model, the previous step allows
the modelers to produce some important or valuable quantity of the model.
Modelers compare the results of the model with standard or common inputs
with known quantities for the data or statement of the problem. This may
be as easy as substituting into the derived equation, regression expression, or
equation of motion. When running a computer model or program, this may
involve sequences of program runs and related analysis. With any model,
the results will probably not be exactly the same as the known data so
interpretation or error analysis will be necessary. The interpretation will
take judgment on the relative magnitudes of the quantities produced in light
of the confidence in the exactness or applicability of the hypotheses.

Another important activity at this stage in the modeling process is the
sensitivity analysis. The modelers should choose some critical feature of the
model and then vary the parameter value that quantifies that feature. The
results should be carefully compared to the real world and to the predicted
values. If the results do not vary substantially, then perhaps the feature or
parameter is not as critical as believed. This is important new information
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for the model. On the other hand, if a predicted or modeled value varies
substantially in comparison to the parameter as it is slightly varied, then
the accuracy of measurement of the critical parameter assumes new impor-
tance. In sensitivity analysis, just as in all modeling, this comparison of
“varying substantially” should be measured with significant digits, relative
magnitudes, and rates of change. Here is another area where expressing pa-
rameters in dimensionless groups is important [34]. In some areas of applied
mathematics such as linear optimization and statistics, a side effect of the
solution method is that it produces sensitivity parameters. In linear opti-
mization, these are sometimes called the shadow prices and these additional
solution values should be used whenever possible.

Interpretation and Refinement

Finally the modelers must take the results from the previous steps and use
them to refine the interpretation and understanding of the real world situ-
ation. This interpretation step is represented in the diagram by connection
between the boxes labeled 4 and 1, completing the cycle of modeling. For
example, if the situation is modeling motion, then examining results may
show that the predicted motion is faster than measured, or that the object
does not travel as far as the model predicts. Then it may be that the model
does not include the effects of friction, and so friction should be incorporated
into a new model. At this step, the modeler has to be open and honest in
assessing the strengths and weaknesses of the model. It also requires an im-
proved understanding of the real world situation to include the correct new
elements and hypotheses to correct the discrepancies in the results.

The step between stages 4 and 1 may suggest new processes, or experi-
mental conditions to alter the model. If the problem suggests changes then
those changes should be implemented and tested in another cycle in the
modeling process.

A good summary of the modeling process is that it is an intense and
structured application of “critical thinking”. Sophistication of mathematical
techniques is not always necessary, the mathematics connecting steps 2 and
3 or potentially steps 3 and 4 may only be arithmetic. The key to good
modeling is the critical thinking that occurs between steps 1 and 2, steps 3
and 4, and 4 and 1. If a model does not fit into this paradigm, it probably
does not meet the criteria for a good model.

Good mathematical modeling, like good critical thinking, does not arise
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automatically or naturally. The craft of creating, solving, using, and in-
terpreting a mathematical model must be practiced and developed. The
structured approach to modeling helps distinguish the distinct steps, each
requiring separate intellectual skills. It also provides a framework for devel-
oping and explaining a mathematical model.

An example from physical chemistry

This section illustrates the cycle of mathematical modeling with a simple
example from physical chemistry. This simple example provides us with a
powerful analogy about the role of mathematical modeling in mathematical
finance. I have slightly modified the historical order of discovery to illustrate
the idealized modeling cycle. Scientific progress rarely proceeds in such a
direct line.

Scientists observed that diverse gases such as air, water vapor, hydrogen,
and carbon dioxide all behave predictably and similarly. After many obser-
vations, scientists derived empirical relations such as Boyle’s law, and the
law of Charles and Gay-Lussac about the gas. These laws express relations
among the volume V , the pressure P , the amount n, and the temperature.
T of the gas.

In classical theoretical physics, we can define an ideal gas by making the
following assumptions [19]:

1. A gas consists of particles called molecules which have mass, but es-
sentially have no volume, so the molecules occupy a negligibly small
fraction of the volume occupied by the gas.

2. The molecules can move in any direction with any speed.

3. The number of molecules is large.

4. No appreciable forces act on the molecules except during a collision.

5. The collisions between molecules and the container are elastic, and
of negligible duration so both kinetic energy and momentum are con-
served.

6. All molecules in the gas are identical.



46 CHAPTER 1. BACKGROUND IDEAS

From this limited set of assumptions about theoretical entities called
molecules physicists can derive the equation of state for an ideal gas in terms
of the 4 quantifiable elements of volume, pressure, amount, and temperature.
The equation of state or ideal gas law is

PV = nRT.

where R is a measured constant, called the universal gas constant. This gives
a simple algebraic equation relating the 4 quantifiable elements describing a
gas. The equation of state or ideal gas law predicts very well the properties of
gases under the wide range of pressures, temperatures, masses and volumes
commonly experienced in everyday life. The ideal gas law predicts with
accuracy necessary for safety engineering the pressure and temperature in
car tires and commercial gas cylinders. This level of prediction works even
for gases we know do not satisfy the assumptions, such as air, which chemistry
tells us is composed of several kinds of molecules which have volume and do
not experience completely elastic collisions because of intermolecular forces.
We know the mathematical model is wrong, but it is still useful.

Nevertheless, scientists soon discovered that the assumptions of an ideal
gas predict that the difference in the constant-volume specific heat and the
constant-pressure specific heat of gases should be the same for all gases, a
prediction that scientists observe to be false. The simple ideal gas theory
works well for monatomic gases, such as helium, but does not predict so well
for more complex gases. This scientific observation now requires additional
assumptions, specifically about the shape of the molecules in the gas. The
derivation of the relationship for the observable in a gas is now more complex,
requiring more mathematical techniques.

Moreover, under extreme conditions of low temperatures or high pres-
sures, scientists observe new behaviors of gases. The gases condense into
liquids, pressure on the walls drops and the gases no longer behave according
to the relationship predicted by the ideal gas law. We cannot neglect these
deviations from ideal behavior in accurate scientific or engineering work. We
now have to admit that under these extreme circumstances we can no longer
ignore the size of the molecules, which do occupy some appreciable volume.
We also must admit that intermolecular forces must be considered. The two
effects just described can be incorporated into a modified equation of state
proposed by J.D. van der Waals in 1873. Van der Waals’ equation of state
is: (

P +
na

V 2

)
(V − b) = RT
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The additional constants a and b represent the new elements of intermolecular
attraction and volume effects respectively. If a and b are small because we are
considering a monatomic gas under ordinary conditions, the Van der Waals
equation of state can be well approximated by the ideal gas law. Otherwise
we must use this more complicated relation for engineering our needs with
gases.

It is now realized that because of the complex nature of the intermolecu-
lar forces, a real gas cannot be rigorously described by any simple equation
of state. It can be honestly said that the assumptions of the ideal gas are
not correct, yet are sometimes useful. Likewise, the predictions of the van
der Waals equation of state describe quite accurately the behavior of carbon
dioxide gas in appropriate conditions. Yet for very low temperatures, carbon
dioxide deviates from even these modified predictions because we know that
the van der Waals model of the gas is wrong. Even this improved mathe-
matical model is wrong, but it still is useful.

Later we will make a limited number of idealized assumptions about se-
curities markets. We start from empirical observations of economists about
supply and demand and the role of prices as a quantifiable element relating
them. We will ideally assume that

1. a very large number of identical, rational traders,

2. all traders always have complete information about all assets they are
trading,

3. prices may be random, but are continuous with some probability dis-
tribution,

4. trading transactions take negligible time,

5. trading transactions can be made in any amounts.

These assumptions are very similar to the assumptions about an ideal gas.
From the assumptions we will be able to make some standard economic
arguments to derive some interesting relationships about option prices. These
relationships can help us manage risk, and speculate intelligently in typical
markets. However, caution is necessary. In discussing the economic collapse
of 2008-2009, blamed in part on the overuse or even abuse of mathematical
models of risk, Valencia [51] says “Trying ever harder to capture risk in
mathematical formulae can be counterproductive if such a degree of accuracy
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is intrinsically unobtainable.” If the dollar amounts get very large (so that
rationality no longer holds!), or only a few traders are involved, or sharp
jumps in prices occur, or the trades come too rapidly for information to
spread effectively, we must proceed with caution. The observed financial
outcomes may deviate from predicted ideal behavior in accurate scientific or
economic work, or financial engineering.

We must then alter our assumptions, re-derive the quantitative relation-
ships, perhaps with more sophisticated mathematics or introducing more
quantities and begin the cycle of modeling again.

Sources

Some of the ideas about mathematical modeling are adapted from the article
by Valencia [51] and the book When Genius Failed by Roger Lowenstein.

Problems to Work for Understanding

Outside Readings and Links:

1. Duke University Modeling Contest Team Accessed August 29, 2009

1.6 Randomness

Rating

Student: contains scenes of mild algebra or calculus that may require guid-
ance.

Section Starter Question

When we say something is “random”, what do we mean? What is the dic-
tionary definition of “random”?

Key Concepts

1. Assigning probability 1/2 to the event that a coin will land heads and
probability 1/2 to the event that a coin will land tails is a mathematical

http://www.youtube.com/watch?v=IqiZ0xso-F0
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model that summarizes our experience with many coins. In the context
of statistics, this is called the frequentist approach to probability.

2. A coin flip is a deterministic physical process, subject to the physical
laws of motion. Extremely narrow bands of initial conditions determine
the outcome of heads or tails. The assignment of probabilities 1/2 to
heads and tails is a summary measure of all initial conditions that
determine the outcome precisely.

3. The Random Walk Theory of asset prices claims that market prices
follow a random path, without any influence by past price movements.
This theory says it is impossible to predict which direction the market
will move at any point, especially in the short term. More refined ver-
sions of the random walk theory postulate a probability distribution
for the market price movements. In this way, the random walk theory
mimics the mathematical model of a coin flip, substituting a probabil-
ity distribution of outcomes for the ability to predict what will really
happen.

Vocabulary

1. Technical analysis claims to predict security prices by relying on
the assumption that market data, such as price, volume, and patterns
of past behavior can help predict future (usually short-term) market
trends.

2. The Random Walk Theory of the market claims that market prices
follow a random path up and down according to some probability dis-
tribution without any influence by past price movements. This assump-
tion means that it is not possible to predict which direction the market
will move at any point, although the probability of movement in a given
direction can be calculated.

Mathematical Ideas

Coin Flips and Randomness

The simplest, most common, and in some ways most fundamental example
of a random process is a coin flip. We flip a coin, and it lands one side up.
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We assign the probability 1/2 to the event that the coin will land heads and
probability to 1/2 to the event that the coin will land tails. But what does
that assignment of probabilities really express?

To assign the probability 1/2 to the event that the coin will land heads
and probability 1/2 to the event that the coin will land tails is a mathe-
matical model that summarizes our experience with many coins. We have
flipped many coins many times, and we observe that about half the time the
coin comes up heads, and about half the time the coin comes up tails. So
we abstract this observation to a mathematical model containing only one
parameter, the probability of a heads. In the context of statistics, this is
called the frequentist approach to probability.

From this simple model of the outcome of a coin flip, we can derive
some mathematical consequences. We will do this extensively in the chapter
on coin-flipping. One of the first consequences we can derive is called the
Weak Law of Large Numbers. This consequence will reassure us that if we
make the probability assignment based on the frequentist approach, then
the long term observations with the assignment will match our expectations.
The mathematical model shows its worth by making definite predictions of
future outcomes. We will demonstrate other more sophisticated theorems,
some with expected consequences, others are surprising. Observations show
the predictions generally match experience with real coins, and so this simple
mathematical model has value in explaining and predicting coin flip behavior.
In this way, the simple mathematical model is satisfactory.

In other ways, the probability approach is unsatisfactory. A coin flip is
a physical process, subject to the physical laws of motion. The renowned
applied mathematician J. B. Keller investigated coin flips in this way. He
assumed a circular coin with negligible thickness flipped from a given height
y0 = a > 0, and considered its motion both in the vertical direction under
the influence of gravity, and its rotational motion imparted by the flip until
it lands on the surface y = 0. The initial conditions imparted to the coin
flip are the initial upward velocity and the initial rotational velocity. Under
some additional simplifying assumptions Keller shows that the fraction of
flips which land heads approaches 1/2 if the initial vertical and rotational
velocities are high enough. Actually, Keller shows more, that for high initial
velocities there are very narrow bands of initial conditions which determine
the outcome of heads or tails. From Keller’s analysis we see that the random-
ness comes from the choice of initial conditions. Because of the narrowness
of the bands of initial conditions, very slight variations of initial upward ve-
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locity and rotational velocity lead to different outcomes. The assignment of
probabilities 1/2 to heads and tails is actually a statement of the measure of
the initial conditions that determine the outcome precisely.

The assignment of probabilities 1/2 to heads and tails is actually a state-
ment of our inability to measure the initial conditions and the dynamics
precisely. These initial conditions alternate in adjacent narrow regions, so
we cannot accurately distinguish among them. We instead measure the whole
proportion of initial conditions leading to each outcome.

If the coin lands on a hard surface and bounces the physical prediction
of outcomes is now almost impossible, because we know even less about the
dynamics of the bounce, let alone the new initial conditions imparted by the
bounce.

Another mathematician who often collaborated with J. B. Keller, Persi
Diaconis, has exploited this determinism. Diaconis, an accomplished magi-
cian, is reportedly able to flip many heads in a row using his manual skill.
Moreover, he has worked with mechanical engineers to build a precise coin-
flipping machine that can flip many heads in a row by controlling the initial
conditions precisely. The illustration is a picture of such a machine.

Mathematicians Diaconis, Susan Holmes and Richard Montgomery have
done an even more detailed analysis of the physics of coin flips. There is a
slight physical bias favoring the coin’s initial position 51% of the time. The
bias results from the rotation of the coin around three axes of rotation at
once. Their more complete dynamical description of coin flipping needs more
initial information since the coin-flipping machines help to show that flipping
physical coins is actually slightly biased.

If the coin bounces or rolls the physics becomes more complicated. This
is particularly true if the coin is allowed to roll on one edge upon landing.
The edges of coins are often milled with a slight taper, so the coin is really
more conical than cylindrical. When landing on edge or spinning, the coin
will tip in the tapered direction.

The assignment of a reasonable probability to a coin toss both summarizes
and hides our inability to measure the initial conditions precisely and to
compute the physical dynamics easily. The probability assignment is usually
a good enough model, even if wrong. Except in circumstances of extreme
experimental care with many measurements, the proportion of heads can be
taken to be 1/2.
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Figure 1.5: Initial conditions for a coin flip, from Keller
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Figure 1.6: Persi Diaconis’ mechanical coin flipper

Randomness and the Markets

A branch of financial analysis, generally called technical analysis, claims to
be able to predict security prices by relying on the assumption that market
data, such as price, volume, and patterns of past behavior can help predict
future (usually short-term) market trends. Technical analysis also usually
assumes that market psychology influences trading in a way that enables
predicting when a stock will rise or fall.

In contrast is random walk theory. This theory claims that market
prices follow a random path without influence by past price movements. The
randomness makes it impossible to predict which direction the market will
move at any point, especially in the short term. More refined versions of the
random walk theory postulate a probability distribution for the market price
movements. In this way, the random walk theory mimics the mathematical
model of a coin flip, substituting a probability distribution of outcomes for
the ability to predict what will really happen.

If the coin flip, although deterministic and ultimately simple in execution
cannot be practically predicted with well-understood physical principles, then
it should be hard to believe that market dynamics can be predicted. Mar-
ket dynamics are based on the interactions of thousands of variables and
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the actions of thousands of people. The economic principles at work on the
variables are understood in only fundamental ways in contrast to physical
principles. Much less understood are the psychological principles that moti-
vate people to buy or sell at a specific price and time. Even allowing that
market prices are determined by principles which might be mathematically
expressed as unambiguously as the Lagrangian dynamics of the coin flip,
that still leaves the precise determination of the initial conditions and the
parameters.

It is more practical to admit our inability to predict using basic principles
and to instead use a probability distribution to describe what we observe.
In this text, we use the random walk theory with minor modifications and
qualifications. We will see that random walk theory does good job of leading
to predictions that can be tested against evidence, just as a coin-flip sequence
can be tested against the classic limit theorems of probability. In certain
cases, with extreme care, special tools and many measurements of data we
may be able to discern biases, even predictability in markets. This does not
invalidate the utility of the less precise first-order models that we build and
investigate. All models are wrong, but some models are useful.

The cosmologist Stephen Hawking says in his book A Brief History of
Time [20] “A theory is a good theory if it satisfies two requirements: it must
accurately describe a large class of observations on the basis of a model that
contains only a few arbitrary elements, and it must make definite predictions
about the results of future observations.” As we will see the random walk
theory of markets does both. Unfortunately, technical analysis typically fails
the first in that it usually does not describe a large class of observations and
usually contains many arbitrary elements.

True Randomness

The outcome of a coin flip is physically determined. The numbers generated
by an “random-number-generator” algorithm are deterministic, and are more
properly known as pseudo-random numbers. The movements of prices in a
market are governed by the hopes and fears of presumably rational human
beings, and so might in principle be predicted. For each of these, we substi-
tute a probability distribution of outcomes as a sufficient summary of what
we have experienced in the past but are unable to predict precisely.

Does true randomness exist anywhere? Yes, in the quantum world of
atoms. For example, the time until the radioactive disintegration of a spe-
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cific N-13 atom to a C-13 isotope is apparently truly random, since it seems
we fundamentally cannot determine when it will occur by calculating some
physical process underlying the disintegration. Scientists must use probabil-
ity theory to describe the physical processes associated with true quantum
randomness.

Einstein found this quantum theory hard to accept. His famous remark
is that “God does not play at dice with the universe.” Nevertheless, ex-
periments have confirmed the true randomness of quantum processes. Some
results combining quantum theory and cosmology imply even more profound
and bizarre results. Again in the words of Stephen Hawking, “God not only
plays dice. He also sometimes throws the dice where they cannot be seen.”

Sources

This section is adapted from: “The Probability of Heads”, by J. B. Keller,
American Mathematical Monthly, Volume 83, Number 3, March 1986, pages
191–197, and definitions from investorwords.com. See also the article “A
Reliable Randomizer, Turned on Its Head”, David Adler, Washington Post,
August 2, 2009.

Problems to Work for Understanding

Outside Readings and Links:

1. A satire on the philosophy of randomness Accessed August 29, 2009.

1.7 Stochastic Processes

Rating

Student: contains scenes of mild algebra or calculus that may require guid-
ance.

Section Starter Question

Name something that is both random and varies over time. Does the ran-
domness depend on the history of the process or only on its current state?

http://www.youtube.com/watch?v=y1feEqgRZQI
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Key Concepts

1. A sequence or interval of random outcomes, that is to say, a string
of random outcomes dependent on time as well as the randomness
is called a stochastic process. Because of the inclusion of a time
variable, the rich range of random outcome distributions is multiplied
to an almost bewildering variety of stochastic processes. Nevertheless,
the most commonly studied types of random processes do have a family
tree of relationships.

2. Stochastic processes are functions of two variables, the time index and
the sample point. As a consequence, there are several ways to repre-
sent the stochastic process. The simplest is to look at the stochastic
process at a fixed value of time. The result is a random variable with
a probability distribution, just as studied in elementary probability.

3. Another way to look at a stochastic process is to consider the stochas-
tic process as a function of the sample point ω. For each ω there is an
associated function of time X(t). This means that one can look at a
stochastic process as a mapping from the sample space Ω to a set of
functions. In this interpretation, stochastic processes are a generaliza-
tion from the random variables of elementary probability theory.

Vocabulary

1. A sequence or interval of random outcomes, that is, random outcomes
dependent on time is called a stochastic process.

2. Let J be a subset of the non-negative real numbers. Let Ω be a set,
usually called the sample space or probability space. An element
ω of Ω is called a sample point or sample path. Let S be a set of
values, often the real numbers, called the state space. A stochastic
process is a function X : (J,Ω) → S, that is a function of both time
and the sample point to the state space.

3. The particular stochastic process usually called a simple random
walk Tn gives the position in the integers after taking a step to the
right for a head, and a step to the left for a tail.
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4. A generalization of a Markov chain is a Markov Process. In a Markov
process, we allow the index set to be either a discrete set of times as
the integers or an interval, such as the non-negative reals. Likewise the
state space may be either a set of discrete values or an interval, even
the whole real line. In mathematical notation a stochastic process X(t)
is called Markov if for every n and t1 < t2 < . . . < tn and real number
xn, we have

P [X(tn) ≤ xn|X(tn−1), . . . , X(t1)] = P [X(tn) ≤ xn|X(tn−1)] .

Many of the models we use in this text will naturally be taken as
Markov processes because of the intuitive appeal of this “memory-less”
property.

Mathematical Ideas

Definition and Notations

A sequence or interval of random outcomes, that is, random outcomes de-
pendent on time is called a stochastic process. Stochastic is a synonym for
“random.” The word is of Greek origin and means “pertaining to chance”
(Greek stokhastikos, skillful in aiming; from stokhasts, diviner; from stok-
hazesthai, to guess at, to aim at; and from stochos target, aim, guess). The
modifier stochastic indicates that a subject is viewed as random in some as-
pect. Stochastic is often used in contrast to “deterministic,” which means
that random phenomena are not involved.

More formally, let J be subset of the non-negative real numbers. Usually
J is the natural numbers 0, 1, 2, . . . or the non-negative reals {t : t ≥ 0}. J
is the index set of the process, and we usually refer to t ∈ J as the time
variable. Let Ω be a set, usually called the sample space or probability
space. An element ω of Ω is called a sample point or sample path. Let
S be a set of values, often the real numbers, called the state space. A
stochastic process is a function X : (J,Ω) → S, a function of both time
and the sample point to the state space.

Because we are usually interested in the probability of sets of sample
points that lead to a set of outcomes in the state space and not the individual
sample points, the common practice is to suppress the dependence on the
sample point. That is, we usually write X(t) instead of the more complete
X(t, ω). Furthermore, if the time set is discrete, say the natural numbers,
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then we usually write the index variable or time variable as a subscript.
Thus Xn would be the usual notation for a stochastic process indexed by the
natural numbers and X(t) is a stochastic process indexed by the non-negative
reals. Because of the randomness, we can think of a stochastic process as
a random sequence if the index set is the natural numbers and a random
function if the time variable is the non-negative reals.

Examples

The most fundamental example of a stochastic process is a coin flip sequence.
The index set is the set of counting numbers, counting the number of the flip.
The sample space is the set of all possible infinite coin flip sequences Ω =
{HHTHTTTHT . . . , THTHTTHHT . . . , . . .}. We take the state space to
be the set 1, 0 so that Xn = 1 if flip n comes up heads, and Xn = 0 if the flip
comes up tails. Then the coin flip stochastic process can be viewed as the set
of all “random” sequences of 1’s and 0’s. An associated random process is to
take Sn =

∑n
j=1Xj. Now the state space is the set of natural numbers. The

stochastic process Sn counts the number of heads encountered in the flipping
sequence up to flip number n.

Alternatively, we can take the same index set, the same probability space
of coin flip sequences and define Yn = 1 if flip n comes up heads, and Yn = −1
if the flip comes up tails. This is just another way to encode the coin flips
now as random sequences of 1’s and −1’s. A more interesting associated
random process is to take Tn =

∑n
j=1 Yj. Now the state space is the set of

integers. The stochastic process Tn gives the position in the integers after
taking a step to the right for a head, and a step to the left for a tail. This
particular stochastic process is usually called a simple random walk. We
can generalize random walk by allowing the state space to be the set of points
with integer coordinates in two-, three- or higher-dimensional space, called
the integer lattice.

Markov Chains

A Markov chain is sequence of random variables Xj where the index j
runs through 0, 1, 2, . . .. The sample space is not specified explicitly, but it
involves a sequence of random selections detailed by the effect in the state
space. The state space can be either a finite or infinite set of discrete states.
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The defining property of a Markov chain is that

P [Xj = l|X0 = k0, X1 = k1, . . . , Xj−1 = kj−1] = P [Xj = l|Xj−1 = kj−1] .

In words, the future is conditionally independent of the past, the probability
of transition from state kj−1 at time j − 1 to state l at time j depends only
on kj−1 and l, not on the history X0 = k0, X1 = k1, . . . , Xj−2 = kj−2 of how
the process got to kj−1

A simple random walk is an example of a Markov chain. The states are
the integers and the transition probabilities are

P [Xj = l|Xj−1 = k] = 1/2 if l = k − 1 or l = k + 1

P [Xj = l|Xj−1 = k] = 0 otherwise

Another example would be the position of a game piece in the board
game Monopoly. The index set is the counting numbers listing the plays
of the game. The sample space is the set of infinite sequence of rolls of a
pair of dice. The state space is the set of 40 real-estate properties and other
positions around the board.

Markov chains have been extended to making optimal decisions under
uncertainty as “Markov decision processes”. Another extension to signal pro-
cessing and bioinformatics is called “hidden Markov models”. Markov chains
are an important and useful class of stochastic processes. Mathematicians
have extensively studied and classified Markov chains and their extensions
but we will not have reason to examine them carefully in this text.

A generalization of a Markov chain is a Markov process. In a Markov
process, we allow the index set to be either a discrete set of times as the
integers or an interval, such as the non-negative reals. Likewise the state
space may be either a set of discrete values or an interval, even the whole
real line. In mathematical notation a stochastic process X(t) is called Markov
if for every n and t1 < t2 < . . . < tn and real number xn, we have

P [X(tn) ≤ xn|X(tn−1), . . . , X(t1)] = P [X(tn) ≤ xn|X(tn−1)] .

Many of the models we use in this text will naturally be taken as Markov
processes because of the intuitive appeal of this “memory-less” property.

Many stochastic processes are naturally expressed as taking place in a
discrete state space with a continuous time index. For example, consider ra-
dioactive decay, counting the number of atomic decays which have occurred
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up to time t by using a Geiger counter. The discrete state variable is the
counting number of clicks heard. The mathematical “Poisson process” is an
excellent model of this physical process. More generally, instead of radioac-
tive events giving a single daughter particle, we can imagine a birth event
with a random number (distributed according to some probability law) of
offspring born at random times. Then the stochastic process measures the
population in time. These are called “birth processes” and make excellent
models in population biology and the physics of cosmic rays. We can con-
tinue to generalize and imagine that each individual in the population has
a random life-span distributed according to some law, then dies. This gives
a “birth-and-death process”. In another variation, we can imagine a dis-
ease with a random number of susceptibles getting infected, in turn infecting
a random number of others, then recovering and becoming immune. The
stochastic process counts how many of each type there are at any time, an
“epidemic process”.

In another variation, we can consider customers arriving at a service
counter at random intervals with some specified distribution, often taken to
be an exponential probability distribution with parameter λ. The customers
are served one-by-one, each taking a random service time, again often taken
to be exponentially distributed. The state space is the number of customers
waiting to be served, the queue length at any time. These are called “queuing
processes”. Mathematically, many of these processes can be studied by what
are called “compound Poisson processes”.

Continuous Space Processes usually take the state space to be the real
numbers or some interval of the reals. One example is the magnitude of noise
on top of a signal, say a radio message. In practice the magnitude of the noise
can be taken to be a random variable taking values in the real numbers, and
changing in time. Then subtracting off the known signal, we would be left
with a continuous-time, continuous state-space stochastic process. In order
to mitigate the noise’s effect engineers will be interested in modeling the
characteristics of the process. To adequately model noise the probability
distribution of the random magnitude has to be specified. A simple model is
to take the distribution of values to be normally distributed, leading to the
class of “Gaussian processes” including “white noise”.

Another continuous space and continuous time stochastic process is a
model of the motion of particles suspended in a liquid or a gas. The random
thermal perturbations in a liquid are responsible for a random walk phe-
nomenon known as “Brownian motion” and also as the “Wiener process”,
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and the collisions of molecules in a gas are a “random walk” responsible for
diffusion. In this process, we measure the position of the particle over time
so that is a stochastic process from the non-negative real numbers to either
one-, two- or three-dimensional real space. Random walks have fascinating
mathematical properties. Scientists can make the model more realistic by
including the effects of inertia leading to a more refined form of Brownian
motion called the “Ornstein-Uhlenbeck process”.

Extending this idea to economics, we will model market prices of financial
assets such as stocks as a continuous time, continuous space process. Ran-
dom market forces create small but constantly occurring price changes. This
results in a stochastic process from a continuous time variable representing
time to the reals or non-negative reals representing prices. By refining the
model so that prices can only be non-negative leads to the stochastic process
known as “geometric Brownian motion”.

Family of Stochastic Processes

A sequence or interval of random outcomes, that is to say, a string of random
outcomes dependent on time as well as the randomness is called a stochas-
tic process. Because of the inclusion of a time variable, the rich range of
random outcome distributions is multiplied to an almost bewildering variety
of stochastic processes. Nevertheless, the most commonly studied types of
random processes do have a family tree of relationships. My interpretation
of the family tree is included below, along with an indication of the types
studied in this course.

Ways to Interpret Stochastic Processes

Stochastic processes are functions of two variables, the time index and the
sample point. As a consequence, there are several ways to represent the
stochastic process. The simplest is to look at the stochastic process at a fixed
value of time. The result is a random variable with a probability distribution,
just as studied in elementary probability.

Another way to look at a stochastic process is to consider the stochastic
process as a function of the sample point ω. For each ω there is an associ-
ated function X(t). This means that one can look at a stochastic process as
a mapping from the sample space Ω to a set of functions. In this interpre-
tation, stochastic processes are a generalization from the random variables
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Figure 1.7: The family tree of some stochastic processes
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of elementary probability theory. In elementary probability theory, random
variables are a mapping from a sample space to the real numbers, for stochas-
tic processes the mapping is from a sample space to a space of functions. Now
we can ask questions like

• “What is the probability of the set of functions that exceed a fixed
value on a fixed time interval?”

• “What is the probability of the set of functions having a certain limit
at infinity?”

• “What is the probability of the set of functions which are differentiable
everywhere?”

This is a fruitful way to consider stochastic processes, but it requires sophis-
ticated mathematical tools and careful analysis.

Another way to look at stochastic processes is to ask what happens at
special times. For example, one can consider the time it takes until the
function takes on one of two certain values, say a and b to be specific. Then
one can ask “What is the probability that the stochastic process assumes
the value a before it assumes the value b?” Note that here the time that
each function assumes the value a is different, it becomes a random time.
This provides an interaction between the time variable and the sample point
through the values of the function. This too is a fruitful way to think about
stochastic processes.

In this text, we will consider each of these approaches with the corre-
sponding questions.

Sources

The material in this section is adapted from many texts on probability theory
and stochastic processes, especially the classic texts by S. Karlin and H.
Taylor, S. Ross, and W. Feller.

Problems to Work for Understanding

Outside Readings and Links:

1. Origlio, Vincenzo. “Stochastic.” From MathWorld–A Wolfram Web
Resource, created by Eric W. Weisstein. Stochastic

http://mathworld.wolfram.com/Stochastic.html
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2. Weisstein, Eric W. “Stochastic Process.” From MathWorld–A Wolfram
Web Resource. Stochastic Process

3. Weisstein, Eric W. “Markov Chain.” From MathWorld–A Wolfram
Web Resource. Markov Chain

4. Weisstein, Eric W. “Markov Process.” From MathWorld–A Wolfram
Web Resource. Markov Process

5. Julia Ruscher studying stochastic processes

1.8 A Binomial Model of Mortgage Collater-

alized Debt Obligations (CDOs)

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

How do you evaluate cumulative binomial probabilities when the value of n
is large, and the value of p is small?

Key Concepts

1. We can make a simple mathematical model of a financial derivative
using only the idea of a binomial probability.

2. We must investigate the sensitivity of the model to the parameter values
in order to completely understand the model.

3. This simple model provides our first illustration of the model cycle
applied to a situation in mathematical finance, but even so, it yields
valuable insights.

http://mathworld.wolfram.com/StochasticProcess.html
http://mathworld.wolfram.com/MarkovChain.html
http://mathworld.wolfram.com/MarkovProcess.html
http://www.youtube.com/watch?v=kgQfoXIJiWI
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Vocabulary

1. A tranche is a portion or slice of a set of other securities. The common
use of tranche is an issue of bonds, often derived from mortgages, that
is distinguished from other tranches by maturity or rate of return.

2. A collateralized debt obligation or CDO is a derivative security
backed by a pool or slice of other securities. CDOs can be made up
of any type of debt and do not necessarily derive from mortgages. Se-
curities or bonds derived from mortgages are more specifically called
Collateralized Mortgage Obligations or CMOs or even more specifically
RMBS for “residential mortgage backed securities”. The terms are of-
ten used interchangeably but CDO is the most common. CDOs are
divided into slices, each slice is made up of debt which has a unique
amount of risk associated with it. CDOs are often sold to investors
who want exposure to the income generated by the debt but do not
want to purchase the debt itself.

Mathematical Ideas

A binomial model of mortgages

We will make a simple binomial probability model of a financial instrument
called a CDO, standing for “Collateralized Debt Obligation”. The market
in this derivative financial instrument is large, amounting to at least $1.3
trillion dollars, of which 56% comes from derivatives based on residential
mortgages. Heavy reliance on these financial derivatives based on the real
estate market contributed to the demise of some old-line brokerage firms such
as Bear Stearns and Merrill Lynch in the autumn of 2008. The quick loss
in value of these derivatives sparked a lack of economic confidence which
led to the sharp economic downturn in the fall of 2008 and the subsequent
recession. We will build a simple model of these instruments, and even this
simple model will demonstrate that the CDOs were far more sensitive to
mortgage failure rates than was commonly understood. While this model
is not sufficient to fully describe CDOs, it does provide an interesting and
accessible example of the modeling process in mathematical finance.

Consider the following financial situation. A loan company has made 100
mortgage loans to home-buyers. We will assume
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• For simplicity, each loan will have precisely one of 2 outcomes. Either
the home-buyer will pay off the loan resulting in a profit of 1 unit
of money to the lender, or the home-buyer will default on the loan,
resulting in a payoff or profit to the company of 0. For further simplicity
we will say that the unit profit is $1. (The payoff is typically in the
thousands of dollars.)

• We will assume that the probability of default on a loan is p and we
will assume that the probability of default on each loan is independent
of default on all the other loans.

Let S100 be the number of loans that default, resulting in a total profit
of 100 − S100. The probability of n or fewer of these 100 mortgage loans
defaulting is

P [S100 ≤ n] =
100∑
j=0

(
100

j

)
(1− p)100−jpj.

We can evaluate this expression in several ways including direct calculation
and approximation methods. For our purposes here, one can use a binomial
probability table, or more easily a computer program which has a cumulative
binomial probability function. The expected number of defaults is 100p, the
resulting expected loss is 100p and the expected profit is 100(1− p).

But instead of simply making the loans and waiting for them to be paid off
the loan company wishes to bundle these debt obligations differently and sell
them as a financial derivative contract to an investor. Specifically, the loan
company will create a collection of 100 contracts called tranches. Tranche 1
will pay 1 dollar if 0 of the loans default. Tranche 2 will pay 1 dollar if 1 of the
loans defaults, and in general tranche n will pay 1 dollar if n− 1 or fewer of
the loans defaults. (This construction is a much simplified model of mortgage
backed securities. In actual practice mortgages with various levels of risk are
combined and then sliced with differing levels of risk into derivative securities
called tranches. A tranche is usually backed by thousands of mortgages.)

Suppose to be explicit that 5 of the 100 loans defaults. Then the seller
will have to pay off tranches 6 through 101. The lender who creates the
tranches will receive 95 dollars from the 95 loans which do not default and
will pay out 95. If the lender prices the tranches appropriately, then the
lender will have enough money to cover the payout and will have some profit
in addition.
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Now from the point of view of the contract buyer, the tranche will either
pay off with a value of 1 or will default. The probability of payoff on tranche
i will be the sum of the probabilities that i− 1 or fewer mortgages default:

i−1∑
j=0

(
100

j

)
pj(1− p)100−j,

that is, a binomial cumulative distribution function. The probability of de-
fault on tranche i will be a binomial complementary distribution function,
which we will denote by

pT (i) = 1−
i−1∑
j=0

(
100

j

)
pj(1− p)100−j.

We should calculate a few default probabilities: The probability of default
on tranche 1 is the probability of 0 defaults among the 100 loans,

pT (1) = 1−
(

100

0

)
p0(1− p)100 = 1− (1− p)100.

If p = 0.05, then the probability of default is 0.99408. But for the tranche
10, the probability of default is 0.028188. By the 10th tranche, this financial
construct has created an instrument that is safer than owning one of the
original mortgages! Note that because the newly derived security combines
the risks of several individual loans, under the assumptions of the model it
is less exposed to the potential problems of any one borrower.

The expected payout from the collection of tranches will be

E [U ] =
100∑
n=0

n∑
j=0

(
100

j

)
pj(1− p)100−j =

100∑
j=0

j

(
100

j

)
pj(1− p)100−j = 100p.

That is, the expected payout from the collection of tranches is exactly the
same the expected payout from the original collection of mortgages. However,
the lender will also receive the excess value or profit of the tranches sold.
Moreover, since the lender is now only selling the possibility of a payout
derived from mortgages and not the mortgages themselves, the lender can
sell the same tranche several times to several different buyers.

Why rebundle and sell mortgages as tranches? The reason is that for
many of the tranches the risk exposure is less, but the payout is the same
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as owning a mortgage loan. Reduction of risk with the same payout is very
desirable for many investors. Those investors may even pay a premium for
low risk investments. In fact, some investors like pension funds are required
by law, regulation or charter to invest in securities that have a low risk. Some
investors may not have direct access to the mortgage market, again by law,
regulation or charter, but in a rising (or bubble) market they desire to get
into that market. These derivative instruments look like a good investment
to them.

Collateralized Debt Obligations

If rebundling mortgages once is good, then doing it again should be better! So
now assume that the loan company has 10,000 loans, and that it divides these
into 100 groups of 100 each, and creates tranches. Now the lender gathers
up the 100 10-tranches from each group into a secondary group and bundles
them just as before, paying off 1 unit if i − 1 or fewer of these 10-tranches
defaults. These new derivative contracts are now called collateralized debt
obligations or CDOs. Again, this is a much simplified model of a real
CDO, see [26]. Sometimes, these second level constructs are called a “CDO
squared” [18]. Just as before, the probability of payout for the CDO i is
easily seen to be

i−1∑
j=0

(
100

j

)
pT (i)j(1− pT (i))100−j

and the probability of default is

pCDO(i) = 1−
i−1∑
j=0

(
100

j

)
pT (i)j(1− pT (i))100−j.

For example, pCDO(10) = 0.00054385. Roughly, the CDO has only 1/100 of
the default probability of the original mortgages, by virtue of re-distributing
the risk.

Sensitivity to the parameters

Now we investigate the robustness of the model. We do this by varying the
probability of mortgage default to see how it affects the risk of the tranches
and the CDOs.
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Assume that the underlying mortgages actually have a default probability
of 6%, a 20% increase in the risk although it is only a 1% increase in the actual
rates. This change in the default rate may be due to several factors. One
may be the inherent inability to measure a fairly subjective parameter such as
“mortgage default rate” accurately. Finding the probability of a home-owner
defaulting is not the same as calculating a losing bet in a dice game. Another
may be a faulty evaluation (usually over confident or optimistic) of the default
rates themselves by the agencies who provide the service of evaluating the
risk on these kinds of instruments. Some economic commentators allege
that before the 2008 economic crisis the rating agencies were under intense
competitive pressure to provide “good” ratings in order to get the business
of the firms who create derivative instruments and may have shaded their
ratings to the favorable side in order to keep the business. Finally, the
underlying economic climate may be changing and the previous estimate,
while reasonable for the prior conditions, is no longer valid. If the economy
deteriorates or the jobless rate increases, weak mortgages called sub-prime
mortgages may default at increased rates.

Now we calculate that the 10-tranches have a default probability of 7.8%,
a 275% increase from the previous rate of 2.8%. Worse, the 10th CDO made
of 10-Tranches will have a default probability of 24.7%, an increase of over
45,400%! The financial derivatives amplify any error in measuring the default
rate to a completely unacceptable risk. The model shows that the financial
instruments are not robust to errors in the assumptions!

But shouldn’t the companies either buying or selling the derivatives recog-
nize this? There is a human tendency to blame failures, including the failures
of the Wall Street giants, on ignorance, incompetence or wrongful behavior.
In this case, the traders and “rocket scientists” who created the CDOs were
probably neither ignorant nor incompetent. Because they ruined a profitable
endeavor for themselves, we can probably rule out malfeasance too. But dis-
traction resulting from an intense competitive environment allowing no time
for rational reflection along with overconfidence during a bubble can make
us willfully ignorant of the conditions. A failure to properly complete the
modeling cycle leads the users to ignore the very real risks.

Criticism of the model

This model is far too simple to base any investment strategy or more serious
economic analysis on it. First, an outcome of either pay-off or default is too
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Figure 1.8: Default probabilities as a function of both the tranche number 0
to 100 and the base mortgage default probability 0.01 to 0.15
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simple. Lenders will restructure shaky loans or they will sell them to other
financial institutions so that the lenders will get some return, even if less
than originally intended.

The assumption of a uniform probability of default is too simple by far.
Lenders make some loans to safe and reliable home-owners who dutifully pay
off the mortgage in good order. Lenders also make some questionable loans to
people with poor credit ratings, these are called sub-prime loans or sub-prime
mortgages. The probability of default is not the same. In fact, mortgages
and loans are graded according to risk. There are 20 grades ranging from
AAA with a 1-year default probability of less than 0.1% through BBB with a
1-year default probability of slightly less than 1% to CC with a 1-year default
probability of more than 35%. The mortgages may also change their rating
over time as economic conditions change, and that will affect the derived
securities. Also too simple is the assumption of an equal unit payoff for each
loan, but this is a less serious objection.

The assumption of independence is clearly incorrect. The similarity of the
mortgages increases the likelihood that they will all prosper or suffer together
and potentially default at once. Due to external economic conditions, such
as an increase in the unemployment rate or a downturn in the economy,
default on one loan may indicate greater probability of default on other,
even geographically separate loans, especially sub-prime loans. This is the
most serious objection to the model, since it invalidates the use of binomial
probabilities.

However, relaxing any assumptions make the calculations much more diffi-
cult. The non-uniform probabilities and the lack of independence means that
elementary theoretical tools from probability are not sufficient to analyze the
model. Instead, simulation models will be the next means of analysis.

Nevertheless, the sensitivity of the simple model should make us very
wary of optimistic claims about the more complicated model.

Sources

This section is adapted from a presentation by Jonathan Kaplan of D.E.
Shaw and Co. in summer 2010. The definitions are derived from definitions
at investorwords.com. The definition of CDO squared is noted in [18, page
166]. Some facts and figures are derived from the graphics at Portfolio.com:
What’s a CDO [40] and Wall Street Journal.com : The Making of a Mortgage
CDO, [26]

http://www.investorwords.com
http://www.portfolio.com/interactive-features/2007/12/cdo
http://www.portfolio.com/interactive-features/2007/12/cdo
http://online.wsj.com/public/resources/documents/info-flash07.html?project=normaSubprime0712&h=530&w=980&hasAd=1&settings=normaSubprime0712
http://online.wsj.com/public/resources/documents/info-flash07.html?project=normaSubprime0712&h=530&w=980&hasAd=1&settings=normaSubprime0712
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Problems to Work for Understanding

1. Suppose that there is a 20% decrease in the default rate from 5% to
4%. By what factor do the default rates of the 10-tranches and the
derived 10th CDO change?

2. For the tranches create a table of probabilities of default for tranches
i = 5 to i = 15 for probabilities of default p = 0.03, 0.04, 0.05 0.06 and
0.07 and determine where the tranches become safer investments than
the individual mortgages on which they are based.

3. For a base mortgage default rate of 5%, draw the graph of the default
rate of the tranches as a function of the tranche number.

4. The text asserts that the expected payout from the collection of tranches
will be

E [U ] =
100∑
n=0

n∑
j=0

(
100

j

)
pj(1−p)100−j =

100∑
j=0

j

(
100

j

)
pj(1−p)100−j = 100p.

That is, the expected payout from the collection of tranches is exactly
the same the expected payout from the original collection of mortgages.
More generally, show that

N∑
n=0

n∑
j=0

aj =
N∑
j=0

j · aj.

Outside Readings and Links:

1. Wall Street Journal.com : The Making of a Mortgage CDO An an-
imated graphic explanation from the Wall Street Journal describing
mortgage backed debt obligations.

2. Portfolio.com: What’s a CDO Another animated graphic explanation
from Portfolio.com describing mortgage backed debt obligations.

http://online.wsj.com/public/resources/documents/info-flash07.html?project=normaSubprime0712&h=530&w=980&hasAd=1&settings=normaSubprime0712
http://www.portfolio.com/interactive-features/2007/12/cdo


Chapter 2

Binomial Option Pricing
Models

2.1 Single Period Binomial Models

Rating

Student: contains scenes of mild algebra or calculus that may require guid-
ance.

Section Starter Question

Two items can be purchased in any amounts each, call the amounts x and
y. (Think about stocks and bonds.) The two items each contribute revenue
at rates specific to the current financial environment. (Think about stock
profits in good times and bad, call them rgx and rbx and bond interest at
rates rgy and rby.) Two specific outcomes must be achieved, one in good
times, one in bad times (call them fg and fb). What mathematical set-up is
required to find the specific amounts of each item?

Key Concepts

1. The simplest model for pricing an option is based on a market having
a single period, a single security having two uncertain outcomes, and a
single bond.

73
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2. Replication of the option payouts with the single security and the single
bond leads to pricing the derivative by arbitrage.

Vocabulary

1. Security: A promise to pay, or an evidence of a debt or property,
typically a stock or a bond. Also referred to as an asset.

2. Bond: Interest bearing securities, which can either make regular in-
terest payments, or a lump sum payment at maturity, or both.

3. Stock: A security representing partial ownership of a company, varying
in value with the value of the company. Also known as shares or
equities.

4. Derivative: A security whose value depends on or is derived from
the future price or performance of another security. Also known as
financial derivatives, derivative securities, derivative products,
and contingent claims.

5. A portfolio of the stock and the bond which will have the same value
as the derivative itself in any circumstance is a replicating portfolio.

Mathematical Ideas

Single Period Binomial Model

The single period binomial model is the simplest possible financial model,
yet it contains the elements of all future models. The single period binomial
model is an excellent place to start studying mathematical finance. It is
strong enough to be a somewhat realistic model of financial markets. It is
simple enough to permit pencil-and-paper calculation. It can be compre-
hended as a whole. It is also structured enough to point to natural general-
ization.

The quantifiable elements of the single period binomial financial model
are:

1. A single interval of time, from t = 0 to t = T .
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2. A single stock of initial value S, in the time interval [0, T ] it can either
increase by a factor U to value SU with probability p, or it can decrease
in value by factor D to value SD with probability q = 1− p.

3. A single bond with a continuously compounded interest rate r over the
interval [0, T ]. If the initial value of the bond is B, then the final value
of the bond will be B exp(rT ).

4. A market for derivatives (such as options) dependent on the value of
the stock at the end of the period. The payoff of the derivative to
some investor would be the rewards (or penalties) f(SU) and f(SD).
For example, a futures contract with strike price K would have value
f(ST ) = ST −K. A call option with strike price K, would have value
f(ST ) = max(ST −K, 0).

A realistic financial assumption would be that D < exp(rT ) < U . Then
investment in the risky security may pay better than investment in a risk free
bond, but it may also pay less! The mathematics only requires that U 6= D,
see below.

We can attempt to find the value of the derivative by creating a portfolio
of the stock and the bond which will have the same value as the derivative
itself in any circumstance, called a replicating portfolio. Consider a port-
folio consisting of φ units of the stock worth φS and ψ units of the bond
worth ψB. (Note we are making the assumption that the stock and bond
are divisible, we can buy them in any amounts including negative amounts
which are short positions.) If we were to buy the this portfolio at time zero,
it would cost

φS + ψB.

One time period of length T on the trading clock later, the portfolio would
be worth

φSD + ψB exp(rT )

after a down move and

φSU + ψB exp(rT )

after an up move. You should find this mathematically meaningful: there
are two unknown quantities φ and ψ to buy for the portfolio, and we have
two expressions to match with the two values of the derivative! That is, the
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Figure 2.1: The single period binomial model.
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portfolio will have the same value as the derivative if

φSD + ψB exp(rT ) = f(SD)

φSU + ψB exp(rT ) = f(SU)

The solution is

φ =
f(SU)− f(SD)

SU − SD
and

ψ =
f(SD)

B exp(rT )
− (f(SU)− f(SD))SD

(SU − SD)B exp(rT )
.

Note that the solution requires SU 6= SD, but we have already assumed this
natural requirement. Without this requirement there would be no risk in the
stock, and we would not be asking the question in the first place! The value
(or price) of the portfolio, and therefore the derivative should then be

V = φS + ψB

= S
f(SU)− f(SD)

SU − SD
+B[

f(SD)

B exp(rT )
− (f(SU)− f(SD))SD

(SU − SD)B exp(rT )
].

=
f(SU)− f(SD)

U −D
+

1

exp(rT )

f(SD)U − f(SU)D

(U −D)
.

We can make one final simplification that will be useful in the next section.
Define

π =
exp(rT )−D

U −D
so then

1− π =
U − exp(rT )

U −D
so that we write the value of the derivative as

exp(−rT )[πf(SU) + (1− π)f(SD)].

(Here π is not used as the mathematical constant giving the ratio of the
circumference of a circle to its diameter. Instead the Greek letter for p
suggests a similarity to the probability p.)

Now consider some other trader offering to sell this derivative with payoff
function f for a price P less than V . Anyone could buy the derivative in
arbitrary quantity, and short the (φ, ψ) stock-bond portfolio in exactly the
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same quantity. At the end of the period, the value of the derivative would be
exactly the same as the portfolio. So selling each derivative would repay the
short with a profit of V − P and the trade carries no risk! So P would not
have been a rational price for the trader to quote and the market would have
quickly mobilized to take advantage of the “free” money on offer in arbitrary
quantity. (This ignores transaction costs. For an individual, transaction
costs might eliminate the profit. However for large firms trading in large
quantities, transaction costs can be minimal.)

Similarly if a seller quoted the derivative at a price P greater than V ,
anyone could short sell the derivative and buy the (φ, ψ) portfolio to lock
in a risk-free profit of P − V per unit trade. Again the market would take
advantage of the opportunity. Hence, V is the only rational price for the
derivative. We have determined the price of the derivative through arbitrage.

How NOT to price the derivative and a hint of a better way.

Note that we did not determine the price of the derivative in terms of the
expected value of the stock or the derivative. A seemingly logical thing to do
would be to say that the derivative will have value f(SU) with probability
p and will have value f(SD) with probability 1− p. Therefore the expected
value of the derivative at time T is

E [f ] = pf(SU) + (1− p)f(SD).

The present value of the expectation of the derivative value is

exp(−rT )E [f ] = exp(−rT )[pf(SU) + (1− p)f(SD)].

Except in the peculiar case that the expected value just happened to match
the value V of the replicating portfolio, pricing by expectation would be
driven out of the market by arbitrage! The problem is that the probability
distribution (p, 1− p) only takes into account the movements of the security
price. The expected value is the value of the derivative over many identical
iterations or replications of that distribution, but there will be only one trial
of this particular experiment, so expected value is not a reasonable way to
weight the outcomes. Also, the expected value does not take into account
the rest of the market. In particular, the expected value does not take into
account that an investor has the opportunity to simultaneously invest in
alternate combinations of the risky stock and the risk-free bond. A special
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combination of the risky stock and risk-free bond replicates the derivative.
As such the movement probabilities alone do not completely assess the risk
associated with the transaction.

Nevertheless, we are left with a nagging feeling that pricing by arbitrage
as done above ignores the probability associated with security price changes.
One could legitimately ask if there is a way to value derivatives by taking
some kind of expected value. The answer is yes, there is another probability
distribution associated with the binomial model that correctly takes into
account the rest of the market. In fact, the quantities π and 1−π define this
probability distribution. This is called the risk-neutral measure or more
completely the risk-neutral martingale measure and we will talk more
about it later. Economically speaking, the market assigns a “fairer” set of
probabilities π and 1−π that give a value for the option compatible with the
no arbitrage principle. Another way to say this is that the market changes
the odds to make option pricing fairer. The risk-neutral measure approach
is the very modern, sophisticated, and general way to approach derivative
pricing. However it is too advanced for us to approach just yet.

Summary

From R. C. Merton in “Influence of mathematical models in finance on prac-
tice: past, present and future”, in Mathematical Models in Finance, edited
by S.D. Howison, F. P. Kelly, and P. Wilmott, Chapman and Hall, London,
1995, pages 1-15.

“The basic insight underlying the Black-Scholes model is that
a dynamic portfolio trading strategy in the stock can be found
which will replicate the returns from an option on that stock.
Hence, to avoid arbitrage opportunities, the option price must
always equal the value of this replicating portfolio.”

Sources

This section is adapted from: “Chapter 2, Discrete Processes” in Financial
Calculus by M. Baxter, A. Rennie, Cambridge University Press, Cambridge,
1996, [5].



80 CHAPTER 2. BINOMIAL OPTION PRICING MODELS

Problems to Work for Understanding

1. Consider a stock whose price today is $50. Suppose that over the next
year, the stock price can either go up by 10%, or down by 3%, so the
stock price at the end of the year is either $55 or $48.50. The interest
rate on a $1 bond is 6%. If there also exists a call on the stock with an
exercise price of $50, then what is the price of the call option? Also,
what is the replicating portfolio?

2. A stock price is currently $50. It is known that at the end of 6 months,
it will either be $60 or $42. The risk-free rate of interest with continuous
compounding on a $1 bond is 12% per annum. Calculate the value of
a 6-month European call option on the stock with strike price $48 and
find the replicating portfolio.

3. A stock price is currently $40. It is known that at the end of 3 months,
it will either $45 or $34. The risk-free rate of interest with quarterly
compounding on a $1 bond is 8% per annum. Calculate the value of a
3-month European put option on the stock with a strike price of $40,
and find the replicating portfolio.

4. Your friend, the financial analyst comes to you, the mathematical
economist, with a proposal: “The single period binomial pricing is all
right as far as it goes, but it is certainly is simplistic. Why not modify
it slightly to make it a little more realistic? Specifically, assume the
stock can assume three values at time T , say it goes up by a factor
U with probability pU , it goes down by a factor D with probability
pD, where D < 1 < U and the stock stays somewhere in between,
changing by a factor M with probability pM where D < M < U and
pD + pM + pU = 1.” The market contains only this stock, a bond
with a continuously compounded risk-free rate r and an option on the
stock with payoff function f(ST ). Make a mathematical model based
on your friend’s suggestion and provide a critique of the model based
on the classical applied mathematics criteria of existence of solutions
to the model and uniqueness of solutions to the model.

Outside Readings and Links:

1. A video lesson on the binomial option model from Hull

http://www.youtube.com/watch?v=kml52n2zmQs
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2.2 Multiperiod Binomial Tree Models

Rating

Student: contains scenes of mild algebra or calculus that may require guid-
ance.

Section Starter Question

Suppose that you owned a 3-month option, and that you tracked the value of
the underlying security at the end of each month. Suppose you were forced
to sell the option at the end of two months. How would you determine a fair
price for the option at that time? What simple modeling assumptions would
you make?

Key Concepts

1. A multiperiod binomial derivative model can be valued by dynamic
programming — computing the replicating portfolio and corresponding
portfolio values back one period at a time from the claim values to the
starting time.

Vocabulary

1. The multiperiod binomial model for pricing derivatives of a risky secu-
rity is also called the Cox-Ross-Rubenstein model or CRR model
for short, after those who introduced it in 1979.

Mathematical Ideas

The Binomial Tree model

The multiperiod binomial model has N time intervals created by N + 1
trading times t0 = 0, t1, . . . , tN = T . The spacing between time intervals
is ∆ti = ti − ti−1, and typically the spacing is equal, although it is not
necessary. The time intervals can be any convenient time length appropriate
for the model, e.g. months, days, minutes, even seconds. Later, we will take
them to be relatively short compared to T .
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Figure 2.2: A binomial tree

We model a limited market where a trader can buy or short-sell a risky
security (for instance a stock) and lend or borrow money at a riskless rate r.
For simplicity we assume r is constant over [0, T ]. This assumption of con-
stant r is not necessary, taking r to be ri on [ti, ti−1] only makes calculations
messier.

Sn denotes the price of the risky security at time tn for n = 0, 1, . . . N .
This price changes according to the rule

Sn+1 = SnHn+1, 0 ≤ n ≤ N − 1

where Hn+1 is a Bernoulli (two-valued) random variable such that

Hn+1 =

{
U, with probability p

D, with probability q = 1− p.

Again for simplicity we assume U and D are constant over [0, T ]. This
assumption of constant r is not necessary, for example, taking U to be Ui for
i = 0, 1, . . . , N only makes calculations messier. A binomial tree is a way to
visualize the multiperiod binomial model, as in the figure:

A pair of integers (n, j), with n = 0, . . . N and j = 0, . . . , n identifies
each node in the tree. We use the convention that node (n, j) leads to nodes
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(n + 1, j) and (n + 1, j + 1) at the next trading time, with the “up” change
corresponding to (n + 1, j + 1) and the “down” change corresponding to
(n + 1, j). The index j counts the number of up changes to that time, so
n − j is the number of down changes. Several paths lead to node (n, j), in
fact

(
n
j

)
of them. The price of the risky underlying asset at trading time tn

is then SU jDn−j. The probability of going from price S to price SU jDn−j is

pn,j =

(
n

j

)
pj(1− p)n−j.

To value a derivative with payout f(SN), the key idea is that of dynamic
programming — extending the replicating portfolio and corresponding port-
folio values back one period at a time from the claim values to the starting
time.

An example will make this clear. Consider a binomial tree on the times
t0, t1, t2. Assume U = 1.05, D = 0.95, and exp(r∆ti) = 1.02, so the effective
interest rate on each time interval is 2%. We take S0 = 100. We value a
European call option with strike price K = 100. Using the formula derived
in the previous section

π =
1.02− 0.95

1.05− 0.95
= 0.7

and 1−π = 0.3. Then concentrating on the single period binomial branch in
the large square box, the value of the option at node (1, 1) is $7.03. Likewise,
the value of the option at node (1, 0) is $0. Then we work back one step and
value a derivative with potential payouts $7.03 and $0 on the single period
binomial branch at (0, 0). This uses the same arithmetic to obtain the value
$4.82 at time 0. In the figure, the values of the security at each node are in
the circles, the value of the option at each node is in the small box beside
the circle.

As another example, consider a European put on the same security. The
strike price is again 100. All of the other parameters are the same. We work
backward again through the tree to obtain the value at time 0 as $0.944. In
the figure, the values of the security at each node are in the circles, the value
of the option at each node is in the small box beside the circle.

The multiperiod binomial model for pricing derivatives of a risky security
is also called the Cox-Ross-Rubenstein model or CRR model for short,
after those who introduced it in 1979.
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Figure 2.3: Pricing a European call
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Figure 2.4: Pricing a European put
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Advantages and Disadvantages of the model

The disadvantages of the binomial model are:

1. Trading times are not really at discrete times, trading goes on contin-
uously.

2. Securities do not change value according to a Bernoulli (two-valued)
distribution on a single time step, or a binomial distribution on multiple
time periods, they change over a range of values with a continuous
distribution.

3. The calculations are tedious.

4. Developing a more complete theory is going to take some detailed and
serious limit-taking considerations.

The advantages of the model are:

1. It clearly reveals the construction of the replicating portfolio.

2. It clearly reveals that the probability distribution is not centrally in-
volved, since expectations of outcomes aren’t used to value the deriva-
tives.

3. It is simple to calculate, although it can get tedious.

4. It reveals that we need more probability theory to get a complete un-
derstanding of path dependent probabilities of security prices.

It is possible, with considerable attention to detail, to make a limiting
argument and pass from the binomial tree model of Cox, Ross and Rubenstein
to the Black-Scholes pricing formula. However, this approach is not the most
instructive. Instead, we will back up from derivative pricing models, and
consider simpler models with only risk, that is, gambling, to get a more
complete understanding before returning to pricing derivatives.

Some caution is also needed when reading from other sources about the
Cox-Ross-Rubenstein or Binomial Option Pricing Model. Many other sources
derive the Binomial Option Pricing Model by discretizing the Black-Scholes
Option Pricing Model. The discretization is different from building the model
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from scratch because the parameters have special and more restricted inter-
pretations than the simple model. More sophisticated discretization proce-
dures from the numerical analysis of partial differential equations also lead to
additional discrete option pricing models which are hard to justify by build-
ing them from scratch. The discrete models derived from the Black-Scholes
model are used for simple and rapid numerical evaluation of option prices
rather than motivation.

Sources

This section is adapted from: “Chapter 2, Discrete Processes” in Financial
Calculus by M. Baxter, A. Rennie [5] and Quantitative Modeling of Derivative
Securities by M. Avellaneda and P. Laurence [2].

Problems to Work for Understanding

1. Consider a two-time-stage example. Each time stage is a year. A stock
starts at 50. In each year, the stock can go up by 10% or down by 3%.
The continuously compounded interest rate on a $1 bond is constant
at 6% each year. Find the price of a call option with exercise price
50, with exercise date at the end of the second year. Also, find the
replicating portfolio at each node.

2. Consider a three-time-stage example. The first time interval is a month,
then the second time interval is two months, finally, the third time
interval is a month again. A stock starts at 50. In the first interval, the
stock can go up by 10% or down by 3%, in the second interval the stock
can go up by 5% or down by 5%, finally in the third time interval, the
stock can go up by 6% or down by 3%. The continuously compounded
interest rate on a $1 bond is 2% in the fist period, 3% in the second
period, and 4% in the third period. Find the price of a call option with
exercise price 50, with exercise date at the end of the 4 months. Also,
find the replicating portfolio at each node.

3. A European cash-or-nothing binary option pays a fixed amount of
money if it expires with the underlying stock value above the strike
price. The binary option pays nothing if it expires with the underlying
stock value equal to or less than the strike price. A stock currently has
price $100 and goes up or down by 20% in each time period. What is
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the value of such a cash-or-nothing binary option with payoff $100 at
expiration 2 time units in the future and strike price $100? Assume a
simple interest rate of 10% in each time period.

4. A long strangle option pays max(K1 − S, 0, S −K2) if it expires when
the underlying stock value is S. The parameters K1 and K2 are the
lower strike price and the upper strike price, and K1 < K2. A stock
currently has price $100 and goes up or down by 20% in each time
period. What is the value of such a long strangle option with lower
strike 90 and upper strike 110 at expiration 2 time units in the future?
Assume a simple interest rate of 10% in each time period.

5. A long straddle option pays |S −K| if it expires when the underlying
stock value is S. The option is a portfolio composed of a call and a
put on the same security with K as the strike price for both. A stock
currently has price $100 and goes up or down by 10% in each time
period. What is the value of such a long straddle option with strike
price K = 110 at expiration 2 time units in the future? Assume a
simple interest rate of 5% in each time period.

Outside Readings and Links:

1. Peter Hoadley, Options Strategy Analysis Tools. A useful link on ba-
sics of the Black Scholes option pricing model. It contains terminology,
calculator, animated graphs, and Excel addins (a free trial version) for
making a spreadsheet model. Submitted by Yogesh Makkar, September
9,2003.

2. Binomial Tree Option Pricing by Simon Shaw, Brunel University The
web page contains an applet that implements the Binomial Tree Option
Pricing technique, and gives a short outline of the mathematical theory
behind the method. Submitted by Chun Fan, September 10, 2003.

http://www.hoadley.net/options/bs.htm
http://www.brunel.ac.uk/icsrsss/finance/options/binomial/


Chapter 3

First Step Analysis for
Stochastic Processes

3.1 A Coin Tossing Experiment

Rating

Everyone: contains no mathematics.

Section Starter Question

Suppose you start with a fortune of $10, and you want to gamble to have
$20 before you go broke. You flip a fair coin successively, and gain $1 if the
coin comes up “Heads” and loses $1 if the coin comes up “Tails”. What do
you estimate is the probability of getting to $20 before going broke? How
long do you estimate it take before one of the two outcomes occurs? How do
estimate each?

Key Concepts

1. Performing an experiment to gain intuition and experience with coin-
tossing games.

Vocabulary

1. We call victory the state of reaching a fortune goal, before going broke.

89
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2. We call ruin the state of going broke before reaching a fortune goal.

Mathematical Ideas

Reasons for Modeling with a Coin Flipping Game

We need a better understanding of the paths that risky securities take. We
shall make and investigate a greatly simplified model. For our model, we
assume:

1. Time is discrete, occurring at t0 = 0, t1, t2, . . ..

2. There are no risk-free investments available, (i.e. no bonds on the mar-
ket).

3. There are no options, and no financial derivatives.

4. The only investments are risk-only, that is, our fortune at any time is
a random variable:

Tn+1 = Tn + Yn+1

where T0 is our given initial fortune, and for simplicity,

Yn =

{
+1 probability 1/2

−1 probability 1/2

Our model is commonly called “gambling” and we will investigate the prob-
abilities of making a fortune by gambling.

Some Humor

An Experiment

1. Each person should have a chart for recording the outcomes of each
game (see below) and a sheet of graph paper.

2. Each person should use a fair coin to flip, say a penny.

3. Each “gambler” flips the coin, and records a +1 (gains $1) if the coin
comes up “Heads” and records −1 (loses $1) if the coin comes up
“Tails”. On the chart, the player records the outcome of each flip
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Figure 3.1: Welcome to my casino!

by recording the flip number, the outcome as “H” or “T” and keeps
track of the cumulative fortune of the gambler so far. It is best to keep
these records in a neat chart, since we will refer to them later.

4. Each “gambler” should record 100 flips, which takes about 10 to 20
minutes.

Toss n 1 2 3 4 5 6 7 8 9 10
H or T
Yn = +1,−1
Tn =

∑n
i=1 Yi

Toss n 11 12 13 14 15 16 17 18 19 20
H or T
Yn = +1,−1
Tn =

∑n
i=1 Yi

Toss n 21 22 23 24 25 26 27 28 29 30
H or T
Yn = +1,−1
Tn =

∑n
i=1 Yi
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Figure 3.2: Welcome to my casino!

Toss n 31 32 33 34 35 36 37 38 39 40
H or T
Yn = +1,−1
Tn =

∑n
i=1 YI

Toss n 41 42 43 44 45 46 47 48 49 50
H or T
Yn = +1,−1
Tn =

∑n
i=1 Yi

Toss n 51 52 53 54 55 56 57 58 59 60
H or T
Yn = +1,−1
Tn =

∑n
i=1 Yi

Toss n 61 62 63 64 65 66 67 68 69 70
H or T
Yn = +1,−1
Tn =

∑n
i=1 Yi
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Toss n 71 72 73 74 75 76 77 78 79 80
H or T
Yn = +1,−1
Tn =

∑n
i=1 Yi

Toss n 81 82 83 84 85 86 87 88 89 90
H or T
Yn = +1,−1
Tn =

∑n
i=1 Yi

Toss n 91 92 93 94 95 96 97 98 99 100
H or T
Yn = +1,−1
Tn =

∑n
i=1 Yi

Some Outcomes

In an in-class experiment with 17 “gamblers”, the class members obtained
the following results:

1. 8 gamblers reached a net loss of −10 before reaching a net gain of +10,
that is, acheived “victory”.

2. 7 gamblers reached a net gain of +10 before reaching a net loss of −10,
that is, were “ruined”.

3. 2 gamblers still had not reached a net loss of +10 or −10 yet.

This closely matches the predicted outcomes of 1/2 the gamblers being ru-
ined, and 1/2 of the gamblers being victorious.

The durations of the games were 88, 78, 133, 70, 26, 76, 92, 146, 153, 24, 177, 67, 24, 34, 42, 90.
The mean duration is 82.5 which is a little short of the predicted expected
duration of 100.

Sources

This section is adapted from ideas in William Feller’s classic text, An Intro-
duction to Probability Theory and Its Applications, Volume I, Third Edition.
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Problems to Work for Understanding

1. How many heads were obtained in your sequence of 100 flips? What
is the class average of the number of heads in 100 flips? What is the
variance of the number of heads obtained by the class members in the
number of heads?

2. How many flips did it take before you reached a net gain of +10 or a
net loss of −10? What is the class average of the number of flips before
reaching a net gain of +10 or a net loss of −10?

3. How many of the class reached a net gain of +10 before reaching a net
loss of −10?

4. What is the maximum net value achieved in your sequence of flips?
What is the class distribution of maximum values achieved in the se-
quence of flips?

Outside Readings and Links:

1. Virtual Laboratories in Probability and Statistics Red and Black Game

2. University of California, San Diego, Department of Mathematics, A.M.
Garsia A java applet that simulates how long it takes for a gambler to
go broke. You can control how much money you and the casino start
with, the house odds, and the maximum number of games. Results are
a graph and a summary table. Submitted by Matt Odell, September
8, 2003.

3.2 Ruin Probabilities

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

http://www.math.uah.edu/stat/applets/RedBlackGame.xhtml
http://math.ucsd.edu/~anistat/gamblers_ruin.html
http://math.ucsd.edu/~anistat/gamblers_ruin.html
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Section Starter Question

What is the solution of the equation xn = axn−1 where a is a constant?
What kind of a function is the solution? What more, if anything, needs to
be known to obtain a complete solution?

Key Concepts

1. The probabilities, interpretation, meaning, and consequences of the
“gambler’s ruin”.

Vocabulary

1. Classical Ruin Problem “Consider the familiar gambler who wins
or loses a dollar with probabilities p and q = 1 − p, respectively play-
ing against an infinitely rich adversary who is always willing to play
although the gambler has the privilege of stopping at his pleasure. The
gambler adopts the strategy of playing until he either loses his capital
(“is ruined”) or increases it to a (with a net gain of a − T0.) We are
interested in the probability of the gambler’s ruin and the probability
distribution of the duration of the game. This is the classical ruin
problem.”. (From W. Feller, in Introduction to Probability Theory and
Applications, Volume I, Chapter XIV, page 342. [15])

Mathematical Ideas

Understanding a Stochastic Process

We consider a sequence of Bernoulli random variables, Y1, Y2, Y3, . . . where
Yi = +1 with probability p and Yi = −1 with probability q. We start with
an initial value T0. We define the sequence of sums Tn =

∑n
i=0 Yi. We

are interested in the stochastic process T1, T2, T3, . . .. It turns out this is a
complicated sequence to understand in full, so we single out particular simpler
features to understand first. For example, we can look at the probability that
the process will achieve the value 0 before it achieves the value a. This is
a special case of a larger class of probability problems called first-passage
probabilities.
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Theorems about Ruin Probabilities

Consider a gambler who wins or loses a dollar on each turn of a game with
probabilities p and q = 1 − p respectively. Let his initial capital be T0.
The game continues until the gambler’s capital either is reduced to 0 or has
increased to a. Let qT0 be the probability of the gambler’s ultimate ruin
and pT0 the probability of his winning. We shall show later that (see also
Duration of the Game Until Ruin.)

pT0 + qT0 = 1

so that we need not consider the possibility of an unending game.

Theorem 1. The probability of the gambler’s ruin is

qT0 =
(q/p)a − (q/p)T0

(q/p)a − 1

if p 6= q and

qT0 = 1− T0/a

if p = q = 1/2.

Proof. After the first trial the gambler’s fortune is either T0−1 or T0 +1 and
therefore we must have

qT0 = pqT0+1 + qqT0−1 (3.1)

provided 1 < T0 < a − 1. For T0 = 1, the first trial may lead to ruin, and
(3.1) is replaced by

q1 = pq2 + q.

Similarly, for T0 = a− 1 the first trial may result in victory, and therefore

qa−1 = qqa−2.

To unify our equations, we define as a natural convention that q0 = 1, and
qa = 0. Then the probability of ruin satisfies (3.1) for T0 = 1, 2, . . . , a − 1.
This defines a set of a− 1 difference equations, with boundary conditions at
0 and a. If we solve the system of difference equations, then we will have the
desired probability qT0 for any value of T0.

http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/CoinTossing/Duration/duration.xml
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Note that we can rewrite the difference equations as

pqT0 + qqT0 = pqT0+1 + qqT0−1.

Then we can rearrange and factor to obtain

qT0+1 − qT0

qT0 − qT0−1

=
q

p

This says the ratio of successive differences of qT0 is constant. This suggests
that qT0 is a power function,

qT0 = λT0

since power functions have this property.
We first take the case when p 6= q. Then based on the guess above (or

also on standard theory for linear difference equations), we try a solution of
the form qT0 = λT0 . That is

λT0 = pλT0+1 + qλT0−1.

This reduces to
pλ2 − λ+ q = 0.

Since p+ q = 1, this factors as

(pλ− q)(λ− 1) = 0,

so the solutions are λ = q/p, and λ = 1. (One could also use the quadratic
formula to obtain the same values, of course.) Again by the standard theory
of linear difference equations, the general solution is

qT0 = A · 1 +B · (q/p)T0 (3.2)

for some constants A, and B.
Now we determine the constants by using the boundary conditions:

q0 = A+B = 1

qa = A+B(q/p)a = 0.

Solving, substituting, and simplifying:

qT0 =
(q/p)a − (q/p)T0

(q/p)a − 1
.
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(Check for yourself that with this expression 0 ≤ qT0 ≤ 1 as it should be a
for a probability.)

We should show that the solution is unique. So suppose rT0 is another
solution of the difference equations. Given an arbitrary solution of (3.1), the
two constants A and B can be determined so that (3.2) agrees with rT0 at
T0 = 0 and T0 = a. (The reader should be able to explain why by reference
to a theorem in Linear Algebra!) From these two values, all other values
can be found by substituting in (3.1) successively T0 = 1, 2, 3, . . . Therefore,
two solutions which agree for T0 = 0 and T0 = 1 are identical, hence every
solution is of the form (3.2).

The solution breaks down if p = q = 1/2, since then we do not get two
linearly independent solutions of the difference equation (we get the solution
1 repeated twice). Instead, we need to borrow a result from differential equa-
tions (from the variation-of-parameters/reduction-of-order set of ideas used
to derive a complete linearly independent set of solutions.) Certainly, 1 is
still a solution of the difference equation (3.1). A second linearly independent
solution is T0, (check it out!) and the general solution is qT0 = A+BT0. To
satisfy the boundary conditions, we must put A = 1, and A+Ba = 0, hence
qT0 = 1− T0/a.

We can consider a symmetric interpretation of this gambling game. In-
stead of a single gambler playing at a casino, trying to make a goal a before
being ruined, consider two gamblers Alice and Bill playing against each other.
Let Alice’s initial capital be T0 and let her play against adversary Bill with
initial capital a−T0 so that their combined capital is a. The game continues
until one gambler’s capital either is reduced to zero or has increased to a,
that is, until one of the two players is ruined.

Corollary 1. pT0 + qT0 = 1

Proof. The probability pT0 of Alice’s winning the game equals the probability
of Bill’s ruin. Bill’s ruin (and Alice’s victory) is therefore obtained from our
ruin formulas on replacing p, q, and T0 by q, p, and a−T0 respectively. That
is, from our formula (for p 6= q) the probability of Alice’s ruin is

qT0 =
(q/p)a − (q/p)T0

(q/p)a − 1

and the probability of Bill’s ruin is

pT0 =
(p/q)a − (p/q)a−T0

(p/q)a − 1
.
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Then add these together,and after some algebra, the total is 1. (Check it
out!)

For p = 1/2 = q, the proof is simpler, since then pT0 = 1 − (a − T0)/a,
and qT0 = 1− T0/a, and pT0 + qT0 = 1 easily.

Corollary 2. The expected gain against the infinitely rich adversary is E [G] =
(1− qT0)a− T0.

Proof. In the game against the infinitely rich adversary, the gambler’s ulti-
mate gain (or loss!) is a Bernoulli (two-valued) random variable, G, where
G assumes the value −T0 with probability qT0 , and assumes the value a− T0

with probability pT0 . Thus the expected value is

E [G] = (a− T0)pT0 + (−T0)qT0

= pT0a− T0

= (1− qT0)a− T0.

Now notice that if q = 1/2 = p, so that we are dealing with a fair game,
then E [G] = (1− (1− T0/a)) · a− T0 = 0. That is, a fair game in the short
run is a fair game in the long run. However, if p < 1/2 < q, so the game is
not fair then our expectation formula says

E [G] =

(
1− (q/p)a − (q/p)T0

(q/p)a − 1

)
a− T0

=
(q/p)T0 − 1

(q/p)a − 1
a− T0

=

(
[(q/p)T0 − 1]a

[(q/p)a − 1]T0

− 1

)
T0

The sequence [(q/p)n − 1]/n is an increasing sequence, so(
[(q/p)T0 − 1]a

[(q/p)a − 1]T0

− 1

)
< 0.

Remark. An unfair game in the short run is an unfair game in the long run.
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Corollary 3. The probability of ultimate ruin of a gambler with initial capital
T0 playing against an infinitely rich adversary is

qT0 = 1, p ≤ q

and

qT0 = (q/p)T0 , p > q.

Proof. Let a→∞ in the formulas. (Check it out!)

Remark. This corollary says that the probability of “breaking the bank at
Monte Carlo” as in the movies is zero, at least for the simple games we are
considering.

Some Calculations for Illustration

p q T0 a Prob of Ruin Prob of Success Exp Gain Duration
0.5 0.5 9 10 0.1000 0.9000 0 9
0.5 0.5 90 100 0.1000 0.9000 0 900
0.5 0.5 900 1,000 0.1000 0.9000 0 90,000
0.5 0.5 950 1,000 0.0500 0.9500 0 47,500
0.5 0.5 8,000 10,000 0.2000 0.8000 0 16,000,000

0.45 0.55 9 10 0.2101 0.7899 -1 11
0.45 0.55 90 100 0.8656 0.1344 -77 766
0.45 0.55 99 100 0.1818 0.8182 -17 172
0.4 0.6 90 100 0.9827 0.0173 -88 441
0.4 0.6 99 100 0.3333 0.6667 -32 162

Why do we hear about people who actually win?

We often hear from people who consistently make their “goal”, or at least
win at the casino. How can this be in the face of the theorems above?

A simple illustration makes clear how this is possible. Assume for conve-
nience a gambler who repeatedly visits the casino, each time with a certain
amount of capital. His goal is to win 1/9 of his capital. That is, in units of
his initial capital T0 = 9, and a = 10. Assume too that the casino is fair so
that p = 1/2 = q, then the probability of ruin in any one year is:

qT0 = 1− 9/10 = 1/10.
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This says that if the working capital is much greater than the amount required
for victory, then the probability of ruin is reasonably small.

Then the probability of an unbroken string of ten successes in ten years
is:

(1− 1/10)10 ≈ exp(−1) ≈ 0.37

This much success is reasonable, but simple psychology would suggest the
gambler would boast about his skill instead of crediting it to luck. More-
over, simple psychology suggests the gambler would also blame one failure
on oversight, momentary distraction, or even cheating by the casino!

Another Interpretation as a Random Walk

Another common interpretation of this probability game is to imagine it as a
random walk. That is, we imagine an individual on a number line, starting
at some position T0. The person takes a step to the right to T0 + 1 with
probability p and takes a step to the left to T0 − 1 with probability q and
continues this random process. Then instead of the total fortune at any
time, we consider the geometric position on the line at any time. Instead of
reaching financial ruin or attaining a financial goal, we talk instead about
reaching or passing a certain position. For example, Corollary 3 says that if
p ≤ q, then the probability of visiting the origin before going to infinity is 1.
The two interpretations are equivalent and either can be used depending on
which is more useful. The problems below are phrased in the random walk
interpretation, because they are more naturally posed in terms of reaching
or passing certain points on the number line.

The interpretation as Markov Processes and Martingales

The fortune in the coin-tossing game is the first and simplest encounter with
two of the most important ideas in modern probability theory.

We can interpret the fortune in our gambler’s coin-tossing game as a
Markov process. That is, at successive times the process is in various
states. In our case, the states are the values of the fortune. The probability
of passing from one state at the current time t to another state at time t+ 1
is completely determined by the present state. That is, for our coin-tossing
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game

P [Tt+1 = x+ 1|Tt = x] = p

P [Tt+1 = x− 1|Tt = x] = q

P [Tt+1 = y|Tt = x] = 0 for all y 6= x+ 1, x− 1

The most important property of a Markov process is that the probability of
being in the next state is completely determined by the current state and not
the history of how the process arrived at the current state. In that sense, we
often say that a Markov process is memory-less.

We can also note the fair coin-tossing game with p = 1/2 = q is a mar-
tingale. That is, the expected value of the process at the next step is the
current value. Using expectation for estimation, the best estimate we have
of the gambler’s fortune at the next step is the current fortune:

E [Tn+1|Tn = x] = (x+ 1)(1/2) + (x− 1)(1/2) = x.

This characterizes a fair gain, after the next step, one can neither expect to
be richer or poorer. Note that the coin-tossing games with p 6= q do not have
this property.

In later sections we have more occasions to study the properties of mar-
tingales, and to a lesser degree Markov processes.

Sources

This section is adapted from W. Feller, in Introduction to Probability Theory
and Applications, Volume I, Chapter XIV, page 342, [15]. Some material is
adapted from [49] and [28]. Steele has an excellent discussion at about the
same level as I have done it here, but with a slightly more rigorous approach
to solving the difference equations. He also gives more information about the
fact that the duration is almost surely finite, showing that all moments of the
duration are finite. Karlin and Taylor give a treatment of the ruin problem by
direct application of Markov chain analysis, which is not essentially different,
but points to greater generality.

Problems to Work for Understanding

1. Show the sequence [(q/p)n− 1]/n is an increasing sequence for 0 < p <
1/2 < q < 1..
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2. In a random walk starting at the origin find the probability that the
point a > 0 will be reached before the point −b < 0.

3. James Bond is determined to ruin the casino at Monte Carlo by consis-
tently betting 1 Euro on Red at the roulette wheel. The probability of
Bond winning at one turn in this game is 18/38 ≈ 0.474. James Bond,
being Agent 007, is backed by the full financial might of the British
Empire, and so can be considered to have unlimited funds. Approxi-
mately how much money should the casino have to start with so that
Bond has only a “one-in-a-million” chance of ruining the casino?

4. A gambler starts with $2 and wants to win $2 more to get to a total of
$4 before being ruined by losing all his money. He plays a coin-flipping
game, with a coin that changes with his fortune.

(a) If the gambler has $2 he plays with a coin that gives probability
p = 1/2 of winning a dollar and probability q = 1/2 of losing a
dollar.

(b) If the gambler has $3 he plays with a coin that gives probability
p = 1/4 of winning a dollar and probability q = 3/4 of losing a
dollar.

(c) If the gambler has $1 he plays with a coin that gives probability
p = 3/4 of winning a dollar and probability q = 1/4 of losing a
dollar.

Use “first step analysis” to write three equations in three unknowns
(with two additional boundary conditions) that give the probability
that the gambler will be ruined. Solve the equations to find the ruin
probability.

5. A gambler plays a coin flipping game in which the probability of win-
ning on a flip is p = 0.4 and the probability of losing on a flip is
q = 1 − p = 0.6. The gambler wants to reach the victory level of $16
before being ruined with a fortune of $0. The gambler starts with $8,
bets $2 on each flip when the fortune is $6,$8,$10 and bets $4 when
the fortune is $4 or $12 Compute the probability of ruin in this game.

6. Prove: In a random walk starting at the origin the probability to reach
the point a > 0 before returning to the origin equals p(1− q1).
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7. Prove: In a random walk starting at a > 0 the probability to reach the
origin before returning to the starting point equals qqa−1.

8. In the simple case p = 1/2 = q, conclude from the preceding problem:
In a random walk starting at the origin, the number of visits to the
point a > 0 that take place before the first return to the origin has
a geometric distribution with ratio 1 − qqa−1. (Why is the condition
q ≥ p necessary?)

9. (a) Draw a sample path of a random walk (with p = 1/2 = q) starting
from the origin where the walk visits the position 5 twice before
returning to the origin.

(b) Using the results from the previous problems, it can be shown
with careful but elementary reasoning that the number of times
N that a random walk (p = 1/2 = q) reaches the value a a total
of n times before returning to the origin is a geometric random
variable with probability

P [N = n] =

(
1

2a

)n(
1− 1

2a

)
.

Compute the expected number of visits E [N ] to level a.

(c) Compare the expected number of visits of a random walk (p =
1/2 = q) to the value “1 million” before returning to the origin
and to the level 10 before returning to the origin.

10. This problem is adapted from Stochastic Calculus and Financial Ap-
plications by J. Michael Steele, Springer, New York, 2001, Chapter 1,
Section 1.6, page 9. Information on buy-backs is adapted from investor-
words.com. This problem suggests how results on biased random walks
can be worked into more realistic models.

Consider a naive model for a stock that has a support level of $20/share
because of a corporate buy-back program. (This means the company
will buy back stock if shares dip below $20 per share. In the case
of stocks, this reduces the number of shares outstanding, giving each
remaining shareholder a larger percentage ownership of the company.
This is usually considered a sign that the company’s management is
optimistic about the future and believes that the current share price is
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undervalued. Reasons for buy-backs include putting unused cash to use,
raising earnings per share, increasing internal control of the company,
and obtaining stock for employee stock option plans or pension plans.)
Suppose also that the stock price moves randomly with a downward
bias when the price is above $20, and randomly with an upward bias
when the price is below $20. To make the problem concrete, we let
Sn denote the stock price at time n, and we express our stock support
hypothesis by the assumptions that

P [Sn+1 = 21|Sn = 20] = 9/10

P [Sn+1 = 19|Sn = 20] = 1/10

We then reflect the downward bias at price levels above $20 by requiring
that for k > 20:

P [Sn+1 = k + 1|Sn = k] = 1/3

P [Sn+1 = k − 1|Sn = k] = 2/3.

We then reflect the upward bias at price levels below $20 by requiring
that for k < 20:

P [Sn+1 = k + 1|Sn = k] = 2/3

P [Sn+1 = k − 1|Sn = k] = 1/3

Using the methods of “single-step analysis” calculate the expected time
for the stock to fall from $25 through the support level all the way down
to $18. (I don’t believe that there is any way to solve this problem
using formulas. Instead you will have to go back to basic principles of
single-step or first-step analysis to solve the problem.)

Outside Readings and Links:

1. Virtual Labs in Probability Section 13, Games of Chance. Scroll down
and select the Red and Black Experiment (marked in red in the Applets
Section. Read the description since the scenario is slightly different but
equivalent to the description above.)

http://www.math.uah.edu/stat/games/index.xhtml
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2. University of California, San Diego, Department of Mathematics, A.M.
Garsia A java applet that simulates how long it takes for a gambler to
go broke. You can control how much money you and the casino start
with, the house odds, and the maximum number of games. Results are
a graph and a summary table. Submitted by Matt Odell, September
8, 2003.

3. Eric Weisstein, World of Mathematics A good description of gambler’s
ruin, martingale and many other coin tossing and dice problems and
various probability problems Submitted by Yogesh Makkar, September
16th 2003.

3.3 Duration of the Gambler’s Ruin

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

Consider a gambler who wins or loses a dollar on each turn of a fair game
with probabilities p = 1/2 and q = 1/2 respectively. Let his initial capital be
$10. The game continues until the gambler’s capital either is reduced to 0 or
has increased to $20. What is the length of the shortest possible game the
gambler could play? What are the chances of this shortest possible game?
What is the length of the second shortest possible game? How would you
find the probability of this second shortest possible game occurring?

Key Concepts

1. The principle of first-step analysis, also known as conditional expec-
tations, provides equations for important properties of coin-flipping
games and random walks. The important properties include ruin prob-
abilities and the duration of the game until ruin.

2. Difference equations derived from first-step analysis or conditional ex-
pectations provide the way to deduce the expected length of the game

http://math.ucsd.edu/~anistat/gamblers_ruin.html
http://math.ucsd.edu/~anistat/gamblers_ruin.html
http://mathworld.wolfram.com/GamblersRuin.html
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in the gambler’s ruin, just as for the probability of ruin or victory.

Vocabulary

1. Expectation by conditioning is the process of deriving an expec-
tation by conditioning the outcome over an exhaustive, mutually ex-
clusive set of events, each of which leads to a simpler probability cal-
culation, then weighting by the probability of each outcome of the
conditioning events.

2. First Step Analysis is how J. Michael Steele refers to the simple ex-
pectation by conditioning that we use to analyze the ruin probabilities
and expected duration. It is a more specific description for coin-tossing
games of the more general technique of expectation by conditioning.

Mathematical Ideas

Understanding a Stochastic Process

We start with a sequence of Bernoulli random variables, Y1, Y2, Y3, . . . where
Yi = +1 with probability p and Yi = −1 with probability q. We start with
an initial value T0and set Y0 = T0 for convenience. We define the sequence of
sums Tn =

∑n
i=0 Yi. We are interested in the stochastic process T1, T2, T3, . . ..

It turns out this is a complicated sequence to understand in full, so we single
out particular simpler features to understand first. For example, we can look
at how many trials the process will experience until it achieves the value 0
or a. In symbols, consider N = min{n : Tn = 0, orTn = a} It is possible to
consider the probability distribution of this newly defined random variable.
Even this turns out to be fairly complicated, so we look at the expected value
of the number of trials, D = E [N ]. This is a special case of a larger class of
probability problems called first-passage distributions for first-passage times.

Expected length of the game

Note that in the following we implicitly assume that the expected duration
of the game is finite. This fact is true, see below for a proof.

Theorem 2. The expected duration of the game in the classical ruin problem
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is

DT0 =
T0

q − p
− a

q − p
1− (q/p)T0

1− (q/p)a
for p 6= q

and
T0(a− T0) for p = 1/2 = q.

Proof. If the first trial results in success, the game continues as if the initial
position had been T0 + 1. The conditional expectation of the duration con-
ditioned on success at the first trial is therefore DT0+1 + 1. Likewise if the
first trial results in a loss, the duration conditioned on the loss at the first
trial is DT0−1 + 1.

This argument shows that the expected duration satisfies the difference
equation, obtained by expectation by conditioning

DT0 = pDT0+1 + qDT0−1 + 1

with the boundary conditions

D0 = 0, Da = 0.

The appearance of the term 1 makes the difference equation non-homogeneous.
Taking a cue from linear algebra, or more specifically the theory of linear non-
homogeneous differential equations, we need to find the general solution to
the homogeneous equation

Dh
T0

= pDh
T0+1 + qDh

T0−1

and a particular solution to the non-homogeneous equation. We already know
the general solution to the homogeneous equation is Dh

T0
= A + B(q/p)T0 .

The best way to find the particular solution is inspired guessing, based on
good experience. We can re-write the non-homogeneous equation for the
particular solution as

−1 = pDT0+1 −DT0 + qDT0−1.

The right side is a weighted second difference, a difference equations analog
of the second derivative. Functions whose second derivative is a constant are
quadratic functions. Therefore, it make sense to try a function of the form
Dp
T0

= C+DT0 +ET 2
0 . In the exercises, we show that the particular solution

is actually DT0 = T0/(q − p) if p 6= q.
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It follows that the general solution of the duration equation is:

DT0 = T0/(q − p) + A+B(q/p)T0 .

The boundary conditions require that A+B = 0, and A+B(q/p)a = −a/(q−
p). Solving for A and B, we find

DT0 =
T0

q − p
− a

q − p
1− (q/p)T0

1− (q/p)a
.

The calculations are not valid if p = 1/2 = q. In this case, the particular
solution T0/(q − p) no longer makes sense for the equation

DT0 = (1/2)DT0+1 + (1/2)DT0−1 + 1

The reasoning about the particular solution remains the same however, and
we can show that the particular solution is −T0

2. It follows that the general
solution is of the form DT0 = −T0

2+A+BT0. The required solution satisfying
the boundary conditions is

DT0 = T0(a− T0).

Corollary 4. Playing until ruin with no upper goal for victory against an
infinitely rich adversary, the expected duration of the game until ruin is

T0/(q − p) for p 6= q

and
∞ for p = 1/2 = q.

Proof. Pass to the limit a→∞ in the preceding formulas.

Illustration 1

The duration can be considerably longer than we expect naively. For instance
in a fair game, with two players with $500 each flipping a coin until one is
ruined, the average duration of the game is 250,000 trials. If a gambler has
only $1 and his adversary $1000, with a fair coin toss, the average duration
of the game is 999 trials, although some games will be quite short! Very long
games can occur with sufficient probability to give a long average.
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Proof that the duration is finite

The following discussion of finiteness of the duration of the game is adapted
from [49] by J. Michael Steele.

When we check the arguments for the probability of ruin or the duration
of the game, we find a logical gap. We have assumed that the duration DT0 of
the game is finite. How do we know for sure that the gambler’s net winnings
will eventually reach a or 0? This important fact requires proof.

The proof uses a common argument in probability, an “extreme case argu-
ment”. We identify an “extreme” event with a small but positive probability
of occurring. We are interested in the complementary “good” event which
at least avoids the extreme event. Therefore the complementary event must
happen with probability not quite 1. The avoidance must happen infinitely
many independent times, but the probability of such a run of “good” events
must go to zero.

For the gambler’s ruin, we are interested in the event of the game contin-
uing forever. Consider the extreme event that the gambler wins a times in
a row. If the gambler is not already ruined (at 0), then such an streak of a
wins in a row is guaranteed to boost his fortune above a and end the game
in victory for the gambler. Such a run of luck is unlikely, but it has positive
probability, in fact, probability P = pa. We let Ek denote the event that
the gambler wins on each turn in the time interval [ka, (k + 1)a− 1], so the
Ek are independent events. Hence the complementary events EC

k = Ω − Ek
are also independent. Then D > na at least implies that all of the Ek with
0 ≤ k ≤ n fail to occur. Thus, we find

P [DT0 > na] ≤ P

[
n⋂
k=0

EC
k

]
= (1− P )n.

Note that

P [DT0 =∞|T0 = z] ≤ P [D > na|T0 = z]

for all n. Hence, P [DT0 =∞] = 0, justifying our earlier assumption.

Sources

This section is adapted from [49] with additional background information
from [15].
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Problems to Work for Understanding

1. (a) Using a trial function of the form Dp
T0

= C + DT0 + ET 2
0 , show

that a particular solution of the non-homogeneous equation

DT0 = pDT0+1 + qDT0−1 + 1

is T0/(q − p).
(b) Using a trial function of the form Dp

T0
= C + DT0 + ET 2

0 , show
that a particular solution of the non-homogeneous equation

DT0 =
1

2
DT0+1 +

1

2
DT0−1 + 1

is −T 2
0 .

2. A gambler starts with $2 and wants to win $2 more to get to a total of
$4 before being ruined by losing all his money. He plays a coin-flipping
game, with a coin that changes with his fortune.

(a) If the gambler has $2 he plays with a coin that gives probability
p = 1/2 of winning a dollar and probability q = 1/2 of losing a
dollar.

(b) If the gambler has $3 he plays with a coin that gives probability
p = 1/4 of winning a dollar and probability q = 3/4 of losing a
dollar.

(c) If the gambler has $1 he plays with a coin that gives probability
p = 3/4 of winning a dollar and probability q = 1/4 of losing a
dollar.

Use “first step analysis” to write three equations in three unknowns
(with two additional boundary conditions) that give the expected du-
ration of the game that the gambler plays. Solve the equations to find
the expected duration.

3. (20 points) A gambler plays a coin flipping game in which the proba-
bility of winning on a flip is p = 0.4 and the probability of losing on a
flip is q = 1− p = 0.6. The gambler wants to reach the victory level of
$16 before being ruined with a fortune of $0. The gambler starts with
$8, bets $2 on each flip when the fortune is $6,$8,$10 and bets $4 when
the fortune is $4 or $12 Compute the probability of ruin in this game.
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4. This problem is adapted from Stochastic Calculus and Financial Ap-
plications by J. Michael Steele, Springer, New York, 2001, Chapter 1,
Section 1.6, page 9. Information on buy-backs is adapted from investor-
words.com. This problem suggests how results on biased random walks
can be worked into more realistic models.

Consider a naive model for a stock that has a support level of $20/share
because of a corporate buy-back program. (This means the company
will buy back stock if shares dip below $20 per share. In the case
of stocks, this reduces the number of shares outstanding, giving each
remaining shareholder a larger percentage ownership of the company.
This is usually considered a sign that the company’s management is
optimistic about the future and believes that the current share price is
undervalued. Reasons for buy-backs include putting unused cash to use,
raising earnings per share, increasing internal control of the company,
and obtaining stock for employee stock option plans or pension plans.)
Suppose also that the stock price moves randomly with a downward
bias when the price is above $20, and randomly with an upward bias
when the price is below $20. To make the problem concrete, we let
Yn denote the stock price at time n, and we express our stock support
hypothesis by the assumptions that

P [Yn+1 = 21|Yn = 20] = 9/10

P [Yn+1 = 19|Yn = 20] = 1/10

We then reflect the downward bias at price levels above $20 by requiring
that for k > 20:

P [Yn+1 = k + 1|Yn = k] = 1/3

P [Yn+1 = k − 1|Yn = k] = 2/3.

We then reflect the upward bias at price levels below $20 by requiring
that for k < 20:

P [Yn+1 = k + 1|Yn = k] = 2/3

P [Yn+1 = k − 1|Yn = k] = 1/3

Using the methods of “single-step analysis” calculate the expected time
for the stock to fall from $25 through the support level all the way down
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to $18. (I don’t believe that there is any way to solve this problem
using formulas. Instead you will have to go back to basic principles of
single-step or first-step analysis to solve the problem.)

Outside Readings and Links:

1. Virtual Labs in Probability Section 13, Games of Chance. Scroll down
and select the Red and Black Experiment (marked in red in the Applets
Section. Read the description since the scenario is slightly different but
equivalent to the description above.)

2. University of California, San Diego, Department of Mathematics, A.M.
Garsia A java applet that simulates how long it takes for a gambler to
go broke. You can control how much money you and the casino start
with, the house odds, and the maximum number of games. Results are
a graph and a summary table. Submitted by Matt Odell, September
8, 2003.

3. P. W Jones, P. Smith, Department of Mathematics, Keele University,
UK The link has many Mathematica programs. It spans most of the
topics we cover in this course. It can be added to the gambler’s ruin
duration section because it has a program for finding the duration of
gambler’s ruin game for different values of the starting principal. The
program can be easily altered for different values of p, q and a. Sub-
mitted by Zac Al Nahas, September 22, 2003.

4.

3.4 A Stochastic Process Model of Cash Man-

agement

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

http://www.math.uah.edu/stat/games/index.xhtml
http://math.ucsd.edu/~anistat/gamblers_ruin.html
http://math.ucsd.edu/~anistat/gamblers_ruin.html
http://www.keele.ac.uk/depts/ma/stocproc/projects.html
http://www.keele.ac.uk/depts/ma/stocproc/projects.html
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Section Starter Question

Suppose that you have a stock of 5 units of a product. It costs you r dollars
per unit of product to hold the product for a week. You get rid of one unit
of product per week. What is the total cost of holding the product? Now
suppose that the amount of product is determined by a coin-tossing game,
or equivalently a random walk. How would you calculate the expected cost
of holding the product?

Key Concepts

1. The reserve requirement is a bank regulation that sets the minimum
reserves of cash a bank must hold on hand for customer deposits. An
important question for the bank is: What is the optimal level of cash
for the bank to hold?

2. We model the cash level with a sequence of cycles or games. Each cycle
begins with s units of cash on hand and ends with either a replenish-
ment of cash, or a reduction of cash. In between these levels, the cash
level is a stochastic process, specifically for our model a coin-tossing
game or random walk.

3. By solving a non-homogeneous difference equation we can determine
the expected number of visits to an intermediate level in the random
process.

4. Using the expected number of visits to a level we can model the ex-
pected costs of the reserve requirement as a function of the maximum
amount to hold and the starting level after a buy or sell. Then we
can minimize the costs with calculus to find the optimal values of the
maximum amount and the starting level.

Vocabulary

1. The reserve requirement is a bank regulation that sets the minimum
reserves of cash a bank must hold for customer deposits.
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2. The mathematical expression δsk is the Kronecker delta

δsk =

{
1 if k = s

0 if k 6= s .

3. If X is a random variable assuming some values including k, the indi-
cator random variable where

1{X=k} =

{
1 X = k

0 X 6= k.

The indicator random variable indicates whether a random variable
assumes a value, or is in a set. The expected value of the indicator
random variable is the probability of the event.

Mathematical Ideas

Background

The reserve requirement is a bank regulation that sets the minimum re-
serves of cash a bank must hold on hand for customer deposits. This is also
called the Federal Reserve requirement or the reserve ratio. These
reserves exist so banks can satisfy cash withdrawal demands. The reserves
also help regulate the national money supply. Specifically in 2010 the Fed-
eral Reserve regulations require that the first $10.7 million are exempt from
reserve requirements. A 3 percent reserve ratio is assessed on net transaction
accounts over $10.7 million up to and including $55.2 million. A 10 percent
reserve ratio is assessed on net transaction accounts in excess of $55.2 million.

Of course, bank customers are frequently depositing and withdrawing
money so the amount of money for the reserve requirement is constantly
changing. If customers deposit more money, the cash on hand exceeds the
reserve requirement. The bank would put the excess cash to work, perhaps
by buying Treasury bills. If customers withdraw cash, the available cash can
fall below the required amount to cover the reserve requirement so the bank
gets more cash, perhaps by selling Treasury bills.

The bank has a dilemma: buying and selling the Treasury bills has a
transaction cost, so the bank does not want to buy and sell too often. On
the other hand, excess cash could be put to use by loaning it out, and so the
bank does not want to have too much cash idle. What is the optimal level
of cash that signals a time to sell, and how much should be bought or sold?
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Modeling

We assume for a simple model that a bank’s cash level fluctuates randomly as
a result of many small deposits and withdrawals. We model this by dividing
time into successive, equal length periods, each of short duration. The peri-
ods might be weekly, the reporting period the Federal Reserve Bank requires
for some banks. In each time period, assume the reserve randomly increases
or decreases one unit of cash, perhaps measured in units of $100,000, each
with probability 1/2. That is, in period n, the change in the banks reserves
is

Yn =

{
+1 with probability 1/2

−1 with probability 1/2.

The equal probability assumption simplifies calculations for this model. It is
possible to relax the assumption to the case p 6= q, but we will not do this
here.

Let T0 = s be the initial cash on hand. Then Tn = T0 +
∑n

j=1 Yj is the
total cash on hand at period n.

The bank will intervene if the reserve gets too small or too large. Again
for simple modeling, if the reserve level drops to zero, the bank sells assets
such as Treasury bonds to replenish the reserve back up to s. If the cash level
ever increases to S, the bank buys Treasury bonds to reduce the reserves to
s. What we have modeled here is a version of the Gambler’s Ruin, except
that when this “game” reaches the “ruin” or “victory” boundaries, 0 or S
respectively, the “game” immediately restarts again at s.

Now the cash level fluctuates in a sequence of cycles or games. Each cycle
begins with s units of cash on hand and ends with either a replenishment of
cash, or a reduction of cash.

Mean number of visits to a particular state

Now let k be one of the possible reserve states with 0 < k < S and let Wsk

be the expected number of visits to the level k up to the ending time of the
cycle starting from s. A formal mathematical expression for this expression
is

Wsk = E

[
N−1∑
j=1

1{Tj=k}

]
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Figure 3.3: Several typical cycles in a model of the reserve requirement.

where 1{Tj=k} is the indicator random variable where

1{Tj=k} =

{
1 Tj = k

0 Tj 6= k.

Note that the inner sum is a random sum, since it depends on the length of
the cycle N , which is cycle dependent.

Then using first-step analysis Wsk satisfies the equations

Wsk = δsk +
1

2
Ws−1,k +

1

2
Ws+1,k

with boundary conditions W0k = WSk = 0. The term δsk is the Kronecker
delta

δsk =

{
1 if k = s

0 if k 6= s.

The explanation of this equation is very similar to the derivation of the
equation for the expected duration of the coin-tossing game. The terms
1
2
Ws−1,k + 1

2
Ws+1,k arise from the standard first-step analysis or expectation-

by-conditioning argument for Wsk. The non-homogeneous term in the prior
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expected duration equation (which is +1) arises because the game will always
be at least 1 step longer after the first step. In the current equation, the δsk
non-homogeneous term arises because the number of visits to level k after
the first step will be 1 more if k = s but the number of visits to level k after
the first step will be 0 more if k 6= s.

For the ruin probabilities, the difference equation was homogeneous, and
we only needed to find the general solution. For the expected duration,
the difference equation was non-homogeneous with a non-homogeneous term
which was the constant 1, making the particular solution reasonably easy to
find. Now the non-homogeneous term depends on the independent variable,
so solving for the particular solution will be more involved.

First we find the general solutionW h
sk to the homogeneous linear difference

equation

W h
sk =

1

2
W h
s−1,k +

1

2
W h
s+1,k.

This is easy, we already know that it is W h
sk = A+Bs.

Then we must find a particular solution W p
sk to the non-homogeneous

equation

W p
sk = δsk +

1

2
W p
s−1,k +

1

2
W p
s+1,k.

For purposes of guessing a plausible particular solution, temporarily re-write
the equation as

−2δsk = W p
s−1,k − 2W p

sk +W p
s+1,k.

The expression on the right is a centered second difference. For the prior
expected duration equation, we looked for a particular solution with a con-
stant centered second difference. Based on our experience with functions it
made sense to guess a particular solution of the form C+Ds+Es2 and then
substitute to find the coefficients. Here we seek a function whose centered
second difference is 0 except at k where the second difference jumps to 1.
This suggests the particular solution is piecewise linear, say

W p
sk =

{
C +Ds if s ≤ k

E + Fs if s > k.

In the exercises, we verify that the solution of this set of equations is

W p
sk =

{
0 if s < k

2(k − s) if s ≥ k.
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We can write this as W p
sk = −2 max(s− k, 0)

Then solving for the boundary conditions, the full solution is

Wsk = 2 [s(1− k/S)−max(s− k, 0)] .

Expected Duration and Expected Total Cash in a Cycle

Consider the first passage time N when the reserves first reach 0 or S, so
that cycle ends and the bank intervenes to change the cash reserves. The
value of N is a random variable, it depends on the sample path. We are
first interested in Ds = E [N ], the expected duration of a cycle. From the
previous section we already know Ds = s(S − s).

Next, we are interested in the mean cost of holding cash on hand during
a cycle i, starting from amount s. Call this mean Ws. Let r be the cost per
unit of cash, per unit of time. We then obtain the cost by weighting Wsk,
the mean number of times the cash is at number of units k starting from
s, multiplying by k, multiplying by the factor r and summing over all the
available amounts of cash:

Ws =
S−1∑
k=1

rkWsk

= 2

[
s

S

S−1∑
k=1

rk(S − k)−
s−1∑
k=1

rk(s− k)

]

= 2

[
s

S

[
rS(S − 1)(S + 1)

6

]
− rs(s− 1)(s+ 1)

6

]
= r

s

3

[
S2 − s2

]
.

These results are interesting and useful in their own right as estimates of
the length of a cycle and the expected cost of cash on hand during a cycle.
Now we use these results to evaluate the long run behavior of the cycles. Upon
resetting the cash at hand to s when the amount of cash reaches 0 orS, the
cycles are independent of each of the other cycles because of the assumption
of independence of each step. Let K be the fixed cost of the buying or selling
of the treasury bonds to start the cycle, let Ni be the random length of the
cycle i, and let Ri be the total opportunity cost of holding cash on hand
during cycle i. Then the cost over n cycles is nK +R1 + · · ·+Rn. Divide by
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n to find the average cost

Expected total cost in cycle i = K + E [Ri] ,

but we have another expression for the expectation E [Ri],

Expected opportunity cost = E [Ri] = r
s

3

[
S2 − s2

]
.

Likewise the total length of n cycles is N1 + · · · + Nn. Divide by n to find
the average length,

Expected length =
N1 + · · ·+Nn

n
= s(S − s).

These expected values allow us to calculate the average costs

Long run average cost, dollars per week =
K + E [Ri]

E [Ni]
.

Then E [Ri] = rWs and E [Ni] = s(S − s). Therefore

Long run average cost, dollars per week =
K + (1/3)rs(S2 − s2)

s(S − s)
.

Simplify the analysis by setting x = s/S so that the expression of interest is

Long run average cost =
K + (1/3)rS3x(1− x2)

S2x(1− x)
.

Remark. Aside from being a good thing to non-dimensionalize the model
as much as possible, it also appears that optimizing the original long run
cost average in the original variables S and s is messy and difficult. This
of course would not be known until you had tried it. However, knowing the
optimization is difficult in variables s and S additionally motivates making
the transformation to the non-dimensional ratio x = s/S.

Now we have a function in two variables that we wish to optimize. Take
the partial derivatives with respect to x and S and set them equal to 0, then
solve, to find the critical points.

The results are that

xopt =
1

3

Sopt = 3

(
3K

4r

) 1
3

.
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That is, the optimal value of the maximum amount of cash to keep varies as
the cube root of the cost ratios, and the reset amount of cash is 1/3 of that
amount.

Criticism of the model

The first test of the model would be to look at the amounts S and s for well-
managed banks and determine if the banks are using optimal values. That
is, one could do a statistical survey of well-managed banks and determine
if the values of S vary as the cube root of the cost ratio, and if the restart
value is 1/3 of that amount. Of course, this assumes that the model is valid
and that banks are following the predictions of the model, either consciously
or not.

This model is too simple and could be modified in a number of ways.
One change might be to change the reserve requirements to vary with the
level of deposits, just as the 2010 Federal Reserve requirements vary. Adding
additional reserve requirement levels to the current model adds a level of
complexity, but does not substantially change the level of mathematics in-
volved.

The most important change would be to allow the changes in deposits
to have a continuous distribution instead of jumping up or down by one
unit in each time interval. Modification to continuous time would make the
model more realistic instead of changing the cash at discrete time intervals.
The assumption of statistical independence from time step to time step is
questionable, and so could also be relaxed. All these changes require deeper
analysis and more sophisticated stochastic processes.

Sources

This section is adapted from: Section 6.1.3 and 6.2, pages 157-164 in An
Introduction to Stochastic Modeling, [50].

Problems to Work for Understanding

1. Find a particular solution W p
sk to the non-homogeneous equation

W p
sk = δsk +

1

2
W p
s−1,k +

1

2
W p
s+1,k.
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using the trial function

W p
sk =

{
C +Ds if s ≤ k

E + Fs if s > k.

2. Show that

Ws =
S−1∑
k=1

kWsk

= 2

[
s

S

S−1∑
k=1

k(S − k)−
s−1∑
k=1

k(s− k)

]

= 2

[
s

S

[
S(S − 1)(S + 1)

6

]
− s(s− 1)(s+ 1)

6

]
=
s

3

[
S2 − s2

]
You will need formulas for

∑N
k=1 k and

∑N
k=1 k

2 or alternatively for∑N
k=1 k(M − k). These are easily found or derived.

3. (a) For the long run average cost

C =
K + (1/3)rS3x(1− x2)

S2x(S − x)
.

find ∂C/∂x.

(b) For the long run average cost

C =
K + (1/3)rS3x(1− x2)

S2x(1− x)
.

find ∂C/∂S.

(c) Find the optimum values of x and S.

Outside Readings and Links:

1. Milton Friedman: The Purpose of the Federal Reserve system. The
reaction of the Federal Reserve system at the beginning of the Great
Depression.

http://www.youtube.com/watch?v=9V5OP-VmXgE


Chapter 4

Limit Theorems for Stochastic
Processes

4.1 Laws of Large Numbers

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

Consider a fair (p = 1/2 = q) coin tossing game carried out for 1000 tosses.
Explain in a sentence what the “law of averages” says about the outcomes
of this game.

Key Concepts

1. The precise statement, meaning and proof of the Weak Law of Large
Numbers.

2. The precise statement and meaning of the Strong Law of Large Num-
bers.

123
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Vocabulary

1. The Weak Law of Large Numbers is a precise mathematical state-
ment of what is usually loosely referred to as the “law of averages”.
Precisely, let X1, . . . , Xn be independent, identically distributed ran-
dom variables each with mean µ and variance σ2. Let Sn = X1+· · ·+Xn

and consider the sample mean or more loosely, the “average” Sn/n.
Then the Weak Law of Large Numbers says that the sample mean Sn/n
converges in probability to the population mean µ. That is:

lim
n→∞

Pn [|Sn/n− µ| > ε] = 0

In words, the proportion of those samples whose sample mean differs
significantly from the population mean diminishes to zero as the sample
size increases.

2. The Strong Law of Large Numbers says that Sn/n converges to µ
with probability 1. That is:

P
[

lim
n→∞

Sn/n = µ
]

= 1

In words, the Strong Law of Large Numbers “almost every” sample
mean approaches the population mean as the sample size increases.

Mathematical Ideas

The Weak Law of Large Numbers

Lemma 3 (Markov’s Inequality). If X is a random variable that takes only
nonnegative values, then for any a > 0:

P [X ≥ a] ≤ E [X] /a

Proof. Here is a proof for the case where X is a continuous random variable
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with probability density f :

E [X] =

∫ ∞
0

xf(x) dx

=

∫ a

0

xf(x) dx+

∫ ∞
a

xf(x) dx

≥
∫ ∞
a

xf(x) dx

≥
∫ ∞
a

af(x) dx

= a

∫ ∞
a

f(x) dx

= aP [X ≥ a] .

(The proof for the case where X is a purely discrete random variable is
similar with summations replacing integrals. The proof for the general case
is exactly as given with dF (x) replacing f(x) dx and interpreting the integrals
as Riemann-Stieltjes integrals.)

Lemma 4 (Chebyshev’s Inequality). If X is a random variable with finite
mean µ and variance σ2, then for any value k > 0:

P [|X − µ| ≥ k] ≤ σ2/k2.

Proof. Since (X−µ)2 is a nonnegative random variable, we can apply Markov’s
inequality (with a = k2) to obtain

P
[
(X − µ)2 ≥ k2

]
≤ E

[
(X − µ)2

]
/k2.

But since (X − µ)2 ≥ k2 if and only if |X − µ| ≥ k, the inequality above is
equivalent to:

P [|X − µ| ≥ k] ≤ σ2/k2

and the proof is complete.

Theorem 5 (Weak Law of Large Numbers). Let X1, X2, X3, . . . , be indepen-
dent, identically distributed random variables each with mean µ and variance
σ2. Let Sn = X1 + · · ·+Xn. Then Sn/n converges in probability to µ. That
is:

lim
n→∞

P [|Sn/n− µ| > ε] = 0.
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Proof. Since the mean of a sum of random variables is the sum of the means,
and scalars factor out of expectations:

E [Sn/n] = (1/n)
n∑
i=1

E [Xi] = (1/n)(nµ) = µ.

Since the variance of a sum of independent random variables is the sum of
the variances, and scalars factor out of variances as squares:

Var [Sn/n] = (1/n2)
n∑
i

Var [Xi] = (1/n2)(nσ2) = σ2/n.

Fix a value ε > 0. Then using elementary definitions for probability measure
and Chebyshev’s Inequality:

0 ≤ Pn [|Sn/n− µ| > ε] ≤ Pn [|Sn/n− µ| ≥ ε] ≤ σ2/(nε2).

Then by the squeeze theorem for limits

lim
n→∞

P [|Sn/n− µ| > ε] = 0.

Jacob Bernoulli originally proved the Weak Law of Large Numbers in 1713
for the special case when the Xi are binomial random variables. Bernoulli
had to create an ingenious proof to establish the result, since Chebyshev’s
inequality was not known at the time. The theorem then became known as
Bernoulli’s Theorem. Simeon Poisson proved a generalization of Bernoulli’s
binomial Weak Law and first called it the Law of Large Numbers. In 1929
the Russian mathematician Aleksandr Khinchin proved the general form of
the Weak Law of Large Numbers presented here. Many other versions of the
Weak Law are known, with hypotheses that do not require such stringent
requirements as being identically distributed, and having finite variance.

The Strong Law of Large Numbers

Theorem 6 (Strong Law of Large Numbers). Let X1, X2, X3, . . . , be indepen-
dent, identically distributed random variables each with mean µ and variance
E
[
X2
j

]
<∞. Let Sn = X1 + · · ·+Xn. Then Sn/n converges with probability

1 to µ,

P
[

lim
n→∞

Sn
n

= µ

]
= 1.
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The proof of this theorem is beautiful and deep, but would take us too far
afield to prove it. The Russian mathematician Andrey Kolmogorov proved
the Strong Law in the generality stated here, culminating a long series of
investigations through the first half of the 20th century.

Discussion of the Weak and Strong Laws of Large Numbers

In probability theory a theorem that tells us how a sequence of probabilities
converges is called a weak law. For coin tossing, the sequence of probabilities
is the sequence of binomial probabilities associated with the first n tosses.
The Weak Law of Large Numbers says that if we take n large enough, then
the binomial probability of the mean over the first n tosses differing “much”
from the theoretical mean should be small. This is what is usually popularly
referred to as the law of averages. However, this is a limit statement and the
Weak law of Large Numbers above does not indicate the rate of convergence,
nor the dependence of the rate of convergence on the difference ε. Note
furthermore that the Weak Law of Large Numbers in no way justifies the
false notion called the “Gambler’s Fallacy”, namely that a long string of
successive Heads indicates a Tail “is due to occur soon”. The independence
of the random variables completely eliminates that sort of prescience.

A strong law tells how the sequence of random variables as a sample
path behaves in the limit. That is, among the infinitely many sequences
(or paths) of coin tosses we select one “at random” and then evaluate the
sequence of means along that path. The Strong Law of Large Numbers says
that with probability 1 that sequence of means along that path will converge
to the theoretical mean. The formulation of the notion of probability on an
infinite (in fact an uncountably infinite) sample space requires mathematics
beyond the scope of the course, partially accounting for the lack of a proof
for the Strong Law here.

Note carefully the difference between the Weak Law of Large Numbers
and the Strong Law. We do not simply move the limit inside the probability.
These two results express different limits. The Weak Law is a statement
that the group of finite-length experiments whose sample mean is close to
the population mean approaches all of the possible experiments as the length
increases. The Strong Law is an experiment-by-experiment statement, it says
(almost every) sequence has a sample mean that approaches the population
mean. Weak laws are usually much easier to prove than strong laws.
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Sources

This section is adapted from Chapter 8, “Limit Theorems”, A First Course
in Probability, by Sheldon Ross, Macmillan, 1976.

Problems to Work for Understanding

1. Suppose X is a continuous random variable with mean and variance
both equal to 20. What can be said about P [0 ≤ X ≤ 40]?

2. Suppose X is an exponentially distributed random variable with mean
E [X] = 1. For x = 0.5, 1, and 2, compare P [X ≥ x] with the Markov
inequality bound.

3. Suppose X is a Bernoulli random variable with P [X = 1] = p and
P [X = 0] = 1− p = q. Compare P [X ≥ 1] with the Markov inequality
bound.

4. Let X1, X2, . . . , X10 be independent Poisson random variables with
mean 1. First use the Markov Inequality to get a bound on P [X1 + · · ·+X10 > 15].
Next find the exact probability that P [X1 + · · ·+X10 > 15] using that
the fact that the sum of independent Poisson random variables with
parameters λ1, λ2 is again Poisson with parameter λ1 + λ2.

Outside Readings and Links:

1. Virtual Laboratories in Probability and Statistics. Search the page
for Weak Law and then run the Binomial Coin Experiment and the
Matching Experiment.

2.

4.2 Moment Generating Functions

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

http://www.math.uah.edu/stat/sample/Mean.xhtml
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Section Starter Question

Give some examples of transform methods in mathematics, science or engi-
neering that you have seen or used and explain why transform methods are
useful.

Key Concepts

1. The moment generating function converts problems about prob-
abilities and expectations into problems from calculus about function
values and derivatives.

2. The value of the nth derivative of the moment generating function
evaluated at 0 is the value of the nth moment of X.

3. The sum of independent normal random variables is again a normal
random variable whose mean is the sum of the means, and whose vari-
ance is the sum of the variances.

Vocabulary

1. The nth moment of the random variable X is E [Xn] =
∫
x
xnf(x) dx

(provided this integral converges absolutely.)

2. The moment generating function φX(t) is defined by

φX(t) = E
[
etX
]

=

{∑
i e
txip(xi) if X is discrete∫

x
etxf(x) dx if X is continuous

for all values t for which the integral converges.

Mathematical Ideas

We need some tools to aid in proving theorems about random variables. In
this section we develop a tool called the moment generating function
which converts problems about probabilities and expectations into prob-
lems from calculus about function values and derivatives. Moment gener-
ating functions are one of the large class of transforms in mathematics that
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Xi,E [Xi] ,P [Xi] −→ φX(t)y
conclusions ←− calculations

Figure 4.1: Block diagram of transform methods.

turn a difficult problem in one domain into a manageable problem in an-
other domain. Other examples are Laplace transforms, Fourier transforms,
Z-transforms, generating functions, and even logarithms.

The general method can be expressed schematically in the diagram:

Expectation of Independent Random Variables

Lemma 7. If X and Y are independent random variables, then for any
functions g and h:

E [g(X)h(Y )] = E [g(X)] E [h(Y )]

Proof. To make the proof definite suppose that X and Y are jointly contin-
uous, with joint probability density function F (x, y). Then:

E [g(X)h(Y )] =

∫∫
(x,y)

g(x)h(y)f(x, y) dx dy

=

∫
x

∫
y

g(x)h(y)fX(x)fY (y) dx dy

=

∫
x

g(x)fX(x) dx

∫
y

h(y)fY (y) dy

= E [g(X)] E [h(Y )] .

The Moment Generating Function

The moment generating function φX(t) is defined by

φX(t) = E
[
etX
]

=

{∑
i e
txip(xi) if X is discrete∫

x
etxf(x) dx if X is continuous
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for all values t for which the integral converges.

Example. The degenerate probability distribution has all the probability
concentrated at a single point. That is, if X is a degenerate random variable
with the degenerate probability distribution, then X = µ with probability 1
and X is any other value with probability 0. That is, the degenerate random
variable is a discrete random variable exhibiting certainty of outcome. The
moment generating function of the degenerate random variable is particularly
simple: ∑

xi=µ

exit = eµt.

If the moments of order k exist for 0 ≤ k ≤ k0, then the moment gen-
erating function is continuously differentiable up to order k0 at t = 0. The
moments of X can be generated from φX(t) by repeated differentiation:

φ′X =
d

dt
E
[
etX
]

=
d

dt

∫
x

etxfX(x) dx

=

∫
x

d

dt
etxfX(x) dx

=

∫
x

xetxfX(x) dx

= E
[
XetX

]
.

Then
φ′X(0) = E [X] .

Likewise

φ′′X(t) =
d

dt
φ′X(t)

=
d

dt

∫
x

xetxfX(x) dx

=

∫
x

x
d

dt
etxfX(x) dx

=

∫
x

x2etxfX(x) dx

= E
[
X2etX

]
.
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Then

φ′′X(0) = E
[
X2
]
.

Continuing in this way:

φ
(n)
X (0) = E [Xn]

In words: the value of the nth derivative of the moment generating function
evaluated at 0 is the value of the nth moment of X.

Theorem 8. If X and Y are independent random variables with moment
generating functions φX(t) and φY (t) respectively, then φX+Y (t), the moment
generating function of X + Y is given by φX(t)φY (t). In words, the moment
generating function of a sum of independent random variables is the product
of the individual moment generating functions.

Proof. Using the lemma on independence above:

φX+Y (t) = E
[
et(X+Y )

]
= E

[
etXetY

]
= E

[
etX
]
E
[
etY
]

= φX(t)φY (t).

Theorem 9. If the moment generating function is defined in a neighborhood
of t = 0 then the moment generating function uniquely determines the prob-
ability distribution. That is, there is a one-to-one correspondence between
the moment generating function and the distribution function of a random
variable, when the moment-generating function is defined and finite.

Proof. This proof is too sophisticated for the mathematical level we have
now.

The moment generating function of a normal random variable

Theorem 10. If Z ∼ N(µ, σ2), then φZ(t) = exp(µt+ σ2t2/2).
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Proof.

φZ(t) = E
[
etX
]

=
1√

2πσ2

∫ ∞
−∞

etxe−(x−µ)2/(2σ2) dx

=
1√

2πσ2

∫ ∞
−∞

exp

(
−(x2 − 2µx+ µ2 − 2σ2tx)

2σ2

)
dx

Now by the technique of completing the square:

x2 − 2µx+ µ2 − 2σ2tx = x2 − 2(µ+ σ2t)x+ µ2

= (x− (µ+ σ2t))2 − (µ+ σ2t)2 + µ2

= (x− (µ+ σ2t))2 − σ4t2 − 2µσ2t

So returning to the calculation of the m.g.f.

φZ(t) =
1√

2πσ2

∫ ∞
−∞

exp

(
− ((x− (µ+ σ2t))2 − σ4t2 − 2µσ2t)

2σ2

)
dx

=
1√

2πσ2
exp

(
σ4t2 + 2µσ2t

2σ2

)∫ ∞
−∞

exp

(
−(x− (µ+ σ2t))2

2σ2

)
dx

= exp

(
σ4t2 + 2µσ2t

2σ2

)
= exp

(
µt+ σ2t2/2

)
Theorem 11. If Z1 ∼ N(µ1, σ

2
1), and Z2 ∼ N(µ2, σ

2
2) and Z1 and Z2 are

independent, then Z1 + Z2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2). In words, the sum of
independent normal random variables is again a normal random variable
whose mean is the sum of the means, and whose variance is the sum of the
variances.

Proof. We compute the moment generating function of the sum using our
theorem about sums of independent random variables. Then we recognize the
result as the moment generating function of the appropriate normal random
variable.

φZ1+Z2(t) = φZ1(t)φZ2(t)

= exp(µ1t+ σ2
1t

2/2) exp(µ2t+ σ2
2t

2/2)

= exp((µ1 + µ2)t+ (σ2
1 + σ2

2)t2/2)
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An alternative visual proof that the sum of independent normal random
variables is again a normal random variable using only calculus is The Sum
of Independent Normal Random Variables is Normal

Sources

This section is adapted from: Introduction to Probability Models, by Sheldon
Ross.

Problems to Work for Understanding

1. Calculate the moment generating function of a random variable X
having a uniform distribution on [0, 1]. Use this to obtain E [X] and
Var [X].

2. Calculate the moment generating function of a discrete random vari-
able X having a geometric distribution. Use this to obtain E [X] and
Var [X].

Outside Readings and Links:

1. http://www.math.uah.edu/stat/expect/Generating.xhtml

2. http://mathworld.wolfram.com/Moment-GeneratingFunction.html in Math-
World.com

4.3 The Central Limit Theorem

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

What is the most important probability distribution? Why do you choose
that distribution as most important?
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Key Concepts

1. The statement, meaning and proof of the Central Limit Theorem.

2. We expect the normal distribution to arise whenever the numerical
description of a state of a system results from numerous small random
additive effects, with no single or small group of effects dominant.

Vocabulary

1. The Central Limit Theorem: Suppose that for a sequence of inde-
pendent, identically distributed random variables Xi, each Xi has finite
variance σ2. Let

Zn = (Sn − nµ)/(σ
√
n) = (1/σ)(Sn/n− µ)

√
n

and let Z be the “standard” normally distributed random variable with
mean 0 and variance 1. Then Zn converges in distribution to Z, that
is:

lim
n→∞

Pr[Zn ≤ a] =

∫ a

−∞

1√
2π

exp(−u2/2) du

In words, a shifted and rescaled sample distribution is approximately
standard normal.

Mathematical Ideas

Convergence in Distribution

Lemma 12. Let X1, X2, . . . be a sequence of random variables having cu-
mulative distribution functions FXn and moment generating functions φXn.
Let X be a random variable having cumulative distribution function FX
and moment generating function φX . If φXn(t) → φX(t), for all t, then
FXn(t)→ FX(t) for all t at which FX(t) is continuous.

We say that the sequence Xi converges in distribution to X and we
write

Xi
D→ X.

Notice that P [a < Xi ≤ b] = FXi
(b)−FXi

(a)→ F (b)−F (a) = P [a < X ≤ b],
so convergence in distribution implies convergence of probabilities of events.
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Likewise, convergence of probabilities of events implies convergence in distri-
bution.

This lemma is useful because it is fairly routine to determine the pointwise
limit of a sequence of functions using ideas from calculus. It is usually much
easier to check the pointwise convergence of the moment generating func-
tions than it is to check the convergence in distribution of the corresponding
sequence of random variables.

We won’t prove this lemma, since it would take us too far afield into
the theory of moment generating functions and corresponding distribution
theorems. However, the proof is a fairly routine application of ideas from the
mathematical theory of real analysis.

Application: Weak Law of Large Numbers.

Here’s a simple representative example of using the convergence of the mo-
ment generating function to prove a useful result. We will prove a version of
the Weak Law of Large numbers that does not require the finite variance of
the sequence of independent, identically distributed random variables.

Theorem 13 (Weak Law of Large Numbers). Let X1, . . . , Xn be indepen-
dent, identically distributed random variables each with mean µ and such that
E [|X|] is finite. Let Sn = X1 + · · ·+Xn. Then Sn/n converges in probability
to µ. That is:

lim
n→∞

P [|Sn/n− µ| > ε] = 0

Proof. If we denote the moment generating function of X by φ(t), then the
moment generating function of

Sn
n

=
n∑
i=1

Xi

n

is (φ(t/n))n. The existence of the first moment assures us that φ(t) is dif-
ferentiable at 0 with a derivative equal to µ. Therefore, by tangent-line
approximation (first-degree Taylor polynomial approximation)

φ

(
t

n

)
= 1 + µ

t

n
+ r2(t/n)
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where r2(t/n) is a error term such that

lim
n→∞

r(t/n)

(1/n)
= 0.

Then we need to consider

φ

(
t

n

)n
= (1 + µ

t

n
+ r2(t/n))n.

Taking the logarithm of (1 + µ(t/n) + r(t/n))n and using L’Hospital’s Rule,
we see that

φ(t/n)n → exp(µt).

But this last expression is the moment generating function of the (degenerate)
point mass distribution concentrated at µ. Hence,

lim
n→∞

P [|Sn/n− µ| > ε] = 0

The Central Limit Theorem

Theorem 14 (Central Limit Theorem). Let random variables X1, . . . Xn

• be independent and identically distributed,

• have common mean E [Xi] = µ and common variance Var [Xi] = σ2,

• the common moment generating function φXi
(t) = E [etxi ] exists and is

finite in a neighborhood of t = 0.

Consider Sn =
∑n

i=1Xi. Let

•
Zn = (Sn − nµ)/(σ

√
n) = (1/σ)(Sn/n− µ)

√
n,

• Z be the standard normally distributed random variable with mean 0
and variance 1.

Then Zn converges in distribution to Z, that is:

lim
n→∞

P [Zn ≤ a] =

∫ a

−∞
(1/
√

2π) exp(−u2/2) du.
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Remark. The Central Limit Theorem is true even under the slightly weaker
assumptions that X1, . . . Xn only are independent and identically distributed
with finite mean µ and finite variance σ2 without the assumption that mo-
ment generating function exists. However, the proof below using moment
generating functions is simple and direct enough to justify using the addi-
tional hypothesis.

Proof. Assume at first that µ = 0 and σ2 = 1. Assume also that the moment
generating function of the Xi, (which are identically distributed, so there is
only one m.g.f) is φX(t), exists and is everywhere finite. Then the m.g.f of
Xi/
√
n is

φX/√n(t) = E
[
exp(tXi/

√
n)
]

= φX(t/
√
n).

Recall that the m.g.f of a sum of independent r.v.s is the product of the
m.g.f.s. Thus the m.g.f of Sn/

√
n is (note that here we used µ = 0 and

σ2 = 1)
φSn/

√
n(t) = [φX(t/

√
n)]n

The quadratic approximation (second-degree Taylor polynomial expansion)
of φX(t) at 0 is by calculus:

φX(t) = φX(0) + φ′X(0)t+ (φ′′X(0)/2)t2 + r3(t) = 1 + t2/2 + r3(t)

again since E [X] = φ′(0) is assumed to be 0 and Var [X] = E [X2] −
(E [X])2 = φ′′(0) − (φ′(0))2 = φ′′(0) is assumed to be 1. Here r3(t) is an
error term such that limt→0 r3(t)/t

2 = 0. Thus,

φ(t/
√
n) = 1 + t2/(2n) + r3(t/

√
n)

implying that
φSn/

√
n = [1 + t2/(2n) + r3(t/

√
n)]n.

Now by some standard results from calculus,

[1 + t2/(2n) + r3(t/
√
n)]n → exp(t2/2)

as n → ∞. (If the reader needs convincing, it’s computationally easier to
show that

n log(1 + t2/(2n) + r3(t/
√
n))→ t2/2,

using L’Hospital’s Rule in order to account for the r3(t) term.)
To handle the general case, consider the standardized random variables

(Xi − µ)/σ, each of which now has mean 0 and variance 1 and apply the
result.
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The first version of the central limit theorem was proved by Abraham de
Moivre around 1733 for the special case when the Xi are binomial random
variables with p = 1/2 = q. This proof was subsequently extended by Pierre-
Simon Laplace to the case of arbitrary p 6= q. Laplace also discovered the
more general form of the Central Limit Theorem presented here. His proof
however was not completely rigorous, and in fact, cannot be made completely
rigorous. A truly rigorous proof of the Central Limit Theorem was first
presented by the Russian mathematician Aleksandr Liapunov in 1901-1902.
As a result, the Central Limit Theorem (or a slightly stronger version of the
Central Limit Theorem) is occasionally referred to as Liapunov’s theorem.
A theorem with weaker hypotheses but with equally strong conclusion is
Lindeberg’s Theorem of 1922. It says that the sequence of random variables
need not be identically distributed, but instead need only have zero means,
and the individual variances are small compared to their sum.

Accuracy of the Approximation by the Central Limit Theorem

The statement of the Central Limit Theorem does not say how good the
approximation is. One rule of thumb is that the approximation given by the
Central Limit Theorem applied to a sequence of Bernoulli random trials or
equivalently to a binomial random variable is acceptable when np(1 − p) >
18 [31, page 34], [42, page 134]. The normal approximation to a binomial
deteriorates as the interval (a, b) over which the probability is computed
moves away from the binomial’s mean value np. Another rule of thumb is
that the normal approximation is acceptable when n ≥ 30 for all “reasonable”
probability distributions.

The Berry-Esséen Theorem gives an explicit bound: For independent,
identically distributed random variables Xi with µ = E [Xi] = 0, σ2 = E [X2

i ],
and ρ = E [|X3|], then∣∣∣∣P [Sn/(σ√n) < a

]
−
∫ a

−∞

1√
2π
e−u

2/2 du

∣∣∣∣ ≤ 33

4

ρ

σ3

1√
n
.

Illustration 1

In Figure 4.2 is a graphical illustration of the Central Limit Theorem. More
precisely, this is an illustration of the de Moivre-Laplace version, the approx-
imation of the binomial distribution with the normal distribution.
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Figure 4.2: Approximation of the binomial distribution with the normal
distribution.

The figure is actually an non-centered and unscaled illustration since the
binomial random variable Sn is not shifted by the mean, nor normalized to
unit variance. Therefore, the binomial and the corresponding approximating
normal are both centered at E [Sn] = np. The variance of the approximating
normal is σ2 =

√
npq and the widths of the bars denoting the binomial

probabilities are all unit width, and the heights of the bars are the actual
binomial probabilities.

Illustration 2

From the Central Limit Theorem we expect the normal distribution applies
whenever an outcome results from numerous small additive effects with no
single or small group of effects dominant. Here is a standard illustration of
that principle.

Consider the following data from the National Longitudinal Survey of
Youth (NLSY). This study started with 12,000 respondents aged 14-21 years
in 1979. By 1994, the respondents were aged 29-36 years and had 15,000
children among them. Of the respondents 2,444 had exactly two children.
In these 2,444 families, the distribution of children was boy-boy: 582; girl-
girl 530, boy-girl 666, and girl-boy 666. It appears that the distribution of
girl-girl family sequences is low compared to the other combinations, our
intuition tells us that all combinations are equally likely and should appear
in roughly equal proportions. We will assess this intuition with the Central
Limit Theorem.

Consider a sequence of 2,444 trials with each of the two-child families.
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Let Xi = 1 (success) if the two-child family is girl-girl, and Xi = 0 (failure)
if the two-child family is otherwise. We are interested in the probability
distribution of

S2444 =
2444∑
i=1

Xi.

In particular, we are interested in the probability P [S2444 ≤ 530], that is,
what is the probability of seeing as few as 530 girl-girl families or even fewer
in a sample of 2444 families? We can use the Central Limit Theorem to
estimate this probability.

We are assuming the family “success” variables Xi are independent, and
identically distributed, a reasonable but arguable assumption. Nevertheless,
without this assumption, we cannot justify the use of the Central Limit
Theorem, so we adopt the assumption. Then µ = E [Xi] = (1/4) · 1 +
(3/4) · 0 = 1/4 and Var [Xi] = (1/4)(3/4) = 3/16 so σ =

√
3/4 Note that

2444 · (1/4) · (3/4) = 45.75 > 18 so the rule of thumb justifies the use of the
Central Limit Theorem. Hence

P [S2444 ≤ 530] = P
[
S2444 − 2444 · (1/4)

(
√

3/4 ·
√

2444)
≤ 530− 2444 · (1/4)

(
√

3/4 ·
√

2444)

]
≈ P [Z ≤ −3.7838]

≈ 0.0000772

It is highly unlikely that under our assumptions such a proportion would have
occurred. Therefore, we are justified in thinking that under our assumptions,
the actual proportion of girl-girl families is low. We then begin to suspect our
assumptions, one of which was the implicit assumption that the appearance
of girls was equally likely as boys, leading to equal proportions of the four
types of families. In fact, there is ample evidence that the birth of boys is
more likely than the birth of girls.

Illustration 3

We expect the normal distribution to apply whenever the numerical descrip-
tion of a state of a system results from numerous small additive effects, with
no single or small group of effects dominant. Here is another illustration of
that principle.

The Central Limit Theorem can be used to assess risk. Two large banks
compete for customers to take out loans. The banks have comparable of-
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ferings. Assume that each bank has a certain amount of funds available for
loans to customers. Any customers seeking a loan beyond the available funds
will cost the bank, either as a lost opportunity cost, or because the bank it-
self has to borrow to secure the funds to lend to the customer. If too few
customers take out loans then that also costs the bank since now the bank
has unused funds.

We create a simple mathematical model of this situation. We suppose
that the loans are all of equal size and for definiteness each bank has funds
available for a certain number (to be determined) of these loans. Then sup-
pose n customers select a bank independently and at random. Let Xi = 1
if customer i selects bank H with probability 1/2 and Xi = 0 if customers
select bank T, also with probability 1/2. Then Sn =

∑n
i=1Xi is the number

of loans from bank H to customers. Now there is some positive probabil-
ity that more customers will turn up than can be accommodated. We can
approximate this probability with the Central Limit Theorem:

P [Sn > s] = P
[
(Sn − n/2)/((1/2)

√
n) > (s− n/2)/((1/2)

√
n)
]

≈ P
[
Z > (s− n/2)/((1/2)

√
n)
]

= P
[
Z > (2s− n)/

√
n
]

Now if n is large enough that this probability is less than (say) 0.01, then the
number of loans will be sufficient in 99 of 100 cases. Looking up the value in
a normal probability table,

2s− n√
n

> 2.33

so if n = 1000, then s = 537 will suffice. If both banks assume the same risk
of sellout at 0.01, then each will have 537 for a total of 1074 loans, of which
74 will be unused. In the same way, if the bank is willing to assume a risk
of 0.20, i.e. having enough loans in 80 of 100 cases, then they would need
funds for 514 loans, and if the bank wants to have sufficient loans in 999 out
of 1000 cases, the bank should have 549 loans available.

Now the possibilities for generalization and extension are apparent. A
first generalization would be allow the loan amounts to be random with some
distribution. Still we could apply the Central Limit Theorem to approximate
the demand on available funds. Second, the cost of either unused funds or
lost business could be multiplied by the chance of occurring. The total of
the products would be an expected cost, which could then be minimized.
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Sources

The proofs in this section are adapted from Chapter 8, “Limit Theorems”,
A First Course in Probability, by Sheldon Ross, Macmillan, 1976. Further
examples and considerations come from Heads or Tails: An Introduction
to Limit Theorems in Probability, by Emmanuel Lesigne, American Mathe-
matical Society, Chapter 7, pages 29–74. Illustration 2 is adapted from An
Introduction to Probability Theory and Its Applications, Volume I, second
edition, William Feller, J. Wiley and Sons, 1957, Chapter VII. Illustration
1 is adapted from Dicing with Death: Chance, Health, and Risk by Stephen
Senn, Cambridge University Press, Cambridge, 2003.

Problems to Work for Understanding

1. Let X1, X2, . . . , X10 be independent Poisson random variables with
mean 1. First use the Markov Inequality to get a bound on Pr[X1 +
· · ·+X10 > 15]. Next use the Central Limit theorem to get an estimate
of Pr[X1 + · · ·+X10 > 15].

2. A first simple assumption is that the daily change of a company’s stock
on the stock market is a random variable with mean 0 and variance σ2.
That is, if Sn represents the price of the stock on day n with S0 given,
then

Sn = Sn−1 +Xn, n ≥ 1

where X1, X2, . . . are independent, identically distributed continuous
random variables with mean 0 and variance σ2. (Note that this is an
additive assumption about the change in a stock price. In the binomial
tree models, we assumed that a stock’s price changes by a multiplicative
factor up or down. We will have more to say about these two distinct
models later.) Suppose that a stock’s price today is 100. If σ2 = 1,
what can you say about the probability that after 10 days, the stock’s
price will be between 95 and 105 on the tenth day?

3. Suppose you bought a stock at a price b + c, where c > 0 and the
present price is b. (Too bad!) You have decided to sell the stock after
30 more trading days have passed. Assume that the daily change of the
company’s stock on the stock market is a random variable with mean
0 and variance σ2. That is, if Sn represents the price of the stock on
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day n with S0 given, then

Sn = Sn−1 +Xn, n ≥ 1

where X1, X2, . . . are independent, identically distributed continuous
random variables with mean 0 and variance σ2. Write an expression
for the probability that you do not recover your purchase price.

4. If you buy a lottery ticket in 50 independent lotteries, and in each
lottery your chance of winning a prize is 1/100, write down and evaluate
the probability of winning and also approximate the probability using
the Central Limit Theorem.

(a) exactly one prize,

(b) at least one prize,

(c) at least two prizes.

Explain with a reason whether or not you expect the approximation to
be a good approximation.

5. Find a number k such that the probability is about 0.6 that the number
of heads obtained in 1000 tossings of a fair coin will be between 440
and k.

6. Find the moment generating function φX(t) = E [exp(tX)] of the ran-
dom variable X which takes values 1 with probability 1/2 and −1
with probability 1/2. Show directly (that is, without using Taylor
polynomial approximations) that φX(t/

√
n)n → exp(t2/2). (Hint: Use

L’Hospital’s Theorem to evaluate the limit, after taking logarithms of
both sides.)

7. A bank has $1,000,000 available to make for car loans. The loans are
in random amounts uniformly distributed from $5,000 to $20,000. How
many loans can the bank make with 99% confidence that it will have
enough money available?

8. An insurance company is concerned about health insurance claims.
Through an extensive audit, the company has determined that over-
statements (claims for more health insurance money than is justified by
the medical procedures performed) vary randomly with an exponential
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distribution X with a parameter 1/100 which implies that E [X] = 100
and Var [X] = 1002. The company can afford some overstatements sim-
ply because it is cheaper to pay than it is to investigate and counter-
claim to recover the overstatement. Given 100 claims in a month, the
company wants to know what amount of reserve will give 95% cer-
tainty that the overstatements do not exceed the reserve. (All units
are in dollars.) What assumptions are you using?

Outside Readings and Links:

1. Virtual Laboratories in Probability and Statistics. Search the page for
Binomial approximation and then run the Binomial Timeline Experi-
ment.

2. Central Limit Theorem explanation Pretty good visual explanation of
the application of the Central Limit Theorem to sampling means.

3. Central Limit Theorem explanation Another lecture demonstration of
the application of the Central Limit Theorem to sampling means.

4.4 The Absolute Excess of Heads over Tails

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

What does the law of averages have to say about the probability of having a
fixed lead of say 20 Heads or more over Tails or 20 Tails or more over Heads
at the end of a coin flipping game of some fixed duration? What does the
Weak Law of Large Numbers have to say about having a fixed lead? What
does the Weak Law have to say about having a proportional lead, say 1%?
What does the Central Limit Theorem have to say about the lead?

http://www.math.uah.edu/stat/sample/CLT.xhtml
http://www.youtube.com/watch?v=NBRp6HuN_wk&feature=related
http://www.youtube.com/watch?v=JNm3M9cqWyc&feature=related
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Key Concepts

1. The probability that the number of heads exceeds the number of tails or
the number of tails exceeds the number of heads in a sequence of coin-
flips by some fixed amount can be estimated with the Central Limit
Theorem and the probability gets close to 1 as the number of tosses
grows large.

2. The probability that the number of heads exceeds the number of tails
or the number of tails exceeds the number of heads in a sequence of
coin-flips by some fixed proportion can be estimated with the Central
Limit Theorem and the probability gets close to 0 as the number of
tosses grows large.

Vocabulary

1. The half-integer correction, also called the continuity correction
arises because the distribution of the binomial distribution is a discrete
distribution, while the standard normal distribution is a continuous
distribution.

Mathematical Ideas

Introduction

Probability theory generally has two classes of theorems about the results of
coin-tossing games and therefore random walks:

1. Those theorems that tell how well-behaved and natural are the out-
comes of typical coin-tossing games and random walks. The Weak Law
of Large Numbers, the Strong Law of Large Numbers and the Central
Limit Theorem fall into this category.

2. Those theorems that tell how strange and unnatural are the outcomes
of typical coin-tossing games and random walks. The Arcsine Law and
the Law of the Iterated Logarithm are good examples in this category.

In this section we will ask two related questions about the net fortune in
a coin-tossing game:
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1. What is the probability of an excess of a fixed number of heads over
tails or tails over heads at some fixed time in the coin-flipping game?

2. What is the probability that the number of heads exceeds the number
of tails or the number of tails exceeds the number of heads by some
fixed fraction of the number of tosses?

Using the Central Limit Theorem, we will be able to provide precise answers
to each question and then to apply the ideas to interesting questions in
gambling and finance.

The Half-Integer Correction to the Central Limit Theorem

Often when using the Central Limit Theorem to approximate a discrete dis-
tribution, especially the binomial distribution, we adopt the half-integer
correction, also called the continuity correction. The correction arises
because the binomial distribution has a discrete distribution while the stan-
dard normal distribution has a continuous distribution. For any integer s
and real value h with 0 ≤ h < 1 the binomial random variable Sn has
P [|Sn| ≤ s] = P [|Sn| ≤ s+ h], yet the corresponding Central Limit Theorem
approximation with the standard normal cumulative distribution function,
P [|Z| ≤ (s+ h)/

√
n] increases as h increases from 0 to 1. It is customary to

take h = 1/2 to interpolate the difference. This choice is also justified by
looking at the approximation of the binomial with the normal.

Symbolically, the half-integer correction to the Central Limit Theorem is

P [a ≤ Sn ≤ b] ≈
∫ ((b+1/2)−np)/√npq

((a−1/2)−np)/√npq

1√
2π

exp(−u2/2)du

= P [((a− 1/2)− np)/√npq ≤ Z ≤ ((b+ 1/2)− np)/√npq]

for integers a and b.

The absolute excess of heads over tails

Consider the sequence of independent random variables Yi which take values
1 with probability 1/2 and −1 with probability 1/2. This is a mathematical
model of a fair coin flip game where a 1 results from “heads” on the ith
coin toss and a −1 results from “tails”. Let Hn and Ln be the number of
heads and tails respectively in n flips. Then Tn =

∑n
i=1 Yi = Hn−Ln counts
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Figure 4.3: The half-integer correction
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the difference between the number of heads and tails, an excess of heads if
positive, and a “negative excess”, i.e. a deficit, if negative. Rather than the
clumsy extended phrase “the number of heads exceeds the number of tails or
the number of tails exceeds the number of heads” we can say “the absolute
excess of heads |Tn|.” The value Tn also represents the net “winnings”,
positive or negative, of a gambler in a fair coin flip game.

Corollary 5. Under the assumption that Yi = +1 with probability 1/2 and
Yi = −1 with probability 1/2, and Tn =

∑n
i=1 Yi, then for an integer s

P [|Tn| > s] ≈ P
[
|Z| ≥ (s+ 1/2)/

√
n
]

where Z is a standard normal random variable with mean 0 and variance 1.

Proof. Note that µ = E [Yi] = 0 and σ2 = Var [Yi] = 1.

P [|Tn| > s] = 1− P [−s ≤ Tn ≤ s]

= 1− P [−s− 1/2 ≤ Tn ≤ s+ 1/2]

= 1− P
[
(−s− 1/2)/

√
n ≤ Tn/

√
n ≤ (s+ 1/2)/

√
n
]

≈ 1− P
[
(−s− 1/2)/

√
n ≤ Z ≤ (s+ 1/2)/

√
n
]

= P
[
|Z| ≥ (s+ 1/2)/

√
n
]

The crucial step occurs at the approximation, and uses the Central Limit
Theorem. More precise statements of the Central Limit Theorem such as the
Berry-Esseen inequality can turn the approximation into a inequality.

If we take s to be fixed we now have the answer to our first question:
The probability of an absolute excess of heads over tails greater than a fixed
amount in a fair game of duration n approaches 1 as n increases.

The Central Limit Theorem in the form of the half-integer correction
above provides an alternative proof of the Weak Law of Large Numbers for
the specific case of the binomial random variable Tn. In fact,

P
[∣∣∣∣Tnn

∣∣∣∣ > ε

]
≈ P

[
|Z| ≥ (εn+ 1/2)/

√
n
]

= P
[
|Z| ≥ ε

√
n+ (1/2)/

√
n
]
→ 0
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as n→∞.

Rewriting P
[∣∣Tn

n

∣∣ > ε
]

= P [|Tn| > εn] this restatement of the Weak Law
actually provides the answer to our second question: The probability that
the absolute excess of heads over tails is greater than a fixed fraction of the
flips in a fair game of duration n approaches 0 as n increases.

Finally, this gives an estimate on the central probability in a binomial
distribution.

Corollary 6.

P [Tn = 0] ≈ P
[
|Z| < (1/2)/

√
n
]
→ 0

as n→∞.

We can estimate this further

P
[
|Z| < (1/2)/

√
n
]

=
1√
2π

∫ 1/(2
√
n)

−1/(2
√
n)

e−u
2/2 du

=
1√
2π

∫ 1/(2
√
n)

−1/(2
√
n)

1− u2/2 + u4/8 + . . . du

=
1√
2π

1√
n
− 1

24
√

2π

1

n3/2
+

1

640
√

2π

1

n5/2
+ . . . .

So we see that P [Tn = 0] goes to zero at the rate of 1/
√
n.

Illustration 1

What is the probability that the number of heads exceeds the number of tails
by more than 20 or the number of tails exceeds the number of heads by more
than 20 after 500 tosses of a fair coin? By the proposition, this is:

P [|Tn| > 20] ≈ P
[
|Z| ≥ 20.5/

√
500
]

= 0.3477.

This is a reasonably large probability, and is larger than many people would
expect.

Here is a graph of the probability of at least s excess heads in 500 tosses
of a fair coin:
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Figure 4.4: Probability of s excess heads in 500 tosses

Illustration 2

What is the probability that there is “about the same number of heads as
tails” in 500 tosses? Here we interpret “about the same” as within 5, that is,
an absolute difference of 1% or less of the number of tosses. Note that since
500 is even, so the difference in the number of heads and tails cannot be an
odd number, so must be either 0, 2 or 4.

P [|S500| < 5] ≈ P
[
|Z| ≤ 5.5/

√
500
]

= 0.1943

so it would be somewhat unusual (in that it occurs in less than 20% of games)
to have the number of heads and tails so close.

Illustration 3

Suppose you closely follow a stock recommendation source whose methods
are based on technical analysis. You accept every bit of advice from this
source about trading stocks. You choose 10 stocks to buy, sell or hold every
day based on the recommendations. Each day for each stock you will gain
or lose money based on the advice. Note that it is possible to gain money
even if the advice says the stocks will decrease in value, say by short-selling
or using put options. How good can this strategy be? We will make this
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vague question precise by asking “How good does the information from the
technical analysis have to be so that the probability of losing money over a
year’s time is 1 in 10,000?”

The 10 stocks over 260 business days in a year means that there 2,600
daily gains or losses. Denote each daily gain or loss as Xi, if the advice is
correct you will gain Xi > 0 and if the advice is wrong you will lose Xi < 0.
We want the total change Xannual =

∑2600
i=1 Xi > 0 and we will measure that

by asking that P [Xannual < 0] be small. In the terms of this section, we are
interested in the complementary probability of an excess of successes over
failures.

We assume that the changes are random variables, identically distributed,
independent and the moments of all the random variables are finite. We
will make specific assumptions about the distribution later, for now these
assumptions are sufficient to apply the Central Limit Theorem. Then the
total change Xannual =

∑2600
i=1 Xi is approximately normally distributed with

mean µ = 2600 · E [X1] and variance σ2 = 2600 · Var [X1]. Note that here
again we are using the uncentered and unscaled version of the Central Limit
Theorem. In symbols

P

[
a ≤

2600∑
i=1

Xi ≤ b

]
≈ 1√

2πσ2

∫ b

a

exp

(
−(u− µ)2

2σ2

)
du.

We are interested in

P

[
2600∑
i=1

Xi ≤ 0

]
≈ 1√

2πσ2

∫ 0

−∞
exp

(
−(u− µ)2

2σ2

)
du.

By the change of variables v = (u− µ)/σ, we can rewrite the probability as

P [Xannual ≤ 0] =
1√
2π

∫ −µ/σ
−∞

exp
(
−v2/2

)
dv = Φ

(
−µ
σ

)
so that the probability depends only on the ratio −µ/σ. We desire that
Φ(−µ/σ) = P [Xannual < 0] 1/10,000. Then we can solve for −µ/σ ≈ −3.7.
Since µ = 2600·E [X1] and σ2 = 2600·Var [X1], we calculate that for the total
annual change to be a loss we must have E [X1] ≈ (3.7/

√
2600) ·

√
Var [X1] =

0.07 ·
√

Var [X1].

Now we consider what the requirement E [X1] = 0.07 ·
√

Var [X1] means
for specific distributions. If we assume that the individual changesXi are nor-
mally distributed with a positive mean, then we can use E [X1] /

√
Var [X1] =
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0.07 to calculate that P [X1] < 0 ≈ 0.47210, or about 47%. Alternatively,
if we assume that the individual changes Xi are binomial random variables
with P [X1 = 1] = p, then E [X1] = 2p− 1 and Var [X1] = 4p(1− p). We can
use 2p − 1 = E [X1] = 0.07 Var [X1] = 0.07 · (4p(1 − p)) to solve for p. The
result is p = 0.53491.

In either case, this means that any given piece of advice only has to have
a 53% chance of being correct in order to have a perpetual money-making
machine. Compare this with the strategy of using a coin flip to provide the
advice. Since we don’t observe any perpetual money-making machines, we
conclude that any advice about stock picking must be less than 53% reliable
or about the same as flipping a coin.

Now suppose that instead we have a computer algorithm predicting stock
movements for all publicly traded stocks, of which there are about 2,000.
Suppose further that we wish to restrict the chance that P [Xannual] < 10−6,
that is 1 chance in a million. Then we can repeat the analysis to show that
the computer algorithm would only need to have P [X1] < 0 ≈ 0.49737,
practically indistinguishable from a coin flip, in order to make money. This
provides a statistical argument against the utility of technical analysis for
stock price prediction. Money-making is not sufficient evidence to distinguish
ability in stock-picking from coin-flipping.

Sources

This section is adapted from the article “Tossing a Fair Coin” by Leonard
Lipkin. The discussion of the continuity correction is adapted from Partial
Sums and the Central Limit Theorem in the Virtual Laboratories in Prob-
ability and Statistics. The third example in this section is adapted from a
presentation by Jonathan Kaplan of D.E. Shaw and Co. in summer 2010.

Problems to Work for Understanding

1. (a) What is the approximate probability that the number of heads is
within 10 of the number of tails, that is, a difference of 2% or less
of the number of tosses in 500 tosses?

(b) What is the approximate probability that the number of heads is
within 20 of the number of tails, that is, a difference of 4% or less
of the number of tosses in 500 tosses?

http://www.math.uah.edu/stat/sample/CLT.xhtml
http://www.math.uah.edu/stat/sample/CLT.xhtml
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(c) What is the approximate probability that the number of heads is
within 25 of the number of tails, that is, a difference of 5% or less
of the number of tosses in 500 tosses?

(d) Derive and then graph a simple power function that gives the
approximate probability that the number of heads is within x of
the number of tails in 500 tosses, for 0 ≤ x ≤ 500.

2. (a) What is the probability that the number of heads is within 10
of the number of tails, that is, a difference of 1% or less of the
number of tosses in 1000 tosses?

(b) What is the probability that the number of heads is within 10
of the number of tails, that is, a difference of 0.5% or less of the
number of tosses in 2000 tosses?

(c) What is the probability that the number of heads is within 10
of the number of tails, that is, a difference of 0.2% or less of the
number of tosses in 5000 tosses?

(d) Derive and then graph a simple power function that gives the
approximate probability that the number of heads is within x of
the number of tails in 500 tosses, for 0 ≤ x ≤ 500.

3. Derive the rate, as a function of n, that the probability of heads exceeds
tails by a fixed value s approaches 1 as n→∞.

4. Derive the rate, as a function of n, that the probability of heads exceeds
tails by a fixed fraction ε approaches 0 as n→∞.

Outside Readings and Links:

1. Virtual Laboratories in Probability and Statistics. Search the page for
Random Walk Simulation and run the Last Visit to Zero experiment.

2. Virtual Laboratories in Probability and Statistics. Search the page for
Ballot Experiment and run the Ballot Experiment.

http://www.math.uah.edu/stat/bernoulli/Walk.xhtml
http://www.math.uah.edu/stat/bernoulli/Walk.xhtml


Chapter 5

Brownian Motion

5.1 Intuitive Introduction to Diffusions

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

Suppose you wanted to display the function y =
√
x on a graphing calculator.

Describe the process necessary to choose a proper window to display the
graph.

Key Concepts

1. The passage from discrete random walks to continuous stochastic pro-
cesses, from the probability point of view and the partial differential
equation point of view.

Vocabulary

1. A diffusion process, or a diffusion for short, is a Markov process
for which all sample functions are continuous. It is also a solution to a
stochastic differential equation.

155
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Mathematical Ideas

The question is “How should we set up the limiting process so that we can
make a continuous time limit of the discrete time random walk?” First
we consider a discovery approach to this question by asking what should
be the limiting process which assures us that we can visualize the limiting
process. Next we take a probabilistic view using the Central Limit Theorem
to justify the limiting process to pass from a discrete probability distribution
to a probability density function. Finally, we consider the limiting process
derived from passing from the difference equation from first-step analysis to
a differential equation.

Visualizing Limits of Random Walks

The Random Walk

Consider a random walk starting at the origin. The nth step takes the walker
to the position Tn = Y1 + · · · + Yn, the sum of n independent, identically
distributed Bernoulli random variables Yi assuming the values +1, and −1
with probabilities p and q respectively. Then recall that the mean of a sum
of random variables is the sum of the means:

E [Tn] = (p− q)n

and the variance of a sum of independent random variables is the sum of the
variances:

Var [Tn] = 4pqn.

Trying to use the mean to derive the limit

Now suppose we want to display a motion picture of the random walk moving
left and right along the x-axis. This would be a motion picture of the “phase
space” diagram of the random walk. Suppose we want the motion picture to
display 1 million steps and be a reasonable length of time, say 1000 seconds,
between 16 and 17 minutes. This fixes the time scale at a rate of one step
per millisecond. What should be the window in the screen in order to get
a good sense of the random walk? For this question, we use a fixed unit of
measurement, say centimeters, for the width of the screen and the individual
steps. Let δ be the length of the steps. To find the window to display the
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random walk on the axis, we then need to know the size of δTn. Now

E [δ · Tn] = (p− q) · δ · n

and
Var [δ · Tn] = 4 · p · q · δ2 · n.

We want n to be large (about 1 million) and to see the walk on the screen
we want the expected end place to be comparable to the screen size, say 30
cm. That is,

E [δ · Tn] = (p− q) · δ · n < δ · n ≈ 30cm

so δ must be 3 · 10−5cm = 0.0003mm to get the end point on the screen. But
then the movement of the walk measured by the standard deviation√

Var [δ · Tn] ≤ δ ·
√
n = 3× 10−2 cm

will be so small as to be indistinguishable. We will not see any random
variations!

Trying to use the variance to derive the limit

Let us turn the question around: We want to see the variations in many-step
random walks, so the standard deviations must be a reasonable fraction D
of the screen size √

Var [δ · Tn] ≤ δ ·
√
n ≈ D · 30 cm .

This is possible if δ = D · 3 × 10−2 cm . We still want to be able to see the
ending expected position which will be

E [δ · Tn] = (p− q) · δ · n = (p− q) ·D · 3× 104cm.

To be consistent with the variance requirement this will only be possible
if (p − q) ≈ 10−2. That is, p − q must be comparable in magnitude to
δ = 3× 10−2.

The limiting process

Now generalize these results to visualize longer and longer walks in a fixed
amount or time. Since δ → 0 as n → ∞, then likewise (p − q) → 0, while
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p + q = 1, so p → 1/2. The analytical formulation of the problem is as
follows. Let δ be the size of the individual steps, let r be the number of steps
per unit time. We ask what happens to the random walk in the limit where
δ → 0, r →∞, and p→ 1/2 in such a manner that:

(p− q) · δ · r → c

and
4 · p · q · δ2 · r → D.

Probabilistic Solution of the Limit Question

In our accelerated random walk, consider the nth step at time t = n/r and
consider the position on the line x = k · δ. Let

vk,n = P [Tn = k]

be the probability that the nth step is at position k. We are interested in the
probability of finding the walk at given instant t and in the neighborhood of
a given point x, so we investigate the limit of vk,n as n/r → t, and k · δ → x.

Remember that the random walk can only reach an even-numbered posi-
tion after an even number of steps, and an odd-numbered position after an
odd number of steps. Therefore in all cases n + k is even and (n + k)/2 is
an integer. Likewise n − k is even and (n − k)/2 is and integer. We reach
position k at time step n if the walker takes (n + k)/2 steps to the right
and (n − k)/2 steps to the left. The mix of steps to the right and the left
can be in any order. So the walk reaches position k at step n with binomial
probability

vk,n =

(
n

(n+ k)/2

)
· p(n+k)/2 · q(n−k)/2

From the Central Limit Theorem

vk,n ∼ (1/(
√

2 · π · p · q)) · exp(−[(n+ k)/2− n · p]2/(2 · π · n · pq))
= (1/(

√
2π · pq)) · exp(−[k − n(p− q)]2/(8πnpq))

∼ ((2δ)/(
√

2πDt)) exp(−[x− ct]2/(2Dt))
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Since vk,n is the probability of finding Tn ·δ between k ·δ and (k+2)·δ, and
since this interval has length 2 ·δ we can say that the ratio vk,n/(2δ) measures
locally the probability per unit length, that is the probability density. The
last relation above implies that the ratio vk,n/n tends to

v(t, x) = ((2 · δ)/(
√

2 · πDt)) exp(−[x− ct]2/(2Dt))

It follows by the definition of integration as the sums of quantities repre-
senting densities times geometric lengths or areas, that sums of probabilities
vk,n can be approximated by integrals and the result may be restated as

P [a < Tnδ < b]→ (1/(
√

2πDt))

∫ b

a

exp(−(x− ct)2/(Dt))

The integral on the right may be expressed in terms of the standard normal
distribution function.

Note that we derived the limiting approximation of the binomial distri-
bution

vk,n ∼ ((2δ)/(
√

2πDt)) exp(−[x− ct]2/(2Dt))

by applying the general form of the Central Limit Theorem. However, it
is possible to derive this limit directly through careful analysis. The direct
derivation is known as the DeMoivre-Laplace Theorem and it is the most
basic form of the Central Limit Theorem.

Differential Equation Solution of the Limit Question

Another method is to start from the difference equations governing the ran-
dom walk, and then pass to the differential equation in the limit. We can
then obviously generalize the differential equations, and find out that the
differential equations govern well-defined stochastic processes depending on
continuous time. Since differential equations have a well-developed theory
and many tools to manipulate, transform and solve them, this method turns
out to be useful.

Consider the position of the walker in the random walk at the nth and
(n+ 1)st trial. Through a first step analysis the probabilities vk,n satisfy the
difference equations:

vk,n+1 = p · vk−1,n + q · vk+1,n
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In the limit as k →∞ and n→∞, vk,n will be the sampling of the function
v(t, x) at time intervals r, so that kr = t, and space intervals so that n · δ =
x. That is, the function v(t, x) should be an approximate solution of the
difference equation:

v(t+ r−1, x) = pv(t, x− δ) + qv(t, x+ δ)

We assume v(t, x) is a smooth function so that we can expand v(t, x) in a
Taylor series at any point. Using the first order approximation in the time
variable on the left, and the second-order approximation on the right in the
space variable, we get (after canceling the leading terms v(t, x) )

∂v(t, x)

∂t
= (q − p) · δr∂v(t, x)

∂x
+ (1/2)δ2r

∂2v(t, x)

∂x2

In our passage to the limit, the omitted terms of higher order tend to zero,
so may be neglected. The remaining coefficients are already accounted for in
our limits and so the equation becomes:

∂v(t, x)

∂t
= −c∂v(t, x)

∂x
+ (1/2)D

∂2v(t, x)

∂x2

This is a special diffusion equation, more specifically, a diffusion equation
with convective or drift terms, also known as the Fokker-Planck equation for
diffusion. It is a standard problem to solve the differential equation for v(t, x)
and therefore, we can find the probability of being at a certain position at a
certain time. One can verify that

v(t, x) = (1/(
√

2πDt)) exp(−[x− ct]2/(2Dt))

is a solution of the diffusion equation, so we reach the same probability
distribution for v(t, x).

The diffusion equation can be immediately generalized by permitting the
coefficients c and D to depend on x, and t. Furthermore, the equation
possesses obvious analogues in higher dimensions and all these generalization
can be derived from general probabilistic postulates. We will ultimately
describe stochastic processes related to these equations as diffusions.

Sources

This section is adapted from W. Feller, in Introduction to Probability Theory
and Applications, Volume I, Chapter XIV, page 354.
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Problems to Work for Understanding

1. Consider a random walk with a step to right having probability p and
a step to the left having probability q. The step length is δ. The
walk is taking r steps per minute. What is the rate of change of the
expected final position and the rate of change of the variance? What
must we require on the quantities p, q, r and delta in order to see the
entire random walk with more and more steps at a fixed size in a fixed
amount of time?

2. Verify the limit taking to show that

vk,n ∼ (1/(
√

2πDt)) exp(−[x− ct]2/(2Dt)).

3. Show that

v(t, x) = (1/(
√

2πDt)) exp(−[x− ct]2/(2Dt))

is a solution of

∂v(t, x)

∂t
= −c∂v(t, x)

∂x
+ (1/2)D

∂2v(t, x)

∂x2

by substitution.

Outside Readings and Links:

1. Brownian Motion in Biology. A simulation of a random walk of a sugar
molecule in a cell.

2. Virtual Laboratories in Probability and Statistics. Search the page for
Random Walk experiment.

5.2 The Definition of Brownian Motion and

the Wiener Process

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

http://www.youtube.com/watch?v=PtYP8uoN0lk
http://www.math.uah.edu/stat/sample/Walk.xhtml


162 CHAPTER 5. BROWNIAN MOTION

Section Starter Question

Some mathematical objects are defined by a formula or an expression. Some
other mathematical objects are defined by their properties, not explicitly by
an expression. That is, the objects are defined by how they act, not by what
they are. Can you name a mathematical object defined by its properties?

Key Concepts

1. We define Brownian motion in terms of the normal distribution of the
increments, the independence of the increments, and the value at 0.

2. The joint density function for the value of Brownian motion at several
times is a multivariate normal distribution.

Vocabulary

1. Brownian Motion is the physical phenomenon named after the En-
glish botanist Robert Brown who discovered it in 1827. Brownian mo-
tion is the zig-zagging motion exhibited by a small particle, such as a
grain of pollen, immersed in a liquid or a gas. The first explanation
of this phenomenon was given by Albert Einstein in 1905. He showed
that Brownian motion could be explained by assuming the immersed
particle was constantly buffeted by the actions of the molecules of the
surrounding medium. Since then the abstracted process has been used
beneficially in such areas as analyzing price levels in the stock market
and in quantum mechanics.

2. The Wiener process is the mathematical definition and abstraction of
the physical process as a stochastic process. The American mathemati-
cian Norbert Wiener gave the definition and properties in a series of
papers starting in 1918. Generally, the terms Brownian motion and
Wiener process are the same, although Brownian motion emphasizes
the physical aspects and Wiener process emphasizes the mathematical
aspects.

3. Bachelier process is an uncommonly applied term meaning the same
thing as Brownian motion and Wiener process. In 1900, Louis Bachelier
introduced the limit of random walk as a model for the prices on the
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Paris stock exchange, and so is the originator of the idea of what is now
called Brownian motion. This term is occasionally found in financial
literature and European usage.

Mathematical Ideas

Definition of Wiener Process

Previously, we have considered a discrete time random process, that is, at
times n = 1, 2, 3, . . . corresponding to coin flips, we have a sequence of random
variables Tn. We are now going to consider a continuous time random process,
that is a function Wt which is a random variable at each time t ≥ 0. To say
Wt is a random variable at each time is too general so we must put some
additional restrictions on our process to have something interesting to study.

Definition (Wiener Process). The Standard Wiener Process is a stochas-
tic process W (t), for t ≥ 0, with the following properties:

1. Every increment W (t)−W (s) over an interval of length t−s is normally
distributed with mean 0 and variance t− s, that is

W (t)−W (s) ∼ N(0, t− s)

2. For every pair of disjoint time intervals [t1, t2] and [t3, t4], with t1 <
t2 ≤ t3 < t4, the increments W (t4) − W (t3) and W (t2) − W (t1) are
independent random variables with distributions given as in part 1, and
similarly for n disjoint time intervals where n is an arbitrary positive
integer.

3. W (0) = 0

4. W (t) is continuous for all t.

Note that property 2 says that if we know W (s) = x0, then the indepen-
dence (and W (0) = 0) tells us that no further knowledge of the values of
W (τ) for τ < s has any additional effect on our knowledge of the probability
law governing W (t) − W (s) with t > s. More formally, this says that if
0 ≤ t0 < t1 < . . . < tn < t, then

P [W (t) ≥ x|W (t0) = x0,W (t1) = x1, . . .W (tn) = xn] = P [W (t) ≥ x|W (tn) = xn]
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This is a statement of the Markov property of the Wiener process.
Recall that the sum of independent random variables which are respec-

tively normally distributed with mean µ1 and µ2 and variances σ2
1 and σ2

2 is a
normally distributed random variable with mean µ1+µ2 and variance σ2

1 +σ2
2,

see Moment Generating Functions Therefore for increments W (t3) −W (t2)
and W (t2)−W (t1) the sum W (t3)−W (t2)+W (t2)−W (t1) = W (t3)−W (t1) is
normally distributed with mean 0 and variance t3−t1 as we expect. Property
2 of the definition is consistent with properties of normal random variables.

Let

p(x, t) =
1√
2πt

exp(−x2/(2t))

denote the probability density for a N(0, t) random variable. Then to derive
the joint density of the event

W (t1) = x1,W (t2) = x2, . . .W (tn) = xn

with t1 < t2 < . . . < tn, it is equivalent to know the joint probability density
of the equivalent event

W (t1)−W (0) = x1,W (t2)−W (t1) = x2−x1, . . . ,W (tn)−W (tn−1) = xn−xn−1.

Then by part 2, we immediately get the expression for the joint probability
density function:

f(x1, t1;x2, t2; . . . ;xn, tn) = p(x1, t)p(x2−x1, t2−t1) . . . p(xn−xn−1, tn−tn−1)

Comments on Modeling Security Prices with the Wiener Process

A plot of security prices over time and a plot of one-dimensional Brownian
motion versus time has least a superficial resemblance.

If we were to use Brownian motion to model security prices (ignoring
for the moment that some security prices are better modeled with the more
sophisticated geometric Brownian motion rather than simple Brownian mo-
tion) we would need to verify that security prices have the 4 definitional
properties of Brownian motion.

1. The assumption of normal distribution of stock price changes seems to
be a reasonable first assumption. Figure 5.2 illustrates this reasonable

http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/LimitTheoremsCoinTossing/MomentGeneratingFunctions/momentgeneratingfunctions.xml
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Figure 5.1: Graph of the Dow-Jones Industrial Average from August, 2008
to August 2009 (blue line) and a random walk with normal increments with
the same mean and variance (brown line).

Figure 5.2: A standardized density histogram of daily close-to-close returns
on the Pepsi Bottling Group, symbol NYSE:PBG, from September 16, 2003
to September 15, 2003, up to September 13, 2006 to September 12, 2006
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agreement. The Central Limit Theorem provides a reason to believe
the agreement, assuming the requirements of the Central Limit The-
orem are met, including independence. Unfortunately, although the
figure shows what appears to be reasonable agreement a more rigorous
statistical analysis shows that the data distribution does not match
normality.

Another good reason for still using the assumption of normality for the
increments is that the normal distribution is easy to work with. The
probability density is easy to work with, the cumulative distribution is
tabulated, the moment-generating function is easy to use, and the sum
of independent normal distributions is again normal. A substitution
of another distribution is possible but makes the resulting stochastic
process models very difficult to work with, and beyond the scope of
this treatment.

Moreover, this assumption ignores the small possibility that negative
stock prices could result from a large negative change. This is not
reasonable (and the log normal distribution from geometric Brownian
motion which avoids this possibility is a better model).

Moreover, the assumption of a constant variance on different intervals
of the same length is not a good assumption since stock volatility itself
seems to be volatile. That is, the variance of a stock price changes and
need not be proportional to the length of the time interval.

2. The assumption of independent increments seems to be a reasonable as-
sumption, at least on a long enough term. From second to second, price
increments are probably correlated. From day to day, price increments
are probably independent. Of course, the assumption of independent
increments in stock prices is the essence of what economists call the
Efficient Market Hypothesis, or the Random Walk Hypothesis, which
we take as a given in order to apply elementary probability theory.

3. The assumption of W (0) = 0 is simply a normalizing assumption and
needs no discussion.

4. The assumption of continuity is a mathematical abstraction, but it
makes sense, particularly if securities are traded minute by minute, or
hour-by hour where prices could jump discretely, but then examined
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on a scale of day by day or week by week so the short-time changes are
tiny and in comparison prices appear to change continuously.

At least as a first assumption, we will try to use Brownian motion as
a model of stock price movements. Remember the mathematical modeling
proverb quoted earlier: All mathematical models are wrong, some mathe-
matical models are useful. The Brownian motion model of stock prices is at
least moderately useful.

Conditional Probabilities

According to the defining property 1 of Brownian motion, we know that if
s < t, then the conditional density of X(t) given X(s) = B is that of a
normal random variable with mean B and variance t− s. That is,

P [X(t) ∈ (x, x+ ∆x)|X(s) = B] ≈ 1√
2π(t− s)

exp(−(x−B)2/2(t− s))∆x

This gives the probability of Brownian motion being in the neighborhood of
x at time t, t − s time units into the future, given that Brownian motion is
at B at time s, the present.

However the conditional density of X(s) given that X(t) = B, s < t is
also of interest. Notice that this is a much different question, since s is “in
the middle” between 0 where X(0) = 0 and t where X(t) = B. That is, we
seek the probability of being in the neighborhood of x at time s, t− s time
units in the past from the present value X(t) = B.

Theorem 15. The conditional distribution of X(s), given X(t) = B, s < t,
is normal with mean Bs/t and variance (s/t)(t− s).

P [X(s) ∈ (x, x+ ∆x)|X(t) = B] ≈ 1√
2π(s/t)(t− s)

exp(−(x−Bs/t)2/2(t−s))∆x

Proof. The conditional density is

fs|t(x|B) = (fs(x)ft−s(B − x))/ft(B)

= K1 exp(−x2/(2s)− (B − x)2/(2(t− s)))
= K2 exp(−x2(1/(2s) + 1/(2(t− s))) +Bx/(t− s))
= K2 exp(−t/(2s(t− s))(x2 − 2sBx/t))

= K3 exp(−(t(x−Bs/t)2/(2s(t− s))))
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where K1, K2, and K3 are constants that do not depend on x. For example,
K1 is the product of 1/

√
2πs from the fs(x) term, and 1/

√
2π(t− s) from

the ft−s(B − x) term, times the 1/ft(B) term in the denominator. The K2

term multiplies in an exp(−B2/(2(t − s))) term. The K3 term comes from
the adjustment in the exponential to account for completing the square. We
know that the result is a conditional density, so the K3 factor must be the
correct normalizing factor, and we recognize from the form that the result is
a normal distribution with mean Bs/t and variance (s/t)(t− s).

Corollary 7. The conditional density of X(t) for t1 < t < t2 given X(t1) =
A and X(t2) = B is a normal density with mean

A+ ((B − A)/(t2 − t1))(t− t1)

and variance
(t2 − t)(t− t1)/(t2 − t1)

Proof. X(t) subject to the conditions X(t1) = A and X(t2) = B has the
same density as the random variable A + X(t − t1), under the condition
X(t2 − t1) = B − A by condition 2 of the definition of Brownian motion.
Then apply the theorem with s = t− t1 and t = t2 − t1.

Sources

The material in this section is drawn from A First Course in Stochastic
Processes by S. Karlin, and H. Taylor, Academic Press, 1975, pages 343–345
and Introduction to Probability Models by S. Ross.

Problems to Work for Understanding

1. Let W (t) be standard Brownian motion.

(a) Find the probability that 0 < W (1) < 1.

(b) Find the probability that 0 < W (1) < 1 and 1 < W (2)−W (1) <
3.

(c) Find the probability that 0 < W (1) < 1 and 1 < W (2)−W (1) < 3
and 0 < W (3)−W (2) < 1/2.

2. Let W (t) be standard Brownian motion.
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(a) Find the probability that 0 < W (1) < 1.

(b) Find the probability that 0 < W (1) < 1 and 1 < W (2) < 3.

(c) Find the probability that 0 < W (1) < 1 and 1 < W (2) < 3 and
0 < W (3) < 1/2.

(d) Explain why this problem is different from the previous problem,
and also explain how to numerically evaluate to the proabilities.

3. Let W (t) be standard Brownian motion.

(a) Find the probability that W (5) ≤ 3 given that W (1) = 1.

(b) Find the number c such that Pr[W (9) > c|W (1) = 1] = 0.10.

4. Suppose that the fluctuations of a share of stock of a certain company
are well described by a Standard Brownian Motion process. Suppose
that the company is bankrupt if ever the share price drops to zero. If
the starting share price is A(0) = 5, what is the probability that the
share price is above 10 at t = 25?. What is the probability that the
company is bankrupt by t = 25? Explain why these are not the same.

5. Suppose you own one share of stock whose price changes according to a
Standard Brownian Motion Process. Suppose you purchased the stock
at a price b+c, c > 0 and the present price is b. You have decided to sell
the stock either when it reaches the price b + c or when an additional
time t goes by, whichever comes first. What is the probability that you
do not recover your purchase price?

6. Let Z be a normally distributed random variable, with mean 0 and
variance 1, Z ∼ N(0, 1). Then consider the continuous time stochastic
process X(t) =

√
tZ. Show that the distribution of X(t) is normal

with mean 0 with variance t. Is X(t) a Brownian motion?

7. Let W1(t) be a Brownian motion and W2(t) be another independent
Brownian motion, and ρ is a constant between −1 and 1. Then consider
the process X(t) = ρW1(t) +

√
1− ρ2W2(t). Is this X(t) a Brownian

motion?

8. What is the distribution of W (s) + W (t), for 0 ≤ s ≤ t? (Hint:
Note that W (s) and W (t) are not independent. But you can write
W (s) + W (t) as a sum of independent variables. Done properly, this
problem requires almost no calculation.)
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9. For two random variables X and Y , statisticians call

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

the covariance of X and Y . If X and Y are independent, then
Cov(X, Y ) = 0. A positive value of Cov(X, Y ) indicates that Y tends
to increases as X does, while a negative value indicates that Y tends
to decrease when X increases. Thus, Cov(X, Y ) is an indication of the
mutual dependence of X and Y . Show that

Cov(W (s),W (t)) = E[W (s)W (t)] = min(t, s)

10. Show that the probability density function

p(t;x, y) =
1√
2πt

exp(−(x− y)2/(2t))

satisfies the partial differential equation for heat flow (the heat equa-
tion)

∂p

∂t
=

1

2

∂2p

∂x2

Outside Readings and Links:

1. Copyright 1967 by Princeton University Press, Edward Nelson. On line
book Dynamical Theories of Brownian Motion. It has a great historical
review about Brownian Motion.

2. National Taiwan Normal University, Department of Physics A simu-
lation of Brownian Motion which also allows you to change certain
parameters.

3. Department of Physics, University of Virginia, Drew Dolgert Applet is
a simple demonstration of Einstein’s explanation for Brownian Motion.

4. Department of Mathematics,University of Utah, Jim Carlson A Java
applet demonstrates Brownian Paths noticed by Robert Brown.

5. Department of Mathematics,University of Utah, Jim Carlson Some ap-
plets demonstrate Brownian motion, including Brownian paths and
Brownian clouds.

6. School of Statistics,University of Minnesota, Twin Cities,Charlie Geyer
An applet that draws one-dimensional Brownian motion.

http://www.math.princeton.edu/~nelson/books/bmotion.pdf
http://www.phy.ntnu.edu.tw/java/gas2D/gas2D.html
http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/brownian/brownian.html 
http://xanadu.math.utah.edu/java/brownianmotion/1/
http://www.math.utah.edu/~carlson/teaching/java/prob/
http://www.stat.umn.edu/~charlie/Stoch/brown.html
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5.3 Approximation of Brownian Motion by

Coin-Flipping Sums

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

Suppose you know the graph y = f(x) of the function f(x). What is the
effect on the graph of the transformation f(ax) where a > 1? What is the
effect on the graph of the transformation (1/a)f(x) where a > 1? What
about the transformation f(ax)/b where a > 1 and b > 1.

Key Concepts

1. Brownian motion can be approximated by a properly scaled “random
fortune” process (i.e. random walk).

2. Brownian motion is the limit of “random fortune” discrete time pro-
cesses (i.e. random walks), properly scaled. The study of Brownian
motion is therefore an extension of the study of random fortunes.

Vocabulary

1. We define approximate Brownian Motion ŴN(t) to be the rescaled
random walk with steps of size 1/

√
N taken every 1/N time units where

N is a large integer.

Mathematical Ideas

Approximation of Brownian Motion by Fortunes

As we have now assumed many times, i ≥ 1 let

Yi =

{
+1 with probability 1/2

−1 with probability 1/2
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be a sequence of independent, identically distributed Bernoulli random vari-
ables. Note that Var [Yi] = 1, which we will need to use in a moment. Let
Y0 = 0 for convenience and set

Tn =
n∑
i=0

Yi

be the sequence of sums, which represent the successive net fortunes of our
notorious gambler. As usual, we will sketch the graph of Tn versus time using
linear interpolation between the points (n − 1, Tn−1) and (n, Tn) to obtain
a continuous, piecewise linear function. Since this interpolation defines a
function for all time, we could write Ŵ (t), and then for instance, Ŵ (n) = Tn.
Now Ŵ (t) is a function defined on [0,∞). This function is piecewise linear
with segments of length

√
2. The notation Ŵ (t) reminds us of the piecewise

linear nature of the function.
Now we will compress time, and rescale the space in a special way. Let

N be a large integer, and consider the rescaled function

ŴN(t) =

(
1√
N

)
Ŵ (Nt).

This has the effect of taking a step of size ±1/
√
N in 1/N time unit. That

is,

ŴN(1/N) =

(
1√
N

)
Ŵ (N · 1/N) =

T1√
N

=
Y1√
N
.

Now consider

ŴN(1) =
Ŵ (N)√

N
=

TN√
N
.

According to the Central Limit Theorem, this quantity is approximately
normally distributed, with mean zero, and variance 1. More generally,

ŴN(t) =
Ŵ (Nt)√

N
=
√
t
Ŵ (Nt)√

Nt

If Nt is an integer, this will be normally distributed with mean 0 and vari-
ance t. Furthermore, ŴN(0) = 0 and ŴN(t) is a continuous function, and
so is continuous at 0. Altogether, this should be a strong suggestion that
ŴN(t) is an approximation to Standard Brownian Motion. We will define
the very jagged piecewise linear function ŴN(t) as approximate Brownian
Motion.
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Theorem 1. The joint distributions of ŴN(t) converges to the joint normal
distribution

f(x1, t1;x2, t2; . . . ;xn, tn) = p(x1, t)p(x2−x1, t2−t1) . . . p(xn−xn−1, tn−tn−1)

of the Standard Brownian Motion.

With some additional foundational work, a mathematical theorem estab-
lishes that the rescaled fortune processes actually converge to the mathemat-
ical object called the Standard Brownian Motion as defined in the previous
section. The proof of this mathematical theorem is beyond the scope of a
text of this level, but the theorem above should strongly suggest how this
can happen, and give some intuitive feel for the approximation of Brownian
motion through the rescaled coin-flip process.

Sources

This section is adapted from Probability by Leo Breiman, Addison-Wesley,
Reading MA, 1968, Section 12.2, page 251. This section also benefits from
ideas in W. Feller, in Introduction to Probability Theory and Volume I, Chap-
ter III and An Introduction to Stochastic Modeling 3rd Edition, H. M. Taylor,
S. Karlin, Academic Press, 1998.

Problems to Work for Understanding

1. Flip a coin 25 times, recording whether it comes up Heads or Tails
each time. Scoring Yi = +1 for each Heads and Yi = −1 for each
flip, also keep track of the accumulated sum Tn =

∑n
i=1 Ti for i =

1 . . . 25 representing the net fortune at any time. Plot the resulting Tn
versus n on the interval [0, 25]. Finally, using N = 5 plot the rescaled
approximation Ŵ5(t) = (1/

√
5)S(5t) on the interval [0, 5] on the same

graph.

Outside Readings and Links:

1.
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5.4 Transformations of the Wiener Process

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

Suppose you know the graph y = f(x) of the function f(x). What is the
effect on the graph of the transformation f(x + h) − f(h)? What is the
effect on the graph of the transformation f(1/x)? Consider the function
f(x) = sin(x) as an example.

Key Concepts

1. Three transformations of the Wiener process produce another Wiener
process. The transformations are scaling, inversion and translation.
These results prove especially helpful when studying the properties of
the sample paths of Brownian motion.

Vocabulary

1. Scaling, also called re-scaling, is the transformation of f(t) to bf(t/a),
which expands or contracts the time axis (as a > 1 or a < 1) and ex-
pands or contracts the dependent variable scale (as b > 1 or b < 1).

2. Translation, also called shifting is the transformation of f(t) to f(t+
h) or sometimes f(t) to f(t+ h)− f(h).

3. Inversion is the transformation of f(t) to f(1/t). It “flips” the inde-
pendent variable axis about 1, so that the interval (0, 1) is “inverted”
to the interval (1,∞).
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Mathematical Ideas

Transformations of the Wiener Process

A set of transformations of the Wiener process produce the Wiener process
again. Since these transformations result in the Wiener process, each tells
us something about the “shape” and “characteristics” of the Wiener process.
These results prove especially helpful when studying the properties of the
Wiener process sample paths. The first of these transformations is a time
homogeneity which says that the Wiener process can be re-started anywhere.
The second says that the Wiener process can be rescaled in time and space.
The third is an inversion. Roughly, each of these says the Wiener process
is self-similar in various ways. See the comments after the proof for more
detail.

Theorem 2. 1. Wshift(t) = W (t+ h)−W (h), for fixed h > 0.

2. Wscale(t) = cW (t/c2), for fixed c > 0
are each a version of the Standard Wiener Process.

Proof. We have to systematically check each of the defining properties of the
Wiener process in turn for each of the transformed processes.

1.
Wshift(t) = W (t+ h)−W (h)

(a) The increment

Wshift(t+s)−Wshift(s) = [W (t+s+h)−W (h)]−[W (s+h)−W (h)] = W (t+s+h)−W (s+h)

which is by definition normally distributed with mean 0 and vari-
ance t.

(b) The increment

Wshift(t4)−Wshift(t3) = W (t4 + h)−W (t3 + h)

is independent from

W (t2 + h)−W (t1 + h) = Wshift(t2)−Wshift(t1),

by the property of independence of disjoint increments of W (t).
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(c)

Wshift(0) = W (0 + h)−W (h) = 0.

(d) As the composition and difference of continuous functions, Wshift

is continuous.

2.

Wscale(t) = cW (t/c2)

(a) The increment

Wscale(t)−Wscale(s) = cW ((t)/c2)−cW (s/c2) = c(W (t/c2)−W (s/c2))

is normally distributed because it is a multiple of a normally dis-
tributed random variable. Since the increment W (t/c2)−W (s/c2)
has mean zero, then

Wscale(t)−Wscale(s) = c(W (t/c2)−W (s/c2))

must have mean zero. The variance is

E
[
(Wscale(t)−W (s))2

]
= E

[
(cW ((t)/c2)− cW (s/c2))2

]
= c2E

[
(W (t/c2)−W (s/c2))2

]
= c2(t/c2 − s/c2) = t− s.

(b) Note that if t1 < t2 ≤ t3 < t4, then t1/c
2 < t2/c

2 ≤ t3/c
2 <

t4/c
2, and the corresponding increments W (t4/c

2)−W (t3/c
2) and

W (t2/c
2)−W (t1/c

2) are independent. Then the multiples of each
by c are independent and so Wscale(t4)−Wscale(t3) and Wscale(t2)−
Wscale(t1) are independent.

(c) Wscale(0) = cW (0/c2) = cW (0) = 0.

(d) As the composition of continuous functions, Wscale is continuous.

Theorem 16. Suppose W (t) is a Standard Wiener Process. Then the trans-
formed processes Winv(t) = tW (1/t) for t > 0, Winv(t) = 0 for t = 0 is a
version of the Standard Wiener Process.
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Proof. To show that
Winv(t) = tW (1/t)

is a Wiener process by the four definitional properties requires another fact
which is outside the scope of the text. The fact is that any Gaussian process
X(t) with mean 0 and Cov [X(s), X(t)] = min(s, t) must be the Wiener
process. See the references and outside links for more information. Using
this information, we present a partial proof:

1.
Winv(t)−Winv(s) = tW (1/t)− sW (1/s)

which will be the difference of normally distributed random variables
each with mean 0, so the difference will be normal with mean 0. It
remains to check that the normal random variable has the correct vari-
ance.

E
[
(Winv(t)−Winv(s))2

]
= E

[
(sW (1/s)− tW (1/t))2

]
= E

[
(sW (1/s)− sW (1/t) + sW (1/t)− tW (1/t)− (s− t)W (0))2

]
= s2E

[
(W (1/s)−W (1/t))2

]
+ s(s− t)E [(W (1/s)−W (1/t))(W (1/t)−W (0))] + (s− t)2E

[
(W (1/t)−W (0))2

]
= s2E

[
(W (1/s)−W (1/t))2

]
+ (s− t)2E

[
(W (1/t)−W (0))2

]
= s2(1/s− 1/t) + (s− t)2(1/t)

= t− s

Note the use of independence of W (1/s)−W (1/t) from W (1/t)−W (0)
at the third equality.

2. It seems to be hard to show the independence of increments directly.
Instead rely on the fact that a Gaussian process with mean 0 and
covariance function min(s, t) is a Wiener process, and thus prove it
indirectly.

Note that

Cov [Winv(s),Winv(t)] = stmin(1/s, 1/t) = min(s, t).

3. By definition, Winv(0) = 0.

4. The argument that limt→0Winv(t) = 0 is equivalent to showing that
limt→∞W (t)/t = 0. To show this requires use of Kolmogorov’s in-
equality for the Wiener process and clever use of the Borel-Cantelli
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lemma and is beyond the scope of this course. Use the translation
property in the third statement of this theorem to prove continuity at
every value of t.

The following comments are adapted from Stochastic Calculus and Fi-
nancial Applications by J. Michael Steele. Springer, New York, 2001, page
40. These laws tie the Wiener process to three important groups of transfor-
mations on [0,∞), and a basic lesson from the theory of differential equations
is that such symmetries can be extremely useful. On a second level, the
laws also capture the somewhat magical fractal nature of the Wiener pro-
cess. The scaling law tells us that if we had even one-billionth of a second of
a Wiener process path, we could expand it to a billions years’ worth of an
equally valid Wiener process path! The translation symmetry is not quite so
startling, it merely says that Wiener process can be restarted anywhere, that
is any part of a Wiener process captures the same behavior as at the origin.
The inversion law is perhaps most impressive, it tells us that the first second
of the life of a Wiener process path is rich enough to capture the behavior of
a Wiener process path from the end of the first second until the end of time.

Sources

This section is adapted from: A First Course in Stochastic Processes by S.
Karlin, and H. Taylor, Academic Press, 1975, pages 351–353 and Financial
Derivatives in Theory and Practice by P. J. Hunt and J. E. Kennedy, John
Wiley and Sons, 2000, pages 23–24.

Problems to Work for Understanding

1. Show that stmin(1/s, 1/t) = min(s, t)

2.

Outside Readings and Links:

1. Russell Gerrard, City University, London, Stochastic Modeling Notes
for the MSc in Actuarial Science, 2003-2004. Contributed by S. Dunbar
October 30, 2005.

http://www.staff.city.ac.uk/r.j.gerrard/courses/d103/d103_2.pdf
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2. Yuval Peres, University of California Berkeley, Department of Statis-
tics Notes on sample paths of Brownian Motion. Contributed by S.
Dunbar, October 30, 2005.

5.5 Hitting Times and Ruin Probabilities

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

What is the probability that a simple random walk with p = 1/2 = q starting
at the origin will hit value a > 0 before it hits value −b < 0, where b > 0?
What do you expect in analogy for the standard Wiener process and why?

Key Concepts

1. With the Reflection Principle, we can derive the p.d.f of the hitting
time Ta.

2. With the hitting time, we can derive the c.d.f. of the maximum of the
Wiener Process on the interval 0 ≤ u ≤ t.

Vocabulary

1. The Reflection Principle for the Wiener process reflected about a
first passage has the same distribution as the original motion.

2. The hitting time Ta is the first time the Wiener process assumes the
value a. Specifically in notation from analysis

Ta = inf{t > 0 : W (t) = a}.

http://stat-www.berkeley.edu/~peres/bmall.pdf
http://stat-www.berkeley.edu/~peres/bmall.pdf
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Mathematical Ideas

Hitting Times

Consider the standard Wiener process W (t), which starts at W (0) = 0. Let
a > 0. Let us denote the hitting time Ta be the first time the Wiener process
hits a. Specifically in notation from analysis

Ta = inf{t > 0 : W (t) = a}.

Note the very strong analogy with the duration of the game in the gambler’s
ruin.

Some Wiener process sample paths will hit a > 0 fairly directly. Others
will make an excursion (for example, to negative values) and take a long
time to finally reach a. Thus Ta will have a probability distribution. We will
determine that distribution by a heuristic procedure similar to the first step
analysis we made for coin-flipping fortunes.

Specifically, we will consider a probability by conditioning, that is, con-
ditioning on whether or not Ta ≤ t, for some given value of t.

P [W (t) ≥ a] = P [W (t) ≥ a|Ta ≤ t] P [Ta ≤ t]+P [W (t) ≥ a|Ta > t] P [Ta > t]

Now note that the second conditional probability is 0 because it is an empty
event. Therefore:

P [W (t) ≥ a] = P [W (t) ≥ a|Ta ≤ t] P [Ta ≤ t] .

Now, consider Wiener process “started over” again the time Ta when it hits
a. By the shifting transformation from the previous section, this would have
the distribution of Wiener process again, and so

P [W (t) ≥ a|Ta ≤ t] = P [W (t) ≥ a|W (Ta) = a, Ta ≤ t]

= P [W (t)−W (Ta) ≥ 0|Ta ≤ t]

= 1/2.

This argument is a specific example of the Reflection Principle for the Wiener
process. It says that the Wiener process reflected about a first passage has
the same distribution as the original motion.

Actually, this argument contains a serious logical gap, since Ta is a random
time, not a fixed time. That is, the value of Ta is different for each sample
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path, it varies with ω. On the other hand, the shifting transformation defined
in the prior section depends on having a fixed time, called h in that section. In
order ti fix this logical gap, we must make sure that “random times” act like
fixed times. Under special conditions, random times can act like fixed times.
Specifically, this proof can be fixed and made completely rigorous by showing
that the standard Wiener process has the strong Markov property and
that Ta is a Markov time corresponding to the event of first passage from 0
to a.

Thus
P [W (t) ≥ a] = (1/2)P [Ta ≤ t] .

or

P [Ta ≤ t] = 2P [W (t) ≥ a]

=
2√
2πt

∫ ∞
a

exp(−u2/(2t)) du

=
2√
2π

∫ ∞
a/
√
t

exp(−v2/2) dv

(note the change of variables v = u/
√
t in the second integral) and so we

have derived the c.d.f. of the hitting time random variable. One can easily
differentiate to obtain the p.d.f

fTa(t) =
a√
2π
t−3/2 exp(−a2/(2t)).

Note that this is much stronger than the analogous result for the duration
of the game until ruin in the coin-flipping game. There we were only able
to derive an expression for the expected value of the hitting time, not the
probability distribution of the hitting time. Now we are able to derive the
probability distribution of the hitting time fairly intuitively (although strictly
speaking there is a gap). Here is a place where it is simpler to derive a
quantity for Wiener process than it is to derive the corresponding quantity
for random walk.

Let us now consider the probability that the Wiener process hits a > 0,
before hitting −b < 0, where b > 0. To compute this we will make use
of the interpretation of Standard Wiener process as being the limit of the
symmetric random walk. Recall from the exercises following the section on
the gambler’s ruin in the fair (p = 1/2 = q) coin-flipping game that the
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probability that the random walk goes up to value a before going down to
value b when the step size is ∆x is

P [ to a before −b ] =
b∆x

(a+ b)∆x
=

b

a+ b

Thus, the probability of a > 0, before hitting −b < 0 does not depend on
the step size, and also does not depend on the time interval. Therefore in
passing to the limit the probabilities should remain the same. Here is a place
where it is easier to derive the result from the coin-flipping game and pass to
the limit than to derive the result directly from Wiener process principles.

The Distribution of the Maximum

Let t be a given time, let a > 0 be a given value, then

P
[

max
0≤u≤t

W (u) ≥ a

]
= P [Ta ≤ t]

=
2√
2π

∫ ∞
a/
√
t

exp(−y2/2) dy

Sources

This section is adapted from: Probability Models, by S. Ross, and A First
Course in Stochastic Processes Second Edition by S. Karlin, and H. Taylor,
Academic Press, 1975.

Problems to Work for Understanding

1. Differentiate the c.d.f. of Ta to obtain the expression for the p.d.f of Ta.

2. Show that E [Ta] =∞ for a > 0.

3. Suppose that the fluctuations of a share of stock of a certain company
are well described by a Wiener process. Suppose that the company
is bankrupt if ever the share price drops to zero. If the starting share
price is A(0) = 5, what is the probability that the company is bankrupt
by t = 25? What is the probability that the share price is above 10 at
t = 25?.
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4. Suppose you own one share of stock whose price changes according to a
Wiener process. Suppose you purchased the stock at a price b+c, c > 0
and the present price is b. You have decided to sell the stock either
when it reaches the price b + c or when an additional time t goes by,
whichever comes first. What is the probability that you do not recover
your purchase price?

Outside Readings and Links:

1. Russell Gerrard, City University, London, Stochastic Modeling Notes
for the MSc in Actuarial Science, 2003-2004. Contributed by S. Dunbar
October 30, 2005.

2. Yuval Peres, University of California Berkeley, Department of Statis-
tics Notes on sample paths of Brownian Motion. Contributed by S.
Dunbar, October 30, 2005.

5.6 Path Properties of Brownian Motion

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

Provide an example of a continuous function which is not differentiable at
some point. Why does the function fail to have a derivative at that point?
What are the possible reasons that a derivative could fail to exist at some
point?

Key Concepts

1. With probability 1 a Brownian Motion path is continuous but nowhere
differentiable.

http://www.staff.city.ac.uk/r.j.gerrard/courses/d103/d103_2.pdf
http://stat-www.berkeley.edu/~peres/bmall.pdf
http://stat-www.berkeley.edu/~peres/bmall.pdf
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Vocabulary

1. In probability theory, the term almost surely is used to indicate an
event which occurs with probability 1. In infinite sample spaces, it is
possible to have meaningful events with probability zero. So to say an
event occurs “almost surely” is not an empty phrase. Events occurring
with probability zero are sometimes called negligible events.

Mathematical Ideas

Properties of the Path of Brownian Motion

Theorem 17. With probability 1 (i.e. almost surely) Brownian Motion paths
are continuous functions.

To state this as a theorem may seem strange in view of property 4 of the
definition of Brownian motion. Property 4 requires that Brownian motion is
continuous. However, some authors weaken property 4 in the definition to
only require that Brownian motion be continuous at t = 0. Then this theorem
shows that the weaker definition implies the stronger definition used in this
text. This theorem is difficult to prove, and well beyond the scope of this
course. In fact, even the statement above is imprecise. Specifically, there is
an explicit representation of the defining properties of Brownian Motion as
a function in which (with probability 1) W (t, ω) is a continuous function of
t. We need the continuity for much of what we do later, and so this theorem
is stated here again as a fact without proof.

Theorem 18. With probability 1 (i.e. almost surely) a Brownian Motion is
nowhere (except possibly on set of Lebesgue measure 0) differentiable.

This property is even deeper and requires more machinery to prove than
does the continuity theorem, so we will not prove it here. Rather, we use this
fact as another piece of evidence of the strangeness of Brownian Motion.

In spite of one’s intuition from calculus, Theorem 18 shows that contin-
uous, nowhere differentiable functions are actually common. Indeed, con-
tinuous, nowhere differentiable functions are useful for stochastic processes.
One can imagine non-differentiability by considering the function f(t) = |t|
which is continuous but not differentiable at t = 0. Because of the corner at
t = 0, the left and right limits of the difference quotient exist but are not
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equal. Even more to the point, the function t2/3 is continuous but not differ-
entiable at t = 0 because of a sharp “cusp” there. The left and right limits
of the difference quotient do not exist (more precisely, they approach ±∞)
at x = 0. One can imagine Brownian Motion as being spiky with tiny cusps
and corners at every point. This becomes somewhat easier to imagine by
thinking of the limiting approximation of Brownian Motion by coin-flipping
fortunes. The re-scaled coin-flipping fortune graphs look spiky with corners
everywhere. The approximating graphs suggest why the theorem is true,
although this is not sufficient for the proof.

Theorem 19. With probability 1 (i.e. almost surely) a Brownian Motion
path has no intervals of monotonicity. That is, there is no interval [a, b] with
W (t2)−W (t1) > 0 (or W (t2)−W (t1) < 0) for all t2, t1 ∈ [a, b] with t2 > t1

Theorem 20. With probability 1 (i.e. almost surely) Brownian Motion W (t)
has

lim sup
n→∞

W (n)√
n

= +∞,

lim inf
n→∞

W (n)√
n

= −∞.

From Theorem 20 and the continuity we can deduce that for arbitrarily
large t1, there is a t2 > t1 such that W (t2) = 0. That is, Brownian Motion
paths cross the time-axis at some time greater than any arbitrarily large
value of t.

Theorem 21. With probability 1 (i.e. almost surely), 0 is an accumulation
point of the zeros of W (t).

From Theorem 20 and the inversion tW (1/t) also being a standard Brow-
nian motion, we deduce that 0 is an accumulation point of the zeros of W (t).
That is, Standard Brownian Motion crosses the time axis arbitrarily near 0.

Theorem 22. With probability 1 (i.e. almost surely) the zero set of Brownian
Motion

{t ∈ [0,∞) : W (t) = 0}
is an uncountable closed set with no isolated points.
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Theorem 23. With probability 1 (i.e. almost surely) the graph of a Brownian
Motion path has Hausdorff dimension 3/2.

This means that the graph of a Brownian Motion path is “fuzzier” or
“thicker” than the graph of, for example, a continuously differentiable func-
tion which would have Hausdorff dimension 1.

Sources

This section is adapted from: Notes on Brownian Motion by Yuval Peres,
University of California Berkeley, Department of Statistics.

Problems to Work for Understanding

1. Provide a more complete heuristic argument based on Theorem 20 that
almost surely there is a sequence tn with limt→∞ tn = ∞ such that
W (t) = 0

2. Provide a heuristic argument based on Theorem 21 and the shifting
property that the zero set of Brownian Motion

{t ∈ [0,∞) : W (t) = 0}

has no isolated points.

3. Looking in more advanced references, find another property of Brown-
ian Motion which illustrates strange path properties.

Outside Readings and Links:

1. Notes on Brownian Motion Yuval Peres, University of California Berke-
ley, Department of Statistics

5.7 Quadratic Variation of the Wiener Pro-

cess

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

http://stat-www.berkeley.edu/~peres/bmall.pdf
http://stat-www.berkeley.edu/~peres/bmall.pdf
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Section Starter Question

What is an example of a function that “varies a lot”? What is an example of a
function that does not “vary a lot”? How would you measure the “variation”
of a function?

Key Concepts

1. The total quadratic variation of Brownian motion is t.

2. This fact has profound consequences for dealing with Brownian motion
analytically and ultimately will lead to Itô’s formula.

Vocabulary

1. A function f(t) is said to have bounded variation if, over the closed
interval [a, b], there exists an M such that

|f(t1)− f(a)|+ |f(t2)− f(t1)|+ · · ·+ |f(b)− f(tn)| ≤M

for all partitions a = t0 < t1 < t2 < . . . < tn < tn+1 = b of the interval.

2. A function f(t) is said to have quadratic variation if, over the closed
interval [a, b], there exists an M such that

(f(t1)− f(a))2 + (f(t2)− f(t1))
2 + · · ·+ (f(b)− f(tn))2 ≤M

for all partitions a = t0 < t1 < t2 < . . . < tn < tn+1 = b of the interval.

3. The mesh size of a partition P with a = t0 < t1 < . . . < tn < tn+1 = b
is maxj=0,...,n{tj+1 − tj|j = 1, . . . , n}.

4. The total quadratic variation of a function f on an interval [a, b] is

sup
P

n∑
j=0

(f(tj+1)− f(tj))
2

where the supremum is taken over all partitions P with a = t0 < t1 <
. . . < tn < tn+1 = b, with mesh size going to zero as the number of
partition points n goes to infinity.
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Mathematical Ideas

Variation

Definition. A function f(x) is said to have bounded variation if, over the
closed interval [a, b], there exists an M such that

|f(t1)− f(a)|+ |f(t2)− f(t1)|+ · · ·+ |f(b)− f(tn)| ≤M

for all partitions a = t0 < t1 < t2 < . . . < tn < tn+1 = b of the interval.

The idea is that we measure the total (hence the absolute value) up-and-
down movement of a function. This definition is similar to other partition
based definitions such as the Riemann integral and the arclength of the graph
of the function. A monotone increasing or decreasing function has bounded
variation. A function with a continuous derivative has bounded variation.
Some functions, for instance Brownian Motion, do not have bounded varia-
tion.

Definition. A function f(t) is said to have quadratic variation if, over the
closed interval [a, b], there exists an M such that

(f(t1)− f(a))2 + (f(t2)− f(t1))
2 + · · ·+ (f(b)− f(tn))2 ≤M

for all partitions a = t0 < t1 < t2 < . . . < tn < tn+1 = b of the interval.

Again, the idea is that we measure the total (hence the positive terms
created by squaring) up-and-down movement of a function. However, the
squaring will make small ups-and-downs smaller, so that perhaps a function
without bounded variation may have quadratic variation. In fact, this is the
case for the Wiener Process.

Definition. The total quadratic variation of Q of a function f on an
interval [a, b] is

Q = sup
P

n∑
i=0

(f(ti+1)− f(ti))
2

where the supremum is taken over all partitions P with a = t0 < t1 < . . . <
tn < tn+1 = b, with mesh size going to zero as the number of partition points
n goes to infinity.
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Quadratic Variation of the Wiener Process

We can guess that the Wiener Process might have quadratic variation by
considering the quadratic variation of our coin-flipping fortune record first.
Consider the function piecewise linear function Ŵ (t) defined by the sequence
of sums Tn = Y1 + · · ·+Yn from the Bernoulli random variables Yi = +1 with
probability p = 1/2 and Yi = −1 with probability q = 1−p = 1/2. With some
analysis, it is possible to show that we need only consider the quadratic vari-
ation at points 1, 2, 3, . . . , n Then each term (Ŵ (i+ 1)− Ŵ (i))2 = Y 2

i+1 = 1.
Therefore, the quadratic variation is the total number of steps, Q = n. Now
remember the Wiener Process is approximated by Wn(t) = (1/

√
n)Ŵ (nt).

Each step is size 1/
√
n, then the quadratic variation of the step is 1/n

and there are n steps on [0, 1]. The total quadratic variation of Wn(t) =
(1/
√
n)Ŵ (nt) on [0, 1] is 1.

We will not completely rigorously prove that the total quadratic variation
of the Wiener Process is t, as claimed, but we will prove a theorem close to
the general definition of quadratic variation.

Theorem 24. Let W (t) be standard Brownian motion. For every fixed t > 0

lim
n→∞

2n∑
n=1

[
W

(
k

2n
t

)
−W

(
k − 1

2n
t

)]2

= t

with probability 1 (that is, almost surely).

Proof. Introduce some briefer notation for the proof, let:

∆nk = W

(
k

2n
t

)
−W

(
k − 1

2n
t

)
k = 1, . . . , 2n

and

Wnk = ∆2
nk − t/2n k = 1, . . . , 2n.

We want to show that
∑2n

k=1 ∆2
nk → t or equivalently:

∑2n

k=1Wnk → 0.
For each n, the random variables Wnk, k = 1, . . . , 2n are independent and
identically distributed by properties 1 and 2 of the definition of standard
Brownian motion. Furthermore,

E [Wnk] = E
[
∆2
nk

]
− t/2n = 0
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by property 1 of the definition of standard Brownian motion.
A routine (but omitted) computation of the fourth moment of the normal

distribution shows that

E
[
W 2
nk

]
= 2t2/4n.

Finally, by property 2 of the definition of standard Brownian motion

E [WnkWnj] = 0, k 6= j.

Now, expanding the square of the sum, and applying all of these computa-
tions

E

{ 2n∑
k=1

Wnk

}2
 =

2n∑
k=1

E
[
W 2
nk

]
= 2n+1t2/4n = 2t2/2n.

Now apply Chebyshev’s Inequality to see:

P

[∣∣∣∣∣
2n∑
k=1

Wnk

∣∣∣∣∣ > ε

]
≤ 2t2

ε2

(
1

2

)n
.

Now since
∑

(1/2)n is a convergent series, the Borel-Cantelli lemma implies
that the event ∣∣∣∣∣

2n∑
k=1

Wnk

∣∣∣∣∣ > ε

can occur for only finitely many n. That is, for any ε > 0, there is an N ,
such that for n > N ∣∣∣∣∣

2n∑
k=1

Wnk

∣∣∣∣∣ < ε.

Therefore we must have that limn→∞
∑2n

k=1Wnk = 0, and we have established
what we wished to show.

Remark. Here’s a less rigorous and somewhat different explanation of why
the squared variation of Brownian motion may be guessed to be t, see [5].
Consider

n∑
k=1

(
W

(
kt

n

)
−W

(
(k − 1)t

n

))2

.
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Now let

Znk =

(
W
(
kt
n

)
−W

(
(k−1)t
n

))
√
t/n

Then for each n, the sequence Znk is a sequence of independent, identically
distributed standard normal N(0, 1) random variables. Now we can write
the quadratic variation as:

n∑
k=1

∆2
nk =

n∑
k=1

t

n
Z2
nk = t

(
1

n

n∑
k=1

Z2
nk

)

But notice that the expectation E(Z2
nk) of each term is the same as calcu-

lating the variance of a standard normal N(0, 1) which is of course 1. Then
the last term in parentheses above converges by the weak law of large num-
bers to 1! Therefore the quadratic variation of Brownian motion converges
to t. This little proof is in itself not sufficient to prove the theorem above
because it relies on the weak law of large of numbers. Hence the theorem
establishes convergence in distribution only while for the theorem above we
want convergence almost surely.

Remark. Starting from

lim
n→∞

2n∑
n=1

[
W

(
k

2n
t

)
−W

(
k − 1

2n
t

)]2

= t

and without thinking too carefully about what it might mean, we can imagine
an elementary calculus limit to the left side and write the formula:∫ t

0

[dW (τ)]2 = t =

∫ t

0

dτ.

In fact, with more advanced mathematics this can be made sensible ad math-
ematically sound. Now from this relation, we could write the integral equality
in differential form:

dW (τ)2 = dτ.

The important thing to remember here is that the formula suggests that
Brownian motion has differentials that cannot be ignored in second (or
squared, or quadratic) order. Brownian motion “wiggles” so much that even
the total of the squared differences add up! In retrospect, this is not so
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surprising given the law of the iterated logarithm. We know that in any
neighborhood [t, t + dt] to the right of t, Brownian motion must come close
to
√

2t log log t. That is, intuitively, W (t + dt) −W (t) must be about
√

2dt
in magnitude, so we would guess dW 2 ≈ 2dt The theorem makes it precise.

Remark. This theorem can be nicely summarized in the following way: Let
dW (t) = W (t + dt) − W (t). Let dW (t)2 = (W (t + dt) − W (t))2. Then
(although mathematically not rigorously) we can say:

dW (t) ∼ N(0, dt)

(dW (t))2 ∼ N(dt, 0).

Theorem 25.

lim
n→∞

2n∑
n=1

∣∣∣∣W (
k

2n
t

)
−W

(
k − 1

2n
t

)∣∣∣∣ =∞

In other words, the total variation of a Brownian path is infinite, with prob-
ability 1.

Proof.

2n∑
n=1

∣∣∣∣W (
k

2n
t

)
−W

(
k − 1

2n
t

)∣∣∣∣ ≥ ∑2n

n=1

∣∣W (
k
2n t
)
−W

(
k−1
2n t
)∣∣2

maxj=1,...,2n

∣∣W (
k
2n t
)
−W

(
k−1
2n t
)∣∣

The numerator on the right converges to t, while the denominator goes to 0
because Brownian paths are continuous, therefore uniformly continuous on
bounded intervals. Therefore the faction on the right goes to infinity.

Sources

The theorem in this section is drawn from A First Course in Stochastic
Processes by S. Karlin, and H. Taylor, Academic Press, 1975. The heuristic
proof using the weak law was taken from Financial Calculus: An introduction
to derivative pricing by M Baxter, and A. Rennie, Cambridge University
Press, 1996, page 59. The mnemonic statement of the quadratic variation in
differential form is derived from Steele’s text.
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Problems to Work for Understanding

1. Show that a monotone increasing function has bounded variation.

2. Show that a function with continuous derivative has bounded variation.

3. Show that the function

f(t) =

{
t2 sin(1/t) 0 < t ≤ 1

0 t = 0

is of bounded variation, while the function

f(t) =

{
t sin(1/t) 0 < t ≤ 1

0 t = 0

is not of bounded variation.

4. Show that a continuous function of bounded variation is also of quadratic
variation.

5. Show that the fourth moment E [Z4] = 3 where Z ∼ N(0, 1). Then
show that

E
[
W 2
nk

]
= 2t2/4n

Outside Readings and Links:

1. Yuval Peres, University of California Berkeley, Department of Statistics
Notes on sample paths of Brownian Motion. Contributed by S. Dunbar,
October 30, 2005.

2. Wikipedia, Quadratic variation Contributed by S. Dunbar, November
10, 2009.

3. Michael Kozdron, University of Regina, Contributed by S. Dunbar,
November 10, 2009.

http://stat-www.berkeley.edu/~peres/bmall.pdf
http://en.wikipedia.org/wiki/Quadratic_variation
http://stat.math.uregina.ca/~kozdron/Teaching/Regina/862Winter06/Handouts/quad_var_cor.pdf
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Chapter 6

Stochastic Calculus

6.1 Stochastic Differential Equations and the

Euler-Maruyama Method

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

Explain how to use a slope-field diagram to solve the ordinary differential
equation

dx

dt
= x.

Key Concepts

1. We can numerically simulate the solution to stochastic differential equa-
tions with an analog to Euler’s method, called the Euler-Maruyama
(EM) method.

Vocabulary

1. A stochastic differential equation is a mathematical equation relat-
ing a stochastic process to its local deterministic and random compo-

195
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nents. The goal is to unravel the relation to find the stochastic process.
Under mild conditions on the relationship, and with a specifying initial
condition, solutions of stochastic differential equations exist and are
unique.

2. The Euler-Maruyama (EM) method is a numerical method for
simulating the solutions of a stochastic differential equation based on
the definition of the Ito stochastic integral: Given

dX(t) = G(X(t))dt+H(X(t))dW (t), X(t0) = X0,

and a step size dt, we approximate and simulate with

Xj = Xj−1 +G(Xj−1)dt+H(Xj−1)(W (tj−1 + dt)−W (tj−1))

3. Extensions and variants of Standard Brownian Motion defined through
stochastic differential equations are Brownian Motion with drift,
scaled Brownian Motion, and geometric Brownian Motion.

Mathematical Ideas

Stochastic Differential Equations: Symbolically

The straight line segment is the building block of differential calculus. The
basic idea behind differential calculus is that differentiable functions, no mat-
ter how difficult their global behavior, are locally approximated by straight
line segments. In particular, this is the idea behind Euler’s method for ap-
proximating differentiable functions defined by differential equations.

We know that rescaling (“zooming in” on) Brownian motion does not
produce a straight line, it produces another image of Brownian motion. This
self-similarity is ideal for an infinitesimal building block, for instance, we
could build global Brownian motion out of lots of local “chunks” of Brow-
nian motion. This suggests we could build other stochastic processes out
of suitably scaled Brownian motion. In addition, if we include straight line
segments we can overlay the behavior of differentiable functions onto the
stochastic processes as well. Thus, straight line segments and “chunks” of
Brownian motion are the building blocks of stochastic calculus.

With stochastic differential calculus, we can build a nice class of new
stochastic processes. We do this by specifying how to build the new stochastic
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processes locally from our base deterministic function, the straight line and
our base stochastic process, Standard Brownian Motion. We write the local
change in value of the stochastic process over a time interval of (infinitesimal)
length dt as

dX = G(X(t)) dt+H(X(t)) dW (t), X(t0) = X0.

Note that we are not allowed to write

dX

dt
= G(X(t)) +H(X(t))

dW

dt
,X(t0) = X0

since Standard Brownian Motion is nowhere differentiable with probability
1. (Actually, the informal stochastic differential equation is a compact way of
writing a rigorously defined, equivalent implicit Ito integral equation. Since
we do not have the required rigor, we will approach the stochastic differential
equation intuitively.)

The stochastic differential equation says the initial point (t0, X0) is spec-
ified, perhaps with X0 a random variable with a given distribution. A deter-
ministic component at each point has a slope determined through G at that
point. In addition, there is some random perturbation that effects the evolu-
tion of the process. The variance of the random perturbation is determined at
each point through the function H. This is a simple expression of a Stochastic
Differential Equation (SDE) which determines a stochastic process, just as an
Ordinary Differential Equation (ODE) determines a differentiable function.
We infinitesimally extend the process with the incremental change informa-
tion and repeat. This is an expression in words of the Euler-Maruyama
method for numerically simulating the stochastic differential expression.

Example. The simplest stochastic differential equation is

dX = r dt+ dW, X(0) = b

where r is a constant. Take a deterministic initial condition to be X(0) = b.
This process is the stochastic extension of the differential equation expression
of a straight line. The new stochastic process X is drifting or trending at rate
r with a random variation due to Brownian Motion perturbations around
that trend. We will later show explicitly that the solution of this SDE is
X(t) = b + rt + W (t) although it is seems intuitively clear that this should
be the process. We will call this Brownian motion with drift.
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Example. The next simplest stochastic differential equation is

dX = σdW, X(0) = b

This stochastic differential equation says that the process is evolving as a mul-
tiple of Standard Brownian Motion. The solution may be easily guessed as
X(t) = σW (t) which has variance σ2t on increments of length t. Sometimes
this is called Brownian Motion (in contrast to Standard Brownian Motion
which has variance t on increments of length t).

We can combine the previous two examples to consider

dX = rdt+ σdW, X(0) = b

which would have solution X(t) = b+ rt+σW (t), a multiple of Brownian
Motion with drift r started at b. Sometimes this extension of Standard
Brownian motion is called Brownian Motion. Some authors consider this
process directly instead of the more special case we considered in the previous
chapter.

Example. The next simplest and first non-trivial differential equation is dX =
X dW . Here the differential equation says that process is evolving like Brow-
nian motion with a variance which is the same as the process value. When the
process is small, the variance is small, when the process is large, the variance
is large. Expressing the stochastic differential equation as dX/X = dW we
may say that the relative change acts like Standard Brownian Motion. The
resulting stochastic process is called geometric Brownian motion and it
will figure extensively in what we consider later as models of security prices.

Example. The next simplest differential equation is

dX = rX dt+ σX dW, X(0) = b.

Here the stochastic differential equation says that the growth of the process
at a point is proportional to the process value, with a random perturbation
proportional to the process value. Again looking ahead, we could write the
differential equation as dX/X = rdt+σdW and interpret it to say the relative
rate of increase is proportional to the time observed together with a random
perturbation like a Brownian segment proportional to the length of time.



6.1. STOCHASTIC DIFFERENTIAL EQUATIONS AND THE EULER-MARUYAMA METHOD199

Stochastic Differential Equations: Numerically

The sample path that the Euler-Maruyama method produces numerically is
the analog of using the Euler method.

The formula for the Euler-Maruyama (EM) method is based on the defi-
nition of the Ito stochastic integral:

Xj = Xj−1+G(Xj−1)dt+H(Xj−1)(W (tj−1+dt))−W (tj−1), tj = tj−1+dt.

Note that the initial conditions X0 and t0 set the starting point.
We do not use Brownian motion directly to obtain the incrementsW (tj−1+

dt)−W (tj−1) since we don’t have a direct source of values of Brownian Mo-
tion. Instead we use coin-flipping sequences of an appropriate length to
create an approximation to W (t). Note that since the increments W (tj−1 +
dt) −W (tj−1) are independent and identically distributed, we will be able
to use independent coin-flip sequences to generate the approximation of the
increments. For convenience, we generate the approximations using a ran-
dom number generator, but we could as well use actual coin-flipping. The
generation of the sequences is not recorded, only the summed and scaled
(independently sampled) outcomes for

W (dt) ≈ ŴN(dt) =
Ŵ (N dt)√

N
=
√
dt
Ŵ (N dt)√

N dt
.

For convenience, I will take dt = 1/10, N = 100, so we need Ŵ (100 ·
(1/10))/

√
100 = T10/10. Also, I will take r = 2, b = 1, and σ = 1, so

we simulate the solution of

dX = 2X dt+X dW, X(0) = 1.

j tj Xj 2Xj dt dW XjdW 2Xj +XjdW Xj + 2Xj dt+XjdW
0 0 1 0.2 0 0 0.2 1.2
1 0.1 1.2 0.24 0.2 0.24 0.48 1.68
2 0.2 1.68 0.34 -0.2 -0.34 0.0 1.68
3 0.3 1.68 0.34 0.4 0.67 1.01 2.69
4 0.4 2.69 0.54 -0.2 -0.54 0.0 2.69
5 0.5 2.69 0.54 0 0 0.54 3.23
6 0.6 3.23 0.65 0.4 1.29 1.94 5.16
7 0.7 5.16 1.03 0.4 2.06 3.1 8.26
8 0.8 8.26 1.65 0.4 3.3 4.95 13.21
9 0.9 13.21 2.64 0 0 2.64 15.85
10 1.0 15.85
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Of course, this can be programmed and the step size made much smaller,
presumably with better approximation properties. In fact, it is possible to
consider kinds of convergence for the EM method comparable to the Strong
Law of Large Numbers and the Weak Law of Large Numbers.

Sources

This section is adapted from: “An Algorithmic Introduction to the Numerical
Simulation of Stochastic Differential Equations”, by Desmond J. Higham, in
SIAM Review, Vol. 43, No. 3, pp. 525-546, 2001 and Financial Calculus: An
introduction to derivative pricing by M Baxter, and A. Rennie, Cambridge
University Press, 1996, pages 52-62.

Problems to Work for Understanding

1. Simulate the solution of the stochastic differential equation

dX(t) = X(t)dt+ 2X(t)dX

on the interval [0, 1] with initial condition X(0) = 1 and step size
∆t = 1/10.

2. Simulate the solution of the stochastic differential equation

dX(t) = tX(t)dt+ 2X(t)dX

on the interval [0, 1] with initial condition X(0) = 1 and step size
∆t = 1/10. Note the difference with the previous problem, now the
multiplier of the dt term is a function of time.

Outside Readings and Links:

1. Maple Stochastic Package The MAPLE stochastic package offers a
number of MAPLE routines for stochastic differential equations.

2. Matlab program files for Stochastic Differential Equations offers a num-
ber of MATLAB routines for stochastic differential equations.

http://www.math.uni-frankfurt.de/~numerik/maplestoch/
http://www-math.bgsu.edu/~zirbel/sde/
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6.2 Itô’s Formula

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

State the Taylor expansion of a function f(x) up to order 1. What is the
relation of this expansion to the Mean Value Theorem of calculus? What is
the relation of this expansion to the Fundamental Theorem of calculus?

Key Concepts

1. Itô’s formula is an expansion expressing a stochastic process in terms of
the deterministic differential and the Wiener process differential, that
is, the stochastic differential equation for the process.

2. Solving stochastic differential equations follows by guessing solutions
based on comparison with the form of Itô’s formula.

Vocabulary

1. Itô’s formula is often also called Itô’s lemma by other authors and
texts. Some authors believe that this result is more important than a
mere lemma, and so I adopt the alternative name of “formula”. “For-
mula” also emphasizes the analogy with the chain “rule” and the Taylor
“expansion”.

Mathematical Ideas

Itô’s Formula and Itô calculus

We need some operational rules that allow us to manipulate stochastic pro-
cesses with stochastic calculus.

The important thing to know about traditional differential calculus is
that it is the

• the Fundamental Theorem of Calculus,
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• chain rule, and

• Taylor polynomials and Taylor series

that enable us to calculate with functions. A deeper understanding of calcu-
lus recognizes that these three calculus theorems are all aspects of the same
fundamental idea. Likewise we need similar rules and formulas for stochastic
processes. Itô’s formula will perform that function for us. However, Itô’s
formula acts in the capacity of all three of the calculus theorems, and we
have only one such theorem for stochastic calculus.

The next example will show us that we will need some new rules for
stochastic calculus, the old rules from calculus will no longer make sense.

Example. Consider the process which is the square of the Wiener process:

Y (t) = W (t)2.

We notice that this process is always non-negative, Y (0) = 0, Y has infinitely
many zeroes on t > 0 and E [Y (t)] = E [W (t)2] = t. What more can we say
about this process? For example, what is the stochastic differential of Y (t)
and what would that tell us about Y (t)?

Using naive calculus, we might conjecture using the ordinary chain rule

dY = 2W (t)dW (t).

If that were true then the Fundamental Theorem of Calculus would imply

Y (t) =

∫ t

0

dY =

∫ t

0

2W (t) dW (t)

should also be true. But consider
∫ t

0
2W (t) dW (t). It ought to correspond to

a limit of a summation (for instance a Riemann-Stieltjes left sum):∫ t

0

2W (t)dW (t) ≈
n∑
i=1

2W ((i− 1)t/n)[W (it/n)−W ((i−)t/n)]

But look at this carefully: W ((i − 1)t/n) = W ((i − 1)t/n) −W (0) is inde-
pendent of [W (it/n) − W ((i−)t/n)] by property 2 of the definition of the
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Wiener process. Therefore, the expected value, or mean, of the summation
will be zero:

E [Y (t)] = E
[∫ t

0

2W (t)dW (t)

]
= E

[
lim
n→∞

n∑
i=1

2W ((i− 1)t/n)(W (it/n)−W ((i− 1)t/n))

]

= lim
n→∞

n∑
i=1

2E [[W ((i− 1)t/n)−W (0)][W (it/n)−W ((i−)t/n)]]

= 0.

(Note the assumption that the limit and the expectation can be interchanged!)
But the mean of Y (t) = W (t)2 is t which is definitely not zero! The

two stochastic processes don’t agree even in the mean, so something is not
right! If we agree that the integral definition and limit processes should be
preserved, then the rules of calculus will have to change.

We can see how the rules of calculus must change by rearranging the
summation. Use the simple algebraic identity

2b(a− b) =
(
a2 − b2 − (a− b)2

)
to re-write∫ t

0

2W (t)dW (t) = lim
n→∞

n∑
i=1

2W ((i− 1)t/n)[W (it/n)−W ((i− 1)t/n)]

= lim
n→∞

n∑
i=1

(
W (it/n)2 −W ((i− 1)t/n)2 − (W (it/n)−W ((i− 1)t/n))

)2
= lim

n→∞

(
W (t)2 −W (0)2 −

n∑
i=1

(W (it/n)−W ((i− 1)t/n))2

)

= W (t)2 − lim
n→∞

n∑
i=1

(W (it/n)−W ((i− 1)t/n))2

We recognize the second term in the last expression as being the quadratic
variation of Wiener process, which we have already evaluated, and so∫ t

0

2W (t)dW (t) = W (t)2 − t.
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Theorem 26 (Itô’s formula). If Y (t) is scaled Wiener process with drift,
satisfying dY = r dt+σ dW and f is a twice continuously differentiable func-
tion, then Z(t) = f(Y (t)) is also a stochastic process satisfying the stochastic
differential equation

dZ = (rf ′(Y ) + (σ2/2)f ′′(Y )) dt+ (σf ′(Y )) dW.

In words, Itô’s formula in this form tells us how to expand (in analogy
with the chain rule or Taylor’s formula) the differential of a process which is
defined as an elementary function of scaled Brownian motion with drift.

Example. Consider Z(t) = W (t)2. Here the stochastic process is standard
Brownian Motion, so r = 0 and σ = 1 so dY = dW . The twice continuously
differentiable function f is the squaring function, f(x) = x2, f ′(x) = 2x and
f ′′(x) = 2. Then according to Itô’s formula:

d(W 2) = (0 · (2W (t)) + (1/2)(2))dt+ (1 · 2W (t))dW = dt+ 2W (t)dW

Notice the additional dt term! Note also that if we repeated the integration
steps above in the example, we would obtain W (t)2 as expected!

The case where dY = dW , that is the base process is Standard Brownian
Motion so Z = f(W ), occurs commonly enough that we record Itô’s formula
for this special case:

Corollary 8 (Itô’s Formula applied to functions of standard Brownian Mo-
tion). If f is a twice continuously differentiable function, then Z(t) = f(W (t))
is also a stochastic process satisfying the stochastic differential equation

dZ = df(W ) = (1/2)f ′′(W ) dt+ f ′(W ) dW.

Example. Consider Geometric Brownian Motion

exp(rt+ σW (t)).

What SDE does Geometric Brownian Motion follow? Take Y (t) = rt +
σW (t), so that dY = rdt+ σdW . Then Geometric Brownian Motion can be
written as Z(t) = exp(Y (t)), so f is the exponential function. Itô’s formula
is

dZ = (rf ′(Y (t)) + (1/2)σ2f ′′Y (t)) + σf ′(Y )dW

Computing the derivative of the exponential function and evaluating, f ′(Y (t)) =
exp(Y (t)) = Z(t) and likewise for the second derivative. Hence

dZ = (r + (1/2)σ2)Z(t)dt+ σZ(t)dW
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Guessing Processes from SDEs with Itô’s Formula

One of the key needs we will have is to go in the opposite direction and con-
vert SDEs to processes, in other words to solve SDEs. We take guidance from
ordinary differential equations, where finding solutions to differential equa-
tions comes from judicious guessing based on a through understanding and
familiarity with the chain rule. For SDEs the solution depends on inspired
guesses based on a thorough understanding of the formulas of stochastic cal-
culus. Following the guess we require a proof that the proposed solution is
an actual solution, again using the formulas of stochastic calculus.

A few rare examples of SDEs can be solved with explicit familiar func-
tions. This is just like ODEs in that the solutions of many simple differential
equations cannot be solved in terms of elementary functions. The solutions
of the differential equations define new functions which are useful in appli-
cations. Likewise, the solution of an SDE gives us a way of defining new
processes which are useful.

Example. Suppose we are asked to solve the SDE

dZ(t) = σZ(t)dW.

We need an inspired guess, so we try

exp(rt+ σW (t))

where r is a constant to be determined while the σ term is given in the SDE.
Itô’s formula for the guess is

dZ = (r + (1/2)σ2)Z(t)dt+ σZ(t)dW.

We notice that the stochastic term (or Wiener process differential term) is
the same as the SDE. We need to choose the constant r appropriately in the
deterministic or drift differential term. If we choose r to be −(1/2)σ2 then
the drift term in the differential equation would match the SDE we have to
solve as well. We therefore guess

Y (t) = exp(σW (t)− (1/2)σ2t).

We should double check by applying Itô’s formula.
Solvable SDEs are scarce, and this one is special enough to give a name.

It is the Dolèan’s exponential of Brownian motion.
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Sources

This discussion is adapted from Financial Calculus: An introduction to
derivative pricing by M Baxter, and A. Rennie, Cambridge University Press,
1996, pages 52–62 and “An Algorithmic Introduction to the Numerical Sim-
ulation of Stochastic Differential Equations”, by Desmond J. Higham, in
SIAM Review, Vol. 43, No. 3, pages 525–546, 2001.

Problems to Work for Understanding

1. Find the solution of the stochastic differential equation

dY (t) = Y (t)dt+ 2Y (t)dW

2. Find the solution of the stochastic differential equation

dY (t) = tY (t)dt+ 2Y (t)dW

Note the difference with the previous problem, now the multiplier of
the dt term is a function of time.

3. Find the solution of the stochastic differential equation

dY (t) = µY (t)dt+ σY (t)dW

4. Find the solution of the stochastic differential equation

dY (t) = µtY (t)dt+ σY (t)dW

Note the difference with the previous problem, now the multiplier of
the dt term is a function of time.

5. Find the solution of the stochastic differential equation

dY (t) = µ(t)Y (t)dt+ σY (t)dX

Note the difference with the previous problem, now the multiplier of the
dt term is a general (technically, a locally bounded integrable) function
of time.
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Outside Readings and Links:

1.

2.

3.

4.

6.3 Properties of Geometric Brownian Mo-

tion

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

For the ordinary differential equation

dx

dt
= rx x(0) = x0

what is the rate of growth of the solution?

Key Concepts

1. Geometric Brownian Motion is the continuous time stochastic process
z0 exp(µt+ σW (t)) where W (t) is standard Brownian Motion.

2. The mean of Geometric Brownian Motion is

z0 exp(µt+ (1/2)σ2t).

3. The variance of Geometric Brownian Motion is

z2
0 exp(2µt+ σ2t)(exp(σ2t)− 1).
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Vocabulary

1. Geometric Brownian Motion is the continuous time stochastic pro-
cess z0 exp(µt+ σW (t)) where W (t) is standard Brownian Motion.

2. A random variable X is said to have the lognormal distribution (with
parameters µ and σ) if log(X) is normally distributed (log(X) ∼ N(µ, σ2)).
The p.d.f. for X is

fX(x) =
1√

2πσx
exp((−1/2)[(ln(x)− µ)/σ]2).

Mathematical Ideas

Geometric Brownian Motion

Geometric Brownian Motion is the continuous time stochastic process
X(t) = z0 exp(µt+ σW (t)) where W (t) is standard Brownian Motion. Most
economists prefer Geometric Brownian Motion as a model for market prices
because it is always positive, in contrast to Brownian Motion, even Brow-
nian Motion with drift. Furthermore, as we have seen from the stochastic
differential equation for Geometric Brownian Motion, the differential relative
change in Geometric Brownian Motion is a combination of a deterministic
proportional growth term similar to inflation or interest rate growth plus a
random relative change. See Itô’s Formula and Stochastic Calculus. On a
short time scale this is a sensible economic model.

Theorem 3. At fixed time t, Geometric Brownian Motion z0 exp(µt+σW (t))
has a lognormal distribution with parameters (ln(z0) + µt) and σ

√
t.

Proof.

FX(x) = P [X ≤ x]

= P [z0 exp(µt+ σW (t)) ≤ x]

= P [µt+ σW (t) ≤ ln(x/z0)]

= P [W (t) ≤ (ln(x/z0)− µt)/σ]

= P
[
W (t)/

√
t ≤ (ln(x/z0)− µt)/(σ

√
t)
]

=

∫ (ln(x/z0)−µt)/(σ
√
t)

−∞

1√
2π

exp(−y2/2) dy

http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/StochasticCalculus/ItosFormula/itosformula.xml
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Figure 6.1: The p.d.f. for a lognormal random variable

Now differentiating with respect to x, we obtain that

fX(x) =
1√

2πσx
√
t

exp((−1/2)[(ln(x)− ln(z0)− µt)/(σ
√
t)]2).

Calculation of the Mean

We can calculate the mean of Geometric Brownian Motion by using the m.g.f.
for the normal distribution.

Theorem 4. E [z0 exp(µt+ σW (t))] = z0 exp(µt+ (1/2)σ2t)

Proof.

E [X(t)] = E [z0 exp(µt+ σW (t))]

= z0 exp(µt)E [exp(σW (t))]

= z0 exp(µt)E [exp(σW (t)u)] |u=1

= z0 exp(µt) exp(σ2tu2/2)|u=1

= z0 exp(µt+ (1/2)σ2t)

since σW (t) ∼ N(0, σ2t) and E [exp(Y u)] = exp(σ2tu2/2) when Y ∼ N(0, σ2t).
See Moment Generating Functions, Theorem 4.

http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/LimitTheoremsCoinTossing/MomentGeneratingFunctions/momentgeneratingfunctions.xml
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Calculation of the Variance

We can calculate the variance of Geometric Brownian Motion by using the
m.g.f. for the normal distribution, together with the common formula

Var [X] = E
[
(X − E [X])2

]
= E

[
X2
]
− (E [X])2

and the previously obtained formula for E [X].

Theorem 5. Var [z0 exp(µt+ σW (t))] = z2
0 exp(2µt+ σ2t)[exp(σ2t)− 1]

Proof. First compute:

E
[
X(t)2

]
= E

[
z2
0 exp(µt+ σW (t))2

]
= z2

0E [exp(2µt+ 2σW (t))]

= z2
0 exp(2µt)E [exp(2σW (t))]

= z2
0 exp(2µt)E [exp(2σW (t)u)] |u=1

= z2
0 exp(2µt) exp(4σ2tu2/2)|u=1

= z2
0 exp(2µt+ 2σ2t)

Therefore,

Var [z0 exp(µt+ σW (t))] = z2
0 exp(2µt+ 2σ2t)− z2

0 exp(2µt+ σ2t)

= z2
0 exp(2µt+ σ2t)[exp(σ2t)− 1].

Note that this has the consequence that the variance starts at 0 and then
increases. The variation of Geometric Brownian Motion starts small, and
then increases, so that the motion generally makes larger and larger swings
as time increases.

Parameter Summary

If a Geometric Brownian Motion is defined by the stochastic differential equa-
tion

dX = rXdt+ σXdW X(0) = z0

then the Geometric Brownian Motion is

X(t) = z0 exp((r − (1/2)σ2)t+ σW (t)).
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At each time the Geometric Brownian Motion has lognormal distribution
with parameters (ln(z0)+rt−(1/2)σ2t) and σ

√
t. The mean of the Geometric

Brownian Motion is E [X(t)] = z0 exp(rt). The variance of the Geometric
Brownian Motion is

Var [X(t)] = z2
0 exp(2rt)[exp(σ2t)− 1]

If the primary object is the Geometric Brownian Motion

X(t) = z0 exp(µt+ σW (t)).

then by Itô’s formula the SDE satisfied by this stochastic process is

dX = (µ+ (1/2)σ2)X(t)dt+ σX(t)dW X(0) = z0.

At each time the Geometric Brownian Motion has lognormal distribution
with parameters (ln(z0)+µt) and σ

√
t. The mean of the Geometric Brownian

Motion is E [X(t)] = z0 exp(µt + (1/2)σ2t). The variance of the Geometric
Brownian Motion is

z2
0 exp(2µt+ σ2t)[exp(σ2t)− 1].

Ruin and Victory Probabilities for Geometric Brownian Motion

Because of the exponential-logarithmic connection between Geometric Brow-
nian Motion and Brownian Motion, many results for Brownian Motion can
be immediately translated into results for Geometric Brownian Motion. Here
is a result on the probability of victory, now interpreted as the condition of
reaching a certain multiple of the initial value. For A < 1 < B define the
“duration to ruin or victory”, or the “hitting time” as

TA,B = min{t ≥ 0 :
z0 exp(µt+ σW (t))

z0

= A,
z0 exp(µt+ σW (t))

z0

= B}

Theorem 6. For a Geometric Brownian Motion with parameters µ and σ,
and A < 1 < B,

P
[
z0 exp(µtA,B + σW (TA,B))

z0

= B

]
=

1− A1−(2µ−σ2)/σ2

B1−(2µ−σ2)/σ2 − A1−(2µ−σ2)/σ2
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Quadratic Variation of Geometric Brownian Motion

The quadratic variation of Geometric Brownian Motion may be deduced from
Ito’s formula:

dX = (µ− σ2/2)Xdt+ σXdW

so that

(dX)2 = (µ− σ2/2)2X2dt2 + (µ− σ2/2)X2σdtdW + σ2X2(dW )2.

Operating on the principle that terms of order (dt)2 and dt ·dW are small
and may be ignored, and that (dW )2 = dt, we obtain:

(dX)2 = σ2X2dt.

Sources

This section is adapted from: A First Course in Stochastic Processes, Second
Edition, by S. Karlin and H. Taylor, Academic Press, 1975, page 357; An
Introduction to Stochastic Modeling 3rd Edition, by H. Taylor, and S. Karlin,
Academic Press, 1998, pages 514-516; and Introduction to Probability Models
9th Edition, S. Ross, Academic Press, 2006.

Problems to Work for Understanding

1. Differentiate ∫ (ln(x/z0)−µt)/(σ
√
t)

−∞

1√
2π

exp(−y2/2) dy

to obtain the p.d.f. of Geometric Brownian Motion.

2. What is the probability that Geometric Brownian Motion with param-
eters µ = −σ2/2 and σ (so that the mean is constant) ever rises to
more than twice its original value? In economic terms, if you buy stock
whose fluctuations are described by Geometric Brownian Motion, what
are your chances to double your money?
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3. What is the probability that Geometric Brownian Motion with param-
eters µ = 0 and σ ever rises to more than twice its original value? In
economic terms, if you buy stock whose fluctuations are described by
Geometric Brownian Motion, what are your chances to double your
money?

4. Derive the probability of ruin (the probability of Geometric Brownian
Motion hitting A < 1 before hitting B > 1).

Outside Readings and Links:

1.

2.

3.

4.
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Chapter 7

The Black-Scholes Model

7.1 Derivation of the Black-Scholes Equation

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

What is the most important idea in the derivation of the binomial option
pricing model?

Key Concepts

1. The derivation of the Black-Scholes equation uses

(a) tools from calculus,

(b) the quadratic variation of Geometric Brownian Motion,

(c) the no-arbitrage condition to evaluate growth of non-risky portfo-
lios,

(d) and a simple but profound insight to eliminate the randomness or
risk.

215
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Vocabulary

1. A backward parabolic PDE is a partial differential equation of the
form Vt + DVxx + . . . = 0 with highest derivative terms in t of order
1 and highest derivative terms x of order 2 respectively. Terminal
values V (S, T ) at an end time t = T must be satisfied in contrast to
the initial values at t = 0 required by many problems in physics and
engineering.

2. A terminal condition for a backward parabolic equation is the speci-
fication of a function at the end time of the interval of consideration to
uniquely determine the solution. It is analogous to an initial condition
for an ordinary differential equation, except that it occurs at the end
of the time interval, instead of the beginning.

Mathematical Ideas

Explicit Assumptions Made for Modeling and Derivation

For mathematical modeling of a market for a risky security we will ideally
assume

1. that a large number of identical, rational traders always have complete
information about all assets they are trading,

2. changes in prices are given by a continuous random variable with some
probability distribution,

3. that trading transactions take negligible time,

4. purchases and sales can be made in any amounts, that is, the stock and
bond are divisible, we can buy them in any amounts including negative
amounts (which are short positions),

5. the risky security issues no dividends.

The first assumption is the essence of what economists call the efficient
market hypothesis. The efficient market hypothesis leads to the second
assumption as a conclusion, called the random walk hypothesis. Another
version of the random walk hypothesis says that traders cannot predict the
direction of the market or the magnitude of the change in a stock so the
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best predictor of the market value of a stock is the current price. We will
make the second assumption stronger and more precise by specifying the
probability distribution of the changes with a stochastic differential equation.
The remaining hypotheses are simplifying assumptions which can be relaxed
at the expense of more difficult mathematical modeling.

We wish to find the value V of a derivative instrument based on an
underlying security which has value S. Mathematically, we assume

1. the price of the underlying security follows the stochastic differential
equation

dS = rS dt+ σS dW

or equivalently that S(t) is a Geometric Brownian Motion with param-
eters r − σ2/2 and σ,

2. the risk free interest rate r and the volatility σ are constants,

3. the value V of the derivative depends only on the current value of the
underlying security S and the time t, so we can write V (S, t),

4. All variables are real-valued, and all functions are sufficiently smooth
to justify necessary calculus operations.

The first assumption is a mathematical translation of a strong form of
the efficient market hypothesis from economics. It is a reasonable modeling
assumption but finer analysis strongly suggests that security prices have a
higher probability of large price swings than Geometric Brownian Motion
predicts. Therefore the first assumption is not supported by data. However,
it is useful since we have good analytic understanding of Geometric Brownian
Motion.

The second assumption is a reasonable assumption for a modeling attempt
although good evidence indicates neither interest rates nor the volatility are
constant. On reasonably short times scales, say a period of three months
for the lifetime of most options, the interest rate and the volatility are ap-
proximately constant. The third and fourth assumptions are mathematical
translations of the assumptions that securities can be bought and sold in
any amount and that trading times are negligible, so that standard tools of
mathematical analysis can be applied. Both assumptions are reasonable for
modern security trading.
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Derivation of the Black-Scholes equation

We consider a simple derivative instrument, an option written on an under-
lying asset, say a stock that trades in the market at price S(t). A payoff
function Λ(S) determines the value of the option at expiration time T . For
t < T , the option value should depend on the underlying price S and the
time t. We denote the price as V (S, t). So far all we know is the value at the
final time V (S, T ) = Λ(S). We would like to know the value V (S, 0) so that
we know an appropriate buying or selling price of the option.

As time passes, the value of the option changes, both because the ex-
piration date approaches and because the stock price changes. We assume
the option price changes smoothly in both the security price and the time.
Across a short time interval δt we can write by the Taylor series expansion
of V that:

δV = Vtδt+ VsδS +
1

2
VSS(δS)2 + . . .

The neglected terms are of order (δt)2, δSδt, and (δS)3 and higher. We rely
on our intuition from random walks and Brownian motion to explain why we
keep the terms of order (δS)2 but neglect the other terms. More about this
later.

To determine the price, we construct a replicating portfolio. This will
be a specific investment strategy involving only the stock and a cash account
that will yield exactly the same eventual payoff as the option in all possible
future scenarios. Its present value must therefore be the same as the present
value of the option and if we can determine one we can determine the other.
We thus define a portfolio Π consisting of φ(t) shares of stock and ψ(t) units
of the cash account B(t). The portfolio constantly changes in value as the
security price changes randomly and the cash account accumulates interest.

In a short time interval, we can take the changes in the portfolio to be

δΠ = φ(t)δS + ψ(t)rB(t)δt

since δB(t) ≈ rB(t)δt, where r is the interest rate. This says that short-
time changes in the portfolio value are due only to changes in the security
price, and the interest growth of the cash account, and not to additions or
subtraction of the portfolio amounts. Any additions or subtractions are due
to subsequent reallocations financed through the changes in the components
themselves.
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The difference in value between the two portfolios changes by

δ(V − Π) = (Vt − ψ(t)rB(t))δt+ (VS − φ(t))δS +
1

2
VSS(δS)2 + . . . .

This could be considered to be a three-part portfolio consisting of an option,
and short-selling φ units of the security and ψ units of bonds.

Next come a couple of linked insights: As an initial insight we will elim-
inate the first order dependence on S by taking φ(t) = VS. Note that this
means the rate of change of the derivative value with respect to the security
value determines a policy for φ(t). Looking carefully, we see that this pol-
icy removes the “randomness” from the equation for the difference in values!
(What looks like a little “trick” right here hides a world of probability theory.
This is really a Radon-Nikodym derivative that defines a change of measure
that transforms a diffusion, i.e. a transformed Brownian motion with drift,
to a standard Wiener measure.)

Second, since the difference portfolio is now non-risky, it must grow in
value at exactly the same rate as any risk-free bank account:

δ(V − Π) = r(V − Π)δt.

This insight is actually our now familiar no-arbitrage-possibility argument: If
δ(V −Π) > r(V −Π)δt, then anyone could borrow money at rate r to acquire
the portfolio V − Π, holding the portfolio for a time δt, and then selling
the portfolio, with the growth in the difference portfolio more than enough
to cover the interest costs on the loan. On the other hand if δ(V − Π) <
r(V −Π)δt, then short-sell the option in the marketplace for V , purchase φ(t)
shares of stock and loan the rest of the money out at rate r. The interest
growth of the money will more than cover the repayment of the difference
portfolio. Either way, the existence of risk-free profits to be made in the
market will drive the inequality to an equality.

So:

r(V − Π)δt = (Vt − ψ(t)rB(t))δt+
1

2
VSS(δS)2.

Recall the quadratic variation of Geometric Brownian Motion is determinis-
tic, namely (δS)2 = σ2S(t)2δt,

r(V − Π)δt = (Vt − ψ(t)rB(t))δt+
1

2
σ2S2VSSδt.
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Cancel the δt terms, and recall that V − Π = V − φ(t)S − ψ(t)B(t), and
φ(t) = VS, so that on the left r(V −Π) = rV − rVSS− rψ(t)B(t). The terms
−rψ(t)B(t) on left and right cancel, and we are left with the Black-Scholes
equation:

Vt +
1

2
σ2S2VSS + rSVS − rV = 0.

Note that under the assumptions made for the purposes of the modeling
the partial differential equation depends only on the constant volatility σ
and the constant risk-free interest rate r. This partial differential equation
(PDE) must be satisfied by the value of any derivative security depending
on the asset S.

Some comments about the PDE:

• The PDE is linear: Since the solution of the PDE is the worth of the
option, then two options are worth twice as much as one option, and a
portfolio consisting two different options has value equal to the sum of
the individual options.

• The PDE is backwards parabolic because of the form Vt+(1/2)σ2S2VSS.
Thus, terminal values V (S, T ) (in contrast to the initial values re-
quired by many problems in physics and engineering) must be specified.
The value of a European option at expiration is known as a function of
the security price S, so we have a terminal value. The PDE is solved to
determine the value of the option at times before the expiration date.

Comment on the derivation:

The derivation above follows reasonably closely the original derivation of
Black, Scholes and Merton. Option prices can also be calculated and the
Black-Scholes equation derived by more advanced probabilistic methods. In
this equivalent formulation, the discounted price process exp(−rt)S(t) is
shifted into a “risk-free” measure using the Cameron-Martin-Girsanov The-
orem, so that it becomes a martingale. The option price V (S, t) is then the
discounted expected value of the payoff Λ(t) in this measure, and the PDE
is obtained as the backward evolution equation for the expectation. The
derivation above follows the classical derivation of Black and Scholes, but
the probabilistic view is more modern and can be more easily extended to
general market models.
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The derivation of the Black-Scholes equation above uses the fairly intu-
itive partial derivative equation approach because of the simplicity of the
derivation. This derivation:

• is easily motivated and related to similar derivations of partial differ-
ential equations in physics and engineering,

• avoids the burden of developing additional probability theory and mea-
sure theory machinery, including filtrations, sigma-fields, previsibility,
and changes of measure including Radon-Nikodym derivatives and the
Cameron-Martin-Girsanov theorem.

• also avoids, or at least hides, martingale theory that we have not yet
developed or exploited,

• does depend on the stochastic process knowledge that we have gained
already, but not more than that knowledge!

The disadvantages are that:

• we are forced to skim certain details relying on motivation instead of
strict mathematical rigor,

• when we are done we still have to solve the partial differential equation
to get the price on the derivative, whereas the probabilistic methods de-
liver the solution almost automatically and give the partial differential
equation as an auxiliary by-product,

• the probabilistic view is more modern and can be more easily extended
to general market models.

Sources

This derivation of the Black-Scholes equation is drawn from “Financial Deriva-
tives and Partial Differential Equations” by Robert Almgren, in American
Mathematical Monthly, Volume 109, January, 2002, pages 1–11.

Problems to Work for Understanding

1. Show by substitution that two exact solutions of the Black-Scholes
equations are
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(a) V (S, t) = AS, A some constant.

(b) V (S, t) = Aexp(rt)

Explain in financial terms what each of these solutions represents. That
is, describe a simple “claim”, “derivative” or “option” for which this
solution to the Black Scholes equation gives the value of the claim at
any time.

2. Draw the expiry diagrams (that is, a graph of terminal condition of
portfolio value versus security price S) at the expiration time for the
portfolio which is

(a) Short one share, long two calls with exercise price K. (This is
called a straddle .)

(b) Long one call, and one put both exercise price K. (This is also
called a straddle.)

(c) Long one call, and two puts, all with exercise price K. (This is
called a strip .)

(d) Long one put, and two calls, all with exercise price K. (This is
called a strap .)

(e) Long one call with exercise price K1 and one put with exercise
price K2. Compare the three cases when K1 > K2, (known as a
strangle), K1 = K2, and K1 < K2.

(f) As before, but also short one call and one put with exercise price
K. (When K1 < K < K2, this is called a butterfly spread. )

Outside Readings and Links:

1. Bradley University, School of Business Administration, Finance De-
partment, Kevin Rubash A very brief description on the development
history of option theory and the Black-Scholes model for calculating
option value, with the notations, Greeks and some explanatory graphs.
Also contains a calculators for the option value calculation. Submitted
by Yogesh Makkar, November 19, 2003.

http://bradley.bradley.edu/~arr/bsm/model.html
http://bradley.bradley.edu/~arr/bsm/model.html
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7.2 Solution of the Black-Scholes Equation

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

What is the solution method for the Cauchy-Euler type of ordinary differen-
tial equation:

x2 d
2v

dx2
+ ax

dv

dx
+ bv = 0 ?

Key Concepts

1. We solve the Black-Scholes equation for the value of a European call
option on a security by judicious changes of variables that reduce the
equation to the heat equation. The heat equation has a solution for-
mula. Using the solution formula with the changes of variables gives
the solution to the Black-Scholes equation.

2. Solving the Black-Scholes equation is an example of how to choose and
execute changes of variables to solve a partial differential equation.

Vocabulary

1. A differential equation with auxiliary initial conditions and boundary
conditions, that is an initial value problem, is said to be well-posed
if the solution exists, is unique, and small changes in the equation
parameters, the initial conditions or the boundary conditions produce
only small changes in the solutions.

Mathematical Ideas

Conditions for Solution of the Black-Scholes Equation

We have to start somewhere, and to avoid the problem of deriving everything
back to calculus, we will assert that the initial value problem for the heat
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equation on the real line is well-posed. That is, consider the solution to the
partial differential equation

∂u

∂τ
=
∂2u

∂x2
−∞ < x <∞, τ > 0.

We will take the initial condition

u(x, 0) = u0(x).

We will assume the initial condition and the solution satisfy the following
technical requirements:

1. u0(x) has no more than a finite number of discontinuities of the jump
kind,

2. lim|x|→∞ u0(x)e−ax
2

= 0 for any a > 0,

3. lim|x|→∞ u(x, τ)e−ax
2

= 0 for any a > 0.

Under these mild assumptions, the solution exists for all time and is unique.
Most importantly, the solution is represented as

u(x, τ) =
1

2
√
πτ

∫ ∞
−∞

u0(s)e
−(x−s)2/4τ ds

Remark. This solution can derived in several different ways, the easiest way
is to use Fourier transforms. The derivation of this solution representation
is standard in any course or book on partial differential equations.

Remark. Mathematically, the conditions above are unnecessarily restrictive,
and can be considerably weakened. However, they will be more than sufficient
for all practical situations we encounter in mathematical finance.

Remark. The use of τ for the time variable (instead of the more natural t)
is to avoid a conflict of notation in the several changes of variables we will
soon have to make.

The Black-Scholes terminal value problem for the value V (S, t) of a Eu-
ropean call option on a security with price S at time t is

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0



7.2. SOLUTION OF THE BLACK-SCHOLES EQUATION 225

with V (0, t) = 0, V (S, t) ∼ S as S →∞ and

V (S, T ) = max(S −K, 0).

Note that this looks a little like the heat equation on the infinite interval
in that it has a first derivative of the unknown with respect to time and the
second derivative of the unknown with respect to the other (space) variable.
On the other hand, notice:

1. Each time the unknown is differentiated with respect to S, it also mul-
tiplied by the independent variable S, so the equation is not a constant
coefficient equation.

2. There is a first derivative of V with respect to S in the equation.

3. There is a zero-th order term V in the equation.

4. The sign on the second derivative is the opposite of the heat equation
form, so the equation is of backward parabolic form.

5. The data of the problem is given at the final time T instead of the initial
time 0, consistent with the backward parabolic form of the equation.

6. There is a boundary condition V (0, t) = 0 specifying the value of the
solution at one sensible boundary of the problem. The boundary is sen-
sible since security values must only be zero or positive. This boundary
condition says that any time the security value is 0, then the call value
(with strike price K) is also worth 0.

7. There is another boundary condition V (S, t) ∼ S, as S → ∞, but
although this is financially sensible, (it says that for very large security
prices, the call value with strike price K is approximately S) it is more
in the nature of a technical condition, and we will ignore it without
consequence.

We eliminate each objection with a suitable change of variables. The plan
is to change variables to reduce the Black-Scholes terminal value problem to
the heat equation, then to use the known solution of the heat equation to
represent the solution, and finally change variables back. This is a standard
solution technique in partial differential equations. All the transformations
are standard, well-motivated, and well known.
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Solution of the Black-Scholes Equation

First we take t = T − τ
(1/2)σ2 and S = Kex, and we set

V (S, t) = Kv(x, τ).

Remember, σ is the volatility, r is the interest rate on a risk-free bond, and
K is the strike price. In the changes of variables above, the choice for t
reverses the sense of time, changing the problem from backward parabolic
to forward parabolic. The choice for S is a well-known transformation based
on experience with the Euler equidimensional equation in differential equa-
tions. In addition, the variables have been carefully scaled so as to make
the transformed equation expressed in dimensionless quantities. All of these
techniques are standard and are covered in most courses and books on partial
differential equations and applied mathematics.

Some extremely wise advice adapted from Stochastic Calculus and Finan-
cial Applications by J. Michael Steele, [49, page 186], is appropriate here.

“There is nothing particularly difficult about changing vari-
ables and transforming one equation to another, but there is an
element of tedium and complexity that slows us down. There is
no universal remedy for this molasses effect, but the calculations
do seem to go more quickly if one follows a well-defined plan. If
we know that V (S, t) satisfies an equation (like the Black-Scholes
equation) we are guaranteed that we can make good use of the
equation in the derivation of the equation for a new function
v(x, τ) defined in terms of the old if we write the old V as a func-
tion of the new v and write the new τ and x as functions of the
old t and S. This order of things puts everything in the direct
line of fire of the chain rule; the partial derivatives Vt, VS and VSS
are easy to compute and at the end, the original equation stands
ready for immediate use.”

Following the advice, write

τ = (1/2)σ2(T − t)

and

x = log

(
S

K

)
.
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The first derivatives are

∂V

∂t
= K

∂v

∂τ
· dτ
dt

= K
∂v

∂τ
· −σ

2

2

and
∂V

∂S
= K

∂v

∂x
· dx
dS

= K
∂v

∂x
· 1

S
.

The second derivative is

∂2V

∂S2
=

∂

∂S

(
∂V

∂S

)
=

∂

∂S

(
K
∂v

∂x

1

S

)
= K

∂v

∂x
· −1

S2
+K

∂

∂S

(
∂v

∂x

)
· 1

S

= K
∂v

∂x
· −1

S2
+K

∂

∂x

(
∂v

∂x

)
· dx
dS
· 1

S

= K
∂v

∂x
· −1

S2
+K

∂2v

∂x2
· 1

S2
.

The terminal condition is

V (S, T ) = max(S −K, 0) = max(Kex −K, 0)

but V (S, T ) = Kv(x, 0) so v(x, 0) = max(ex − 1, 0).
Now substitute all of the derivatives into the Black-Scholes equation to

obtain:

K
∂v

∂τ
· −σ

2

2
+
σ2

2
S2

(
K
∂v

∂x
· −1

S2
+K

∂2v

∂x2
· 1

S2

)
+ rS

(
K
∂v

∂x
· 1

S

)
− rKv = 0.

Now begin the simplification:

1. Isolate the common factor K and cancel.

2. Transpose the τ -derivative to the other side, and divide through by
σ2/2

3. Rename the remaining constant r/(σ2/2) as k. k measures the ratio
between the risk-free interest rate and the volatility.
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4. Cancel the S2 terms in the second derivative.

5. Cancel the S terms in the first derivative.

6. Gather up like order terms.

What remains is the rescaled, constant coefficient equation:

∂v

∂τ
=
∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv.

We have made considerable progress, because

1. Now there is only one dimensionless parameter k measuring the risk-
free interest rate as a multiple of the volatility and a rescaled time to
expiry (1/2)σ2T , not the original 4 dimensioned quantities K, T , σ2

and r.

2. The equation is defined on the interval −∞ < x < ∞, since this x-
interval defines 0 < S <∞ through the change of variables S = Kex.

3. The equation now has constant coefficients.

In principle, we could now solve the equation directly.
Instead, we will simplify further by changing the dependent variable scale

yet again, by

v = eαx+βτu(x, τ)

where α and β are yet to be determined. Using the product rule:

vτ = βeαx+βτu+ eαx+βτuτ

and

vx = αeαx+βτu+ eαx+βτux

and

vxx = α2eαx+βτu+ 2αeαx+βτux + eαx+βτuxx.

Put these into our constant coefficient partial differential equation, cancel
the common factor of eαx+βτ throughout and obtain:

βu+ uτ = α2u+ 2αux + uxx + (k − 1)(αu+ ux)− ku
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Gather like terms:

uτ = uxx + [2α + (k − 1)]ux + [α2 + (k − 1)α− k − β]u.

Choose α = −(k − 1)/2 so that the ux coefficient is 0, and then choose
β = α2 + (k − 1)α− k = −(k + 1)2/4 so the u coefficient is likewise 0. With
this choice, the equation is reduced to

uτ = uxx.

We need to transform the initial condition too. This transformation is

u(x, 0) = e−(−(k−1)/2)x−(−(k+1)2/4)·0v(x, 0)

= e((k−1)/2)x max(ex − 1, 0)

= max
(
e((k+1)/2)x − e((k−1)/2)x, 0

)
.

For future reference, we notice that this function is strictly positive when
the argument x is strictly positive, that is u0(x) > 0 when x > 0, otherwise,
u0(x) = 0 for x ≤ 0.

We are in the final stage since we are ready to apply the heat-equation
solution representation formula:

u(x, τ) =
1

2
√
πτ

∫ ∞
−∞

u0(s)e
−(x−s)2/4τ ds.

However, first we want to make a change of variable in the integration, by
taking z = (s− x) /

√
2τ , (and thereby dz = (−1/

√
2τ) dx) so that the inte-

gration becomes:

u(x, τ) =
1√
2π

∫ ∞
−∞

u0

(
z
√

2τ + x
)
e−z

2/2 dz.

We may as well only integrate over the domain where u0 > 0, that is for

z > −x/
√

2τ . On that domain, u0 = e((k+1)/2)·(x+z
√

2τ)− e((k−1)/2)·(x+z
√

2τ) so
we are down to:

1√
2π

∫ ∞
−x/
√

2τ

e
k+1
2 (x+z

√
2τ)e−z

2/2 dz − 1√
2π

∫ ∞
−x/
√

2τ

e
k−1
2 (x+z

√
2τ)e−z

2/2 dz

Call the two integrals I1 and I2 respectively.
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We will evaluate I1 ( the one with the k + 1 term) first. This is easy,
completing the square in the exponent yields a standard, tabulated integral.
The exponent is

((k + 1) /2)
(
x+ z

√
2τ
)
− z2/2 = (−1/2)

(
z2 −

√
2τ (k + 1) z

)
+ ((k + 1) /2)x

= (−1/2)
(
z2 −

√
2τ (k + 1) z + τ (k + 1)2 /2

)
+ ((k + 1) /2)x+ τ (k + 1)2 /4

= (−1/2)
(
z −

√
τ/2 (k + 1)

)2

+ (k + 1)x/2 + τ (k + 1)2 /4.

Therefore

1√
2π

∫ ∞
−x/
√

2τ

e
k+1
2 (x+z

√
2τ)e−z

2/2 dz =
e(k+1)x/2+τ(k+1)2/4

√
2π

∫ ∞
−x/
√

2τ

e
−1
2

“
z−
√
τ/2(k+1)

”2

dz.

Now, change variables again on the integral, choosing y = z −
√
τ/2 (k + 1)

so dy = dz, and all we need to change are the limits of integration:

e(k+1)x/2+τ(k+1)2/4

√
2π

∫ ∞
−x/
√

2τ−
√
τ/2(k+1)

e(−1/2)y2 dz.

The integral can be represented in terms of the cumulative distribution func-
tion of a normal random variable, usually denoted Φ. That is,

Φ(d) = (1/
√

2π)

∫ d

−∞
e−y

2/2 dy

so
I1 = e(k+1)x/2+τ(k+1)2/4Φ(d1)

where d1 = x/
√

2τ +
√
τ/2 (k + 1). Note the use of the symmetry of the

integral! The calculation of I2 is identical, except that (k + 1) is replaced by
(k − 1) throughout.

The solution of the transformed heat equation initial value problem is

u(x, τ) = e(k+1)x/2+τ(k+1)2/4Φ(d1)− e(k−1)x/2+τ(k−1)2/4Φ(d2)

where d1 = x/
√

2τ +
√
τ/2 (k + 1) and d2 = x/

√
2τ +

√
τ/2 (k − 1) .

Now we must systematically unwind each of the changes of variables,
from u. First, v(x, τ) = e(−1/2)(k−1)x−(1/4)(k+1)2τu(x, τ). Notice how many
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of the exponentials neatly combine and cancel! Next put x = log (S/K),
τ = (1/2)σ2(T − t) and V (S, t) = Kv(x, τ).

The final solution is the Black-Scholes formula for the value of a European
call option at time T with strike price K, if the current time is t and the
underlying security price is S, the risk-free interest rate is r and the volatility
is σ:

V (S, t) = SΦ

(
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

)
−Ke−r(T−t)Φ

(
log(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

)
.

Usually one doesn’t see the solution as this full closed form solution. Most
versions of the solution write intermediate steps in small pieces, and then
present the solution as an algorithm putting the pieces together to obtain
the final answer. Specifically, let

d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

d2 =
log(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

so that
VC(S, t) = S · Φ (d1)−Ke−r(T−t) · Φ (d2) .

Solution of the Black-Scholes Equation Graphically

Consider for purposes of graphical illustration the value of a call option with
strike price K = 100. The risk-free interest rate per year, continuously
compounded is 12%, so r = 0.12, the time to expiration is T = 1 measured
in years, and the standard deviation per year on the return of the stock, or
the volatility is σ = 0.10. The value of the call option at maturity plotted
over a range of stock prices 70 ≤ S ≤ 130 surrounding the strike price is
illustrated in 7.1

We use the Black-Scholes formula above to compute the value of the
option prior to expiration. With the same parameters as above the value
of the call option is plotted over a range of stock prices 70 ≤ S ≤ 130 at
time remaining to expiration t = 1 (red), t = 0.8, (orange), t = 0.6 (yellow),
t = 0.4 (green), t = 0.2 (blue) and at expiration t = 0 (black).

Using this graph notice two trends in the option value:
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Figure 7.1: Value of the call option at maturity



7.2. SOLUTION OF THE BLACK-SCHOLES EQUATION 233

Figure 7.2: Value of the call option at various times
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Figure 7.3: Value surface from the Black-Scholes formula

1. For a fixed time, as the stock price increases the option value increases,

2. As the time to expiration decreases, for a fixed stock value price the
value of the option decreases to the value at expiration.

We predicted both trends from our intuitive analysis of options. The Black-
Scholes option pricing formula makes the intuition precise.

We can also plot the solution of the Black-Scholes equation as a function
of security price and the time to expiration as value surface:

This value surface shows both trends.

Sources

This discussion is drawn from Section 4.2, pages 59–63; Section 4.3, pages
66–69; Section 5.3, pages 75–76; and Section 5.4, pages 77–81 of The Math-
ematics of Financial Derivatives: A Student Introduction by P. Wilmott, S.
Howison, J. Dewynne, Cambridge University Press, Cambridge, 1995. Some
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ideas are also taken from Chapter 11 of Stochastic Calculus and Financial
Applications by J. Michael Steele, Springer, New York, 2001.

Problems to Work for Understanding

1. Explicitly evaluate the integral I2 in terms of the c.d.f. Φ and other
elementary functions as was done for the integral I1.

2. What is the price of a European call option on a non-dividend-paying
stock when the stock price is $52, the strike price is $50, the risk-
free interest rate is 12% per annum (compounded continuously), the
volatility is 30% per annum, and the time to maturity is 3 months?

3. What is the price of a European call option on a non-dividend paying
stock when the stock price is $30, the exercise price is $29, the risk-free
interest rate is 5%, the volatility is 25% per annum, and the time to
maturity is 4 months?

4. Show that the Black-Scholes formula for the price of a call option tends
to max(S −K, 0) as t→ T .

Outside Readings and Links:

1. Cornell University, Department of Computer Science, Prof. T. Cole-
man Rhodes and Prof. R. Jarrow Numerical Solution of Black-Scholes
Equation, Submitted by Chun Fan, Nov. 12, 2002.

2. Monash University, Department of Mathematical Science, Eric. W.
Chu This link gives some examples and maple commands, Submitted
by Chun Fan, Nov. 12, 2002.

3. An applet for calculating the option value based on the Black-Scholes
model. Also contains tips on options, business news and literature on
options. Submitted by Yogesh Makkar, November 19, 2003.

4. ExcelEverywhere, a commercial application for spreadsheets on the
Web. A sample spreadsheet based calculator for calculating the option
values, based on Black-Scholes model. Submitted by Yogesh Makkar,
November 19,2003

http://www.cs.cornell.edu/Info/Courses/Spring-98/CS522/content/lecture2.math.pdf
http://www.cs.cornell.edu/Info/Courses/Spring-98/CS522/content/lecture2.math.pdf
http://http://www.maths.monash.edu.au/mth3251/Lectures/NumericalSol.pdf
http://http://www.maths.monash.edu.au/mth3251/Lectures/NumericalSol.pdf
http://www.blobek.com/black-scholes.html
file:www.xleverywhere.com/samples/bs/bs.htm
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7.3 Put-Call Parity

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

What does it mean to say that a differential equation is a linear differential
equation?

Key Concepts

1. The put-call parity principle links the price of a put option, a call option
and the underlying security price.

2. The put-call parity principle can be used to price European put options
without having to solve the Black-Scholes equation.

3. The put-call parity principle is a consequence of the linearity of the
Black-Scholes equation.

Vocabulary

1. The put-call parity principle is the relationship

C − P = S −Ke−r(T−t)

between the price C of a European call option and the price P of a
European put option, each with strike price K and underlying security
value S.

Mathematical Ideas

Put-Call Parity by Linearity of the Black-Scholes Equation

The Black-Scholes equation is

Vt +
1

2
σ2S2VSS + rSVS − rV = 0.
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With the additional terminal condition V (S, T ) given, a solution exists and
is unique. We observe that the Black-Scholes is a linear equation, so the
linear combination of any two solutions is again a solution.

From the problems in the previous section (or by easy verification right
now) we know that S is a solution of the Black-Scholes equation andKe−r(T−t)

is also a solution, so S −Ke−r(T−t) is a solution. At the expiration time T ,
the solution has value S −K.

Now if C(S, t) is the value of a call option at security value S and time
t < T , then C(S, t) satisfies the Black-Scholes equation, and has terminal
value max(S −K, 0). If P (S, t) is the value of a put option at security value
S and time t < T , then P (S, t) also satisfies the Black-Scholes equation, and
has terminal value max(K−S, 0). Therefore by linearity, C(S, t)−P (S, t) is
a solution and has terminal value C(S, T )−P (S, T ) = S−K. By uniqueness,
the solutions must be the same, and so

C − P = S −Ke−r(T−t).

This relationship is known as the put-call parity principle
This same principle of linearity and the composition of more exotic op-

tions in terms of puts and calls allows us to write closed form formulas for
the values of exotic options such as straps, strangles, and butterfly options.

Put-Call Parity by Reasoning about Arbitrage

Assume that an underlying security satisfies the assumptions of the previous
sections. Assume further that:

• The security price is currently S = 100,

• The strike price is K = 100,

• The expiration time is one year, T = 1,

• The risk-free interest rate is r = 0.12,

• The volatility is σ = 0.10.

One can then calculate that the price of a call option with these assumptions
is 11.84.

Consider an investor who buys the following portfolio:



238 CHAPTER 7. THE BLACK-SCHOLES MODEL

• Buy one share of stock at price S = 100.

• Sell one call option at C = V (100, 0) = 11.84.

• Buy one put option at unknown price.

Now at expiration, the stock price could have many different values, and
those would determine the values of the derivatives, see the table for some
representative values:

Security Call Put Portfolio
80 0 20 100
90 0 10 100
100 0 0 100
110 -10 0 100
120 -20 0 100

This portfolio has total value which is the strike price (which happens to
be the same as the current value of the security.) Holding this portfolio will
give a risk-free investment that will pay $100 in any circumstance. Therefore
the value of the whole portfolio must equal the present value of a riskless
investment that will pay off $100 in one year. This is an illustration of the use
of options for hedging an investment, in this case the extremely conservative
purpose of hedging to preserve value.

The parameter values chosen above are not special and we can reason
with general S, C and P with parameters K, r, σ, and T . Consider buying
a put and selling a call, each with the same strike price K. We will find at
expiration T that

• if the stock price S is below K we will realize a profit of K − S from
the put option that we own;

• if the stock price is above K, we will realize a loss of S − K from
fulfilling the call option that we sold.

But this payout is exactly what we would get from a futures contract to sell
the stock at price K. The price set by arbitrage of such a futures contract
must be Ke−r(T−t) − S. Specifically, one could sell (short) the stock right
now for S, and lend Ke−r(T−t) dollars right now for a net cash outlay of
Ke−r(T−t) − S, then at time T collect the loan at K dollars and actually
deliver the stock. This replicates the futures contract, so the future must
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have the same price as the initial outlay. Therefore we obtain the put-call
parity principle:

−C + P = K exp(−r(T − t))− S
or more naturally

S − C + P = K exp(−r(T − t)).

Synthetic Portfolios

Another way to view this formula is that it instructs us how to create syn-
thetic portfolios: Since

S + P −K exp(−r(T − t)) = C

a portfolio “long in the underlying security, long in a put, shortK exp(−r(T−
t)) in bonds” replicates a call.

This same principle of linearity and the composition of more exotic op-
tions in terms of puts and calls allows us to create synthetic portfolios for
the exotic options such as straddles, strangles, and so on. As noted above,
we can easily write their values in closed form solutions.

Explicit Formulas for the Put Option

Knowing any two of S, C or P allows us to calculate the third. Of course,
the immediate use of this formula will be to combine the security price and
the value of the call option from the solution of the Black-Scholes equation
to obtain the value of the put option:

P = C − S +K exp(−r(T − t))

For the sake of mathematical completeness write the value of a European
put option explicitly as:

VP (S, t) = SΦ

(
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

)
−Ke−r(T−t)Φ

(
log(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

)
−S+K exp(−r(T−t)).

Usually one doesn’t see the solution as this full closed form solution.
Instead, most versions of the solution write intermediate steps in small pieces,
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and then present the solution as an algorithm putting the pieces together to
obtain the final answer. Specifically, let

d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

d2 =
log(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

so that

VP (S, t) = S(Φ (d1)− 1)−Ke−r(T−t)(Φ (d2)− 1).

Using the symmetry properties of the c.d.f. Φ, we obtain

VP (S, t) = Ke−r(T−t)Φ (−d2)− SΦ (−d1) .

Graphical Views of the Put Option Value

For graphical illustration let P be the value of a put option with strike price
K = 100. The risk-free interest rate per year, continuously compounded is
12%, so r = 0.12, the time to expiration is T = 1 measured in years, and
the standard deviation per year on the return of the stock, or the volatility
is σ = 0.10. The value of the put option at maturity plotted over a range of
stock prices 0 ≤ S ≤ 150 surrounding the strike price is illustrated below:

Now we use the Black-Scholes formula to compute the value of the option
prior to expiration. With the same parameters as above the value of the put
option is plotted over a range of stock prices 0 ≤ S ≤ 150 at time remaining
to expiration t = 1 (red), t = 0.8, (orange), t = 0.6 (yellow), t = 0.4 (green),
t = 0.2 (blue) and at expiration t = 0 (black).

Notice a couple of trends in the value from this graph:

1. As the stock price increases, for a fixed time the option value decreases,

2. As the time to expiration decreases, for a fixed stock value price lass
than the strike price the value of the option increases to the value at
expiration.

We can also plot the value of the put option as a function of security price
and the time to expiration as value surface:
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Figure 7.4: Value of the put option at maturity
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Figure 7.5: Value of the put option at various times
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Figure 7.6: Value surface from the put-call parity formula
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Sources

This section is adapted from: Financial Derivatives by Robert W. Kolb,
New York Institute of Finance, Englewood Cliffs, NJ, 1993, page 107 and
following. Parts are also adapted from Stochastic Calculus and Financial
Applications by J. Michael Steele, Springer, New York, 2000, page 155.

Problems to Work for Understanding

1. Calculate the price of a 3-month European put option on a non-dividend-
paying stock with a strike price of $50 when the current stock price is
$50, the risk-free interest rate is 10% per annum (compounded contin-
uously) and the volatility is 30% per annum.

2. What is the price of a European put option on a non-dividend paying
stock when the stock price is $69, the strike price is $70, the risk-
free interest rate is 5% per annum (compounded continuously), the
volatility is 35% per annum, and the time to maturity is 6 months?

Outside Readings and Links:

1. Video with explanation of put-call parity.

2. Option Research and Technology Services Provides important option
trading terms and jargon, here is the link to definition of “Put-Call
Parity”.

7.4 Derivation of the Black-Scholes Equation

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

What is the most important idea in the derivation of the binomial option
pricing model?

http://www.youtube.com/watch?v=Xds9yLsYp_Y
http://www.optionrats.com/definition_putcallparity.htm?referrer=overture
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Key Concepts

1. The derivation of the Black-Scholes equation uses

(a) tools from calculus,

(b) the quadratic variation of Geometric Brownian Motion,

(c) the no-arbitrage condition to evaluate growth of non-risky portfo-
lios,

(d) and a simple but profound insight to eliminate the randomness or
risk.

Vocabulary

1. A backward parabolic PDE is a partial differential equation of the
form Vt + DVxx + . . . = 0 with highest derivative terms in t of order
1 and highest derivative terms x of order 2 respectively. Terminal
values V (S, T ) at an end time t = T must be satisfied in contrast to
the initial values at t = 0 required by many problems in physics and
engineering.

2. A terminal condition for a backward parabolic equation is the speci-
fication of a function at the end time of the interval of consideration to
uniquely determine the solution. It is analogous to an initial condition
for an ordinary differential equation, except that it occurs at the end
of the time interval, instead of the beginning.

Mathematical Ideas

Explicit Assumptions Made for Modeling and Derivation

For mathematical modeling of a market for a risky security we will ideally
assume

1. that a large number of identical, rational traders always have complete
information about all assets they are trading,

2. changes in prices are given by a continuous random variable with some
probability distribution,

3. that trading transactions take negligible time,
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4. purchases and sales can be made in any amounts, that is, the stock and
bond are divisible, we can buy them in any amounts including negative
amounts (which are short positions),

5. the risky security issues no dividends.

The first assumption is the essence of what economists call the efficient
market hypothesis. The efficient market hypothesis leads to the second
assumption as a conclusion, called the random walk hypothesis. Another
version of the random walk hypothesis says that traders cannot predict the
direction of the market or the magnitude of the change in a stock so the
best predictor of the market value of a stock is the current price. We will
make the second assumption stronger and more precise by specifying the
probability distribution of the changes with a stochastic differential equation.
The remaining hypotheses are simplifying assumptions which can be relaxed
at the expense of more difficult mathematical modeling.

We wish to find the value V of a derivative instrument based on an
underlying security which has value S. Mathematically, we assume

1. the price of the underlying security follows the stochastic differential
equation

dS = rS dt+ σS dW

or equivalently that S(t) is a Geometric Brownian Motion with param-
eters r − σ2/2 and σ,

2. the risk free interest rate r and the volatility σ are constants,

3. the value V of the derivative depends only on the current value of the
underlying security S and the time t, so we can write V (S, t),

4. All variables are real-valued, and all functions are sufficiently smooth
to justify necessary calculus operations.

The first assumption is a mathematical translation of a strong form of
the efficient market hypothesis from economics. It is a reasonable modeling
assumption but finer analysis strongly suggests that security prices have a
higher probability of large price swings than Geometric Brownian Motion
predicts. Therefore the first assumption is not supported by data. However,
it is useful since we have good analytic understanding of Geometric Brownian
Motion.
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The second assumption is a reasonable assumption for a modeling attempt
although good evidence indicates neither interest rates nor the volatility are
constant. On reasonably short times scales, say a period of three months
for the lifetime of most options, the interest rate and the volatility are ap-
proximately constant. The third and fourth assumptions are mathematical
translations of the assumptions that securities can be bought and sold in
any amount and that trading times are negligible, so that standard tools of
mathematical analysis can be applied. Both assumptions are reasonable for
modern security trading.

Derivation of the Black-Scholes equation

We consider a simple derivative instrument, an option written on an under-
lying asset, say a stock that trades in the market at price S(t). A payoff
function Λ(S) determines the value of the option at expiration time T . For
t < T , the option value should depend on the underlying price S and the
time t. We denote the price as V (S, t). So far all we know is the value at the
final time V (S, T ) = Λ(S). We would like to know the value V (S, 0) so that
we know an appropriate buying or selling price of the option.

As time passes, the value of the option changes, both because the ex-
piration date approaches and because the stock price changes. We assume
the option price changes smoothly in both the security price and the time.
Across a short time interval δt we can write by the Taylor series expansion
of V that:

δV = Vtδt+ VsδS +
1

2
VSS(δS)2 + . . .

The neglected terms are of order (δt)2, δSδt, and (δS)3 and higher. We rely
on our intuition from random walks and Brownian motion to explain why we
keep the terms of order (δS)2 but neglect the other terms. More about this
later.

To determine the price, we construct a replicating portfolio. This will
be a specific investment strategy involving only the stock and a cash account
that will yield exactly the same eventual payoff as the option in all possible
future scenarios. Its present value must therefore be the same as the present
value of the option and if we can determine one we can determine the other.
We thus define a portfolio Π consisting of φ(t) shares of stock and ψ(t) units
of the cash account B(t). The portfolio constantly changes in value as the
security price changes randomly and the cash account accumulates interest.
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In a short time interval, we can take the changes in the portfolio to be

δΠ = φ(t)δS + ψ(t)rB(t)δt

since δB(t) ≈ rB(t)δt, where r is the interest rate. This says that short-
time changes in the portfolio value are due only to changes in the security
price, and the interest growth of the cash account, and not to additions or
subtraction of the portfolio amounts. Any additions or subtractions are due
to subsequent reallocations financed through the changes in the components
themselves.

The difference in value between the two portfolios changes by

δ(V − Π) = (Vt − ψ(t)rB(t))δt+ (VS − φ(t))δS +
1

2
VSS(δS)2 + . . . .

This could be considered to be a three-part portfolio consisting of an option,
and short-selling φ units of the security and ψ units of bonds.

Next come a couple of linked insights: As an initial insight we will elim-
inate the first order dependence on S by taking φ(t) = VS. Note that this
means the rate of change of the derivative value with respect to the security
value determines a policy for φ(t). Looking carefully, we see that this pol-
icy removes the “randomness” from the equation for the difference in values!
(What looks like a little “trick” right here hides a world of probability theory.
This is really a Radon-Nikodym derivative that defines a change of measure
that transforms a diffusion, i.e. a transformed Brownian motion with drift,
to a standard Wiener measure.)

Second, since the difference portfolio is now non-risky, it must grow in
value at exactly the same rate as any risk-free bank account:

δ(V − Π) = r(V − Π)δt.

This insight is actually our now familiar no-arbitrage-possibility argument: If
δ(V −Π) > r(V −Π)δt, then anyone could borrow money at rate r to acquire
the portfolio V − Π, holding the portfolio for a time δt, and then selling
the portfolio, with the growth in the difference portfolio more than enough
to cover the interest costs on the loan. On the other hand if δ(V − Π) <
r(V −Π)δt, then short-sell the option in the marketplace for V , purchase φ(t)
shares of stock and loan the rest of the money out at rate r. The interest
growth of the money will more than cover the repayment of the difference
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portfolio. Either way, the existence of risk-free profits to be made in the
market will drive the inequality to an equality.

So:

r(V − Π)δt = (Vt − ψ(t)rB(t))δt+
1

2
VSS(δS)2.

Recall the quadratic variation of Geometric Brownian Motion is determinis-
tic, namely (δS)2 = σ2S(t)2δt,

r(V − Π)δt = (Vt − ψ(t)rB(t))δt+
1

2
σ2S2VSSδt.

Cancel the δt terms, and recall that V − Π = V − φ(t)S − ψ(t)B(t), and
φ(t) = VS, so that on the left r(V −Π) = rV − rVSS− rψ(t)B(t). The terms
−rψ(t)B(t) on left and right cancel, and we are left with the Black-Scholes
equation:

Vt +
1

2
σ2S2VSS + rSVS − rV = 0.

Note that under the assumptions made for the purposes of the modeling
the partial differential equation depends only on the constant volatility σ
and the constant risk-free interest rate r. This partial differential equation
(PDE) must be satisfied by the value of any derivative security depending
on the asset S.

Some comments about the PDE:

• The PDE is linear: Since the solution of the PDE is the worth of the
option, then two options are worth twice as much as one option, and a
portfolio consisting two different options has value equal to the sum of
the individual options.

• The PDE is backwards parabolic because of the form Vt+(1/2)σ2S2VSS.
Thus, terminal values V (S, T ) (in contrast to the initial values re-
quired by many problems in physics and engineering) must be specified.
The value of a European option at expiration is known as a function of
the security price S, so we have a terminal value. The PDE is solved to
determine the value of the option at times before the expiration date.

Comment on the derivation:

The derivation above follows reasonably closely the original derivation of
Black, Scholes and Merton. Option prices can also be calculated and the
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Black-Scholes equation derived by more advanced probabilistic methods. In
this equivalent formulation, the discounted price process exp(−rt)S(t) is
shifted into a “risk-free” measure using the Cameron-Martin-Girsanov The-
orem, so that it becomes a martingale. The option price V (S, t) is then the
discounted expected value of the payoff Λ(t) in this measure, and the PDE
is obtained as the backward evolution equation for the expectation. The
derivation above follows the classical derivation of Black and Scholes, but
the probabilistic view is more modern and can be more easily extended to
general market models.

The derivation of the Black-Scholes equation above uses the fairly intu-
itive partial derivative equation approach because of the simplicity of the
derivation. This derivation:

• is easily motivated and related to similar derivations of partial differ-
ential equations in physics and engineering,

• avoids the burden of developing additional probability theory and mea-
sure theory machinery, including filtrations, sigma-fields, previsibility,
and changes of measure including Radon-Nikodym derivatives and the
Cameron-Martin-Girsanov theorem.

• also avoids, or at least hides, martingale theory that we have not yet
developed or exploited,

• does depend on the stochastic process knowledge that we have gained
already, but not more than that knowledge!

The disadvantages are that:

• we are forced to skim certain details relying on motivation instead of
strict mathematical rigor,

• when we are done we still have to solve the partial differential equation
to get the price on the derivative, whereas the probabilistic methods de-
liver the solution almost automatically and give the partial differential
equation as an auxiliary by-product,

• the probabilistic view is more modern and can be more easily extended
to general market models.
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Sources

This derivation of the Black-Scholes equation is drawn from “Financial Deriva-
tives and Partial Differential Equations” by Robert Almgren, in American
Mathematical Monthly, Volume 109, January, 2002, pages 1–11.

Problems to Work for Understanding

1. Show by substitution that two exact solutions of the Black-Scholes
equations are

(a) V (S, t) = AS, A some constant.

(b) V (S, t) = Aexp(rt)

Explain in financial terms what each of these solutions represents. That
is, describe a simple “claim”, “derivative” or “option” for which this
solution to the Black Scholes equation gives the value of the claim at
any time.

2. Draw the expiry diagrams (that is, a graph of terminal condition of
portfolio value versus security price S) at the expiration time for the
portfolio which is

(a) Short one share, long two calls with exercise price K. (This is
called a straddle .)

(b) Long one call, and one put both exercise price K. (This is also
called a straddle.)

(c) Long one call, and two puts, all with exercise price K. (This is
called a strip .)

(d) Long one put, and two calls, all with exercise price K. (This is
called a strap .)

(e) Long one call with exercise price K1 and one put with exercise
price K2. Compare the three cases when K1 > K2, (known as a
strangle), K1 = K2, and K1 < K2.

(f) As before, but also short one call and one put with exercise price
K. (When K1 < K < K2, this is called a butterfly spread. )
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Outside Readings and Links:

1. Bradley University, School of Business Administration, Finance De-
partment, Kevin Rubash A very brief description on the development
history of option theory and the Black-Scholes model for calculating
option value, with the notations, Greeks and some explanatory graphs.
Also contains a calculators for the option value calculation. Submitted
by Yogesh Makkar, November 19, 2003.

7.5 Implied Volatility

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

What are some methods you could use to find the solution of f(x) = c for x
where f is a function that is so complicated that you cannot use elementary
functions and operations to isolate x ?

Key Concepts

1. We estimate historical volatility by applying the standard deviation
estimator from statistics to the observations ln(Si/Si−1).

2. We deduce implied volatility by numerically solving the Black-Scholes
formula for σ.

Vocabulary

1. Historical volatility of a security is the variance of the changes in
the logarithm of the price of the underlying asset, obtained from past
data.

2. Implied volatility of a security is the numerical value of the volatility
parameter that makes the market price of an option equal to the value
from the Black-Scholes formula.

http://bradley.bradley.edu/~arr/bsm/model.html
http://bradley.bradley.edu/~arr/bsm/model.html
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Mathematical Ideas

Historical volatility

Estimates of historical volatility of security prices use statistical estima-
tors, usually one of the estimators of variance. A main problem for historical
volatility is to select the sample size, or window of observations, used to es-
timate σ2. Different time-windows usually give different volatility estimates.
Furthermore, for a lot of customized “over the counter” derivatives, the nec-
essary price data may not exist.

Another problem with historical volatility is that it assumes future market
performance is the same as past market data. Although this is a natural
scientific assumption, it does not take into account historical anomalies such
as the October 1987 stock market drop, which may be unusual. That is,
computing historical volatility has the usual statistical difficulty of how to
handle outliers. The assumption that future market performance is the same
as past performance also does not take into account underlying changes in
the market such as economic conditions.

To estimate the volatility of a security price empirically, observe the secu-
rity price at regular intervals, such as every day, every week, or every month.
Define:

1. the number of observations n+ 1

2. Si, i = 0, 1, 2, 3, . . . , n is the security price at the end of the ith interval,

3. τ is the length of each of the time intervals (say in years),

and let

ui = ln(Si)− ln(Si−1) = ln

(
Si
Si−1

)
for i = 1, 2, 3, . . . be the increment of the logarithms of the security prices.
We are modeling the security price as a Geometric Brownian Motion, so that
ln(Si)− ln(Si−1) ∼ N(rτ, σ2τ).

Since Si = Si−1e
ui , ui is the continuously compounded return, (not an-

nualized) in the ith interval. Then the usual estimate s, of the standard
deviation of the ui’s is

s =

√√√√ 1

n− 1

n∑
i=1

(ui − ū)2
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where ū is the mean of the ui’s. Sometimes it is more convenient to use the
equivalent formula

s =

√√√√ 1

n− 1

n∑
i=1

u2
i −

1

n(n− 1)

(
n∑
i=1

ui

)2

.

We assume the security price varies as a Geometric Brownian Motion.
That means that the logarithm of the security price is a Wiener process with
some drift and on the period of time τ , would have a variance σ2τ . Therefore,
s is an estimate of σ

√
t. It follows that σ can be estimated as

σ ≈ s√
τ
.

Choosing an appropriate value for n is not obvious. Remember the vari-
ance expression for Geometric Brownian Motion is an increasing function of
time. If we model security prices with Geometric Brownian Motion, then
σ does change over time, and data that are too old may not be relevant
for the present or the future. A compromise that seems to work reasonably
well is to use closing prices from daily data over the most recent 90 to 180
days. Empirical research indicates that only trading days should be used, so
days when the exchange is closed should be ignored for the purposes of the
volatility calculation. [22, page 215]

Economists and financial analysts often estimate historical volatility with
more sophisticated statistical time series methods.

Implied Volatility

The implied volatility is the parameter σ in the Black-Scholes formula
that would give the option price that is observed in the market, all other
parameters being known.

The Black-Scholes formula is complicated to “invert” to explicitly ex-
press σ as a function of the other parameters. Therefore, we use numerical
techniques to implicitly solve for σ. A simple idea is to use the method of
bisection search to find σ.

Example. Suppose the value of a call on a non-dividend paying security is
1.85 when S = 21, K = 20, r = 0.10, and T − t = 0.25 and σ is unknown.
We start by arbitrarily guessing σ = 0.20. The Black-Scholes formula gives



7.5. IMPLIED VOLATILITY 255

C = 1.7647, which is too low. Since C is a increasing function of σ, this
suggests we try a value of σ = 0.30. This gives C = 2.1010, too high, so
we bisect the interval [0.20, 0.30] and try σ = 0.25. This value of σ gives
a value of C = 1.9268, still too high. Bisect the interval [0.20, 0.25] and
try a value of σ = 0.225, which yields C = 1.8438, slightly too low. Try
σ = 0.2375, giving C = 1.8849. Finally try σ = 0.23125 giving C = 1.8642.
To 2 significant digits, the significance of the data, σ = 0.23, with a predicted
value of C = 1.86.

A faster procedure is to use Newton’s method which is iterative. Essen-
tially we are trying to solve

f(σ, S,K, r, T − t)− C = 0,

so from an initial guess σ0, we form the Newton iterates

σi+1 = σi − f(σi)/(df(σi)/dσ).

This means one has to differentiate the Black-Scholes formula with respect
to σ. This derivative is one of the “Greeks” known as vega which we will look
at more extensively in the next section. A formula for vega for a European
call option is

df

dσ
= S
√
T − tΦ′(d1) exp(−r(T − t)).

A natural way to do the iteration is with a computer program rather than
by hand.

Implied volatility is a “forward-looking” estimation technique, in contrast
to the “backward-looking” historical volatility. That is, it incorporates the
market’s expectations about the prices of securities and their derivatives, or
more concisely, market expectations about risk. More sophisticated com-
binations and weighted averages combining estimates from several different
derivative claims can be developed.

Sources

This section is adapted from: Quantitative modeling of Derivative Securities
by Marco Avellaneda, and Peter Laurence, Chapman and Hall, Boca Raton,
2000, page 66; and Options, Futures, and other Derivative Securities second
edition, by John C. Hull, Prentice Hall, 1993, pages 229–230.
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Problems to Work for Understanding

1. Suppose that the observations on a security price (in dollars) at the end
of each of 15 consecutive weeks are as follows: 30.25, 32, 31.125, 30.25,
30.375, 30.625, 33, 32.875, 33, 33.5, 33.5 33.75, 33.5, 33.25. Estimate
the security price volatility.

2. A call option on a non-dividend paying security has a market price of
$2.50. The security price is $15, the exercise price is $13, the time to
maturity is 3 months, and the risk-free interest rate is 5% per year.
What is the implied volatility?

Outside Readings and Links:

1. Peter Hoadley, Options Strategy Analysis Tools has a Historic Volatility
Calculator that calculates and graphs historic volatility using historical
price data retrieved from Yahoo.com. Submitted by Bashar Al-Salim,
Dec. 2, 2003.

2. Analysis of asset allocation A calculator to compute implied volatility
using Black and Scholes. Submitted by Bashar Al-Salim, Dec. 2, 2003.

3. MindXpansion,a Tool for Option Traders This option calculator pack-
ages an enormous amount of functionality onto one screen, calculating
implied volatility or historical volatility with Midas Touch. Submitted
by Chun Fan, Dec. 3, 2003.

7.6 Sensitivity, Hedging and the “Greeks”

Rating

Mathematically Mature: may contain mathematics beyond calculus with
proofs.

Section Starter Question

Key Concepts

1. The sensitivity of the Black-Scholes formula to each of the variables
and parameters is named, is fairly easily expressed, and has important

http://www.hoadley.net/options/develtoolsvolcalc.htm
http://www.asset-analysis.com/Option/optimplied.html
http://www.mindxpansion.com/options/volatility.html
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consequences for hedging investments.

2. The sensitivity of the Black-Scholes formula (or any mathematical
model) to its parameters is important for understanding the model
and its utility.

Vocabulary

1. The Delta (∆) of a financial derivative is the rate of change of the
value with respect to the value of the underlying security, in symbols

∆ =
∂V

∂S

2. The Gamma (Γ) of a derivative is the sensitivity of ∆ with respect to
S, in symbols

Γ =
∂2V

∂S2
.

3. The Theta (Θ) of a European claim with value function V (S, t) is
defined as

Θ =
∂V

∂t
.

4. The rho (ρ) of a derivative security is the rate of change of the value
of the derivative security with respect to the interest rate, in symbols

ρ =
∂V

∂r
.

5. The Vega (Λ) of derivative security is the rate of change of value of
the derivative with respect to the volatility of the underlying asset, in
symbols

Λ =
∂V

∂σ
.

6. Hedging is the attempt to make a portfolio value immune to small
changes in the underlying asset value (or its parameters).
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Figure 7.7: Value of the call option at various times

Mathematical Ideas

To start the examination of each of the sensitivities, restate the Black-Scholes
formula for the value of a European call option:

d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

d2 =
log(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

and then

VC(S, t) = SΦ (d1)−Ke−r(T−t)Φ (d2) .

Note that d2 = d1 − σ2
√
T − t.
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Delta

The Delta of a European call option is the rate of change of its value with
respect to the underlying security price:

∆ =
∂VC
∂S

= Φ(d1) + SΦ′(d1)
∂d1

∂S

−K exp(−r(T − t))Φ′(d2)
∂d2

∂S

= Φ(d1) + S
1√
2π

exp(−d2
1/2)

1

Sσ
√
T − t

−K exp(−r(T − t)) 1√
2π

exp(−d2
2/2)

1

Sσ
√
T − t

= Φ(d1) + S
1√
2π

exp(−d2
1/2)

1

Sσ
√
T − t

−K exp(−r(T − t)) 1√
2π

exp

(
−
(
d1 − σ

√
T − t

)2

/2

)
1

Sσ
√
T − t

= Φ(d1) +
exp(−d2

1/2)√
2πσ
√
T − t

×[
1− K exp(−r(T − t))

S
exp

(
d1σ
√
T − t− σ2(T − t)/2

)]
= Φ(d1) +

exp(−d2
1/2)√

2πσ
√
T − t

×[
1− K exp(−r(T − t))

S
exp

(
log(S/K) + (r + σ2/2)(T − t)− σ2(T − t)/2

)]
= Φ(d1) +

exp(−d2
1/2)√

2πσ
√
T − t

×[
1− K exp(−r(T − t))

S
exp (log(S/K) + r(T − t))

]
= Φ(d1)

Note that since 0 < Φ(d1) < 1 (for all reasonable values of d1), ∆ > 0, and
so the value of a European call option is always increasing as the underlying
security value increases. This is precisely as we intuitively predicted when
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we first considered options, see Options. The increase in security value in S
is visible in Figure 7.7.

Delta Hedging

Notice that for any sufficiently differentiable function F (S)

F (S1)− F (S2) ≈
dF

dS
(S1 − S2)

Therefore, for the Black-Scholes formula for a European call option, using
our current notation ∆ = ∂V/∂S,

(V (S1)− V (S2))−∆(S1 − S2) ≈ 0

or equivalently for small changes in security price from S1 to S2,

V (S1)−∆S1 ≈ V (S2)−∆S2.

In financial language, we express this as:

“long 1 derivative, short ∆ units of the underlying asset is
market neutral for small changes in the asset value.”

We say that the sensitivity ∆ of the financial derivative value with respect
to the asset value gives the hedge-ratio. The hedge-ratio is the number of
short units of the underlying asset which combined with a call option will
offset immediate market risk. After a change in the asset value, ∆(S) will
also change, and so we will need to dynamically adjust the hedge-ratio to
keep pace with the changing asset value. Thus ∆(S) as a function of S
provides a dynamic strategy for hedging against risk.

We have seen this strategy before. In the derivation of Black-Scholes
equation, we required that the amount of security in our portfolio, namely
φ(t) be chosen so that φ(t) = VS. See Derivation of the Black-Scholes Equa-
tion The choice φ(t) = VS gave us a risk-free portfolio which must change in
the same way as a risk-free asset.

Gamma: The convexity factor

The Gamma (Γ) of a derivative is the sensitivity of ∆ with respect to S:

Γ =
∂2V

∂S2
.

file:../../Background/Options/options.shtml
file:../BlackScholes/blackscholes.xml
file:../BlackScholes/blackscholes.xml
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The concept of Gamma is important when the hedged portfolio cannot
be adjusted continuously in time according to ∆(S(t)). If Gamma is small
then Delta changes very little with S. This means the portfolio requires only
infrequent adjustments in the hedge-ratio. However, if Gamma is large, then
the hedge-ratio Delta is sensitive to changes in the price of the underlying
security.

According to the Black-Scholes formula, we have

Γ =
1

S
√

2πσ
√
T − t

exp(−d2
1/2)

Notice that Γ > 0, so the call option value is always concave-up with respect
to S. See this in Figure 7.7.

Theta: The time decay factor

The Theta (Θ) of a European claim with value function V (S, t) is defined
as

Θ =
∂V

∂t
.

Note that this definition is the rate of change with respect to the real (or
calendar) time, some other authors define the rate of change with respect to
the time-to-expiration T − t, so be careful when reading.

The Theta of a claim is sometimes refereed to as the time decay of the
claim. For a European call option on a non-dividend-paying stock,

Θ = − S · σ
2
√
T − t

· exp(−d2
1/2)√

2π
− rK exp(−r(T − t))Φ(d2).

Note that Θ for a European call option is negative, so the value of a European
call option is decreasing as a function of time, confirming what we intuitively
deduced before. See this in Figure 7.7.

Theta does not act like a hedging parameter as do Delta and Gamma.
Although there is uncertainty about the future stock price, there is no un-
certainty about the passage of time. It does not make sense to hedge against
the passage of time on an option.

Note that the Black-Scholes partial differential equation can now be writ-
ten as

Θ + rS∆ +
1

2
σ2S2Γ = rV.
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Given the parameters r, and σ2, and any 4 of Θ, ∆, Γ, S and V the remaining
quantity is implicitly determined.

Rho: The interest rate factor

The rho (ρ) of a derivative security is the rate of change of the value of
the derivative security with respect to the interest rate. It measures the
sensitivity of the value of the derivative security to interest rates. For a
European call option on a non-dividend paying stock,

ρ = K(T − t) exp(−r(T − t))Φ(d2)

so ρ is always positive. An increase in the risk-free interest rate means a
corresponding increase in the derivative value.

Vega: The volatility factor

The Vega (Λ) of a derivative security is the rate of change of value of the
derivative with respect to the volatility of the underlying asset. (Note, some
authors also denote Vega by variously λ, κ and σ and refer to Vega by the
corresponding proper Greek letter name.) For a European call option on a
non-dividend-paying stock,

Λ = S
√
T − texp(−d2

1/2)√
2π

so the Vega is always positive. An increase in the volatility will lead to
a corresponding increase in the call option value. These formulas implicitly
assume that the price of an option with variable volatility (which we have not
derived, we explicitly assumed volatility was a constant!) is the same as the
price of an option with constant volatility. To a reasonable approximation
this seems to be the case, for more details and references, see [22, page 316].

Hedging in Practice

It would be wrong to give the impression that traders continuously balance
their portfolios to maintain Delta neutrality, Gamma neutrality, Vega neu-
trality, and so on as would be suggested by the continuous mathematical
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formulas presented above. In practice, transaction costs make frequent bal-
ancing expensive. Rather than trying to eliminate all risks, an option trader
usually concentrates on assessing risks and deciding whether they are accept-
able. Traders tend to use Delta, Gamma, and Vega measures to quantify the
different aspects of risk in their portfolios.

Sources

The material in this section is adapted from ‘Quantitative modeling of Deriva-
tive Securities by Marco Avellaneda, and Peter Laurence, Chapman and Hall,
Boca Raton, 2000, pages 44–56,; and Options, Futures, and other Derivative
Securities second edition, by John C. Hull, Prentice Hall, 1993, pages 298–
318.

Problems to Work for Understanding

1. How can a short position in 1,000 call options be made Delta neutral
when the Delta of each option is 0.7?

2. Calculate the Delta of an at-the-money 6-month European call option
on a non-dividend paying stock, when the risk-free interest rate is 10%
per year (compound continuously) and the stock price volatility is 25%
per year.

3. Use the put-call parity relationship to derive the relationship between

(a) The Delta of European call and the Delta of European put.

(b) The Gamma of European call and the Gamma of European put.

(c) The Vega of a European call and a European put.

(d) The Theta of European call and a European put.

4. (a) Derive the expression for Γ for a European call option as given in
the notes.

(b) Draw a graph of Γ versus S for K = 50, r = 0.10, σ = 0.25,
T − t = 0.25.

(c) Draw a graph of Γ versus t for a call option on an at-the-money
stock, with K = 50, r = 0.10, σ = 0.25, T − t = 0.25.
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(d) Draw the graph of Γ versus S and t for a European call option
with K = 50, r = 0.10, σ = 0.25, T − t = 0.25.

(e) Comparing the graph of Γ versus S and t with the graph of VC
versus S and t in of Solution the Black Scholes Equation, explain
the shape and values of the Γ graph. This only requires an under-
standing of calculus, not financial concepts.

5. (a) Derive the expression for Θ for a European call option, as given
in the notes.

(b) Draw a graph of Θ versus S for K = 50, r = 0.10, σ = 0.25,
T − t = 0.25.

(c) Draw a graph of Θ versus t for an at-the-money stock, with K =
50, r = 0.10, σ = 0.25, T = 0.25.

6. (a) Derive the expression for ρ for a European call option as given in
this section.

(b) Draw a graph of ρ versus S for K = 50, r = 0.10, σ = 0.25,
T − t = 0.25.

7. (a) Derive the expression for Λ for a European call option as given in
this section.

(b) Draw a graph of Λ versus S for K = 50, r = 0.10, σ = 0.25,
T − t = 0.25.

Outside Readings and Links:

1. Stock Option Greeks video on the meaning and interpretation of the
rates of change of stock options with respect to parameters.

7.7 Limitations of the Black-Scholes Model

Rating

Student: contains scenes of mild algebra or calculus that may require guid-
ance.

http://www.youtube.com/watch?v=9EEGC9iJcFQ
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Section Starter Question

We have derived and solved the Black-Scholes equation. We have derived
parameter dependence and sensitivity of the solution. Are we done? What’s
next? How would we go about implementing and analyzing that next step,
if any?

Key Concepts

1. The Black-Scholes model overprices “at the money” options, that is
with S near K. The Black-Scholes model underprices options at the
ends, either deep “in the money” S � K or deep “out of the money”
S � K.

2. This is an indication that security price processes have “fat tails”, i.e.
a “wider”, “flatter” probability distribution which has the probabil-
ity of large changes in price S larger than would be predicted by the
lognormal distribution.

3. Mathematical models in finance do not have the same experimental ba-
sis and long experience as do mathematical models in physical sciences.
It is important to remember to apply mathematical models only under
circumstances where the assumptions apply.

4. Financial economists and mathematicians have suggested several alter-
natives to the Black-Scholes model. These alternatives include:

(a) Models where the future volatility of a stock price is uncertain
(called stochastic volatility models),

(b) Models where the stock price experiences occasional jumps rather
than continuous change (called jump-diffusion models).

Vocabulary

1. Many security price changes exhibit leptokurtosis: stock price changes
near the mean and large returns far from the mean are more likely than
Geometric Brownian Motion predicts, while other returns tend to be
less likely.
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2. Stochastic volatility models are higher-order mathematical finance
models where the volatility of a security price is a stochastic process
itself.

3. Jump-diffusion models models are higher-order mathematical fi-
nance models where the security price experiences occasional jumps
rather than continuous change.

Mathematical Ideas

Validity of Black-Scholes

Recall that the Black-Scholes Model is based on several assumptions:

1. The price of the underlying security for which we are considering a
derivative financial instrument follows the stochastic differential equa-
tion

dS = rS dt+ σS dW

or equivalently that S(t) is a Geometric Brownian Motion

S(t) = z0 exp((r − (1/2)σ2)t+ σW (t)).

At each time the Geometric Brownian Motion has lognormal distri-
bution with parameters (ln(z0) + rt − (1/2)σ2t) and σ

√
t. The mean

value of the Geometric Brownian Motion is E [S(t)] = z0 exp(rt). with
parameters r and σ.

2. The risk free interest rate r and volatility σ are constants.

3. The value V of the derivative depends only on the current value of the
underlying security S and the time t, so we can write V (S, t),

4. All variables are real-valued, and all functions are sufficiently smooth
to justify necessary calculus operations.

See Derivation of the Black-Scholes Equation for the context of these as-
sumptions.

One judgment on the validity of these assumptions statistically compares
the predictions of the Black-Scholes model with the market prices of call op-
tions. This is the observation or validation phase of the cycle of mathematical
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modeling, see Brief Remarks on Math Models for the cycle and diagram. A
detailed examination (the financial and statistical details of this examina-
tion are outside the scope of these notes) shows that the assumption that
the underlying security has a price which is modeled by Geometric Brownian
Motion, or equivalently that at any time the security price has a lognormal
distribution, misprices options. In fact, the Black-Scholes model overprices
“at the money” options, that is with S = K and underprices options at
the ends, either deep “in the money” S � K or deep “out of the money”
S � K. This indicates that the price process has “fat tails”, i.e. a “wider”,
“flatter” probability distribution where the probability of large changes in
price S is larger than the lognormal distribution predicts. Large changes are
more frequent than the model expects.

More fundamentally, one can look at whether general market prices and
security price movements fit the hypothesis of following Geometric Brownian
motion. Studies of security market returns reveal an important fact: Large
movements in security prices are more likely than a normally distributed
security market price predicts. Put another way, the Geometric Brownian
motion model predicts that large price swings are much less likely than is
actually the case. Using more precise statistical language than “fat tails”, se-
curity returns exhibit what is called leptokurtosis: the likelihood of returns
near the mean and of large returns far from the mean is greater than geomet-
ric Brownian motion predicts, while other returns tend to be less likely. For
example some studies have shown that the occurrence of downward jumps
three standard deviations below the mean is three times more likely than a
normal distribution would predict. This means that if we used Geometric
Brownian motion to compute the historical volatility of the S&P 500, we
would find that the normal theory seriously underestimates the likelihood of
large downward jumps. Jackwerth and Rubinstein (1995) observe that with
the Geometric Brownian Motion model, the crash of 1987 is an impossibly
unlikely event:

Take for example the stock market crash of 1987. Following
the standard paradigm, assume that the stock market returns
are log-normally distributed with an annualized volatility of 20%.
. . . On October 19, 1987, the two-month S&P 500 futures price fell
29%. Under the log-normal hypothesis, this [has a probability of]
10−160. Even if one were to have lived through the 20 billion year
life of the universe . . . 20 billion times . . . that such a decline could
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Figure 7.8: The red distribution has more probability near the mean, and a
fatter tail (not visible)
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have happened even once in this period is virtually impossible.

The popular term for such extreme changes is a “black swan”, reflecting the
rarity of spotting a black swan among white swans. In financial markets
“black swans” occur much more often than the standard probability models
predict [51, 36].

Flaws of Mathematical Modeling

By 2005, about 5% of jobs in the finance industry were in mathematical
finance. The heavy use of flawed mathematical models contributed to the
failure and near-failure of some Wall Street firms in 2009. As a result, some
critics have blamed the mathematics and the models for the general eco-
nomic troubles that resulted. In spite of the flaws, mathematical modeling
in finance is not going away. Consequently, modelers and users have to be
honest and aware of the limitations in mathematical modeling. [52]. Mathe-
matical models in finance do not have the same experimental basis and long
experience as do mathematical models in physical sciences. For the time
being, we should cautiously use mathematical models in finance as general
indicators that point to the values of derivatives, but do not predict with
high precision.

The origin of the difference between the model predicted by the Geo-
metric Brownian Motion and real financial markets may be a fundamental
misapplication of probability modeling. The mathematician Benoit Mandel-
brot argues that finance is prone to a “wild randomness” not usually seen
in nature [52]. Mandelbrot says that rare big changes can be more signifi-
cant than the sum of many small changes. That is, Mandelbrot calls into
question the applicability of the Central Limit Theorem in finance. Even
within finance, the models may vary in applicability. Analysis of the 2008-
2009 market collapse indicates that the markets for interest rates and foreign
exchange may have followed the models, but the markets for debt obligations
may have failed to take account of low-probability extreme events such as
the fall in house prices [52].

Actually, the problem goes deeper than just realizing that the precise dis-
tribution of security price movements is slightly different from the assumed
lognormal distribution. Even if the probability distribution type is specified,
giving a mathematical description of the risk, we still would have uncertainty,
not knowing the precise parameters of the distribution to specify it totally.
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From a scientific point of view, the way to estimate the parameters is statis-
tically evaluate the outcomes from the past to determine the parameters. We
looked at one case of this when we described historical volatility as a way to
determine σ for the lognormal distribution, see Implied Volatility. However,
this implicitly assumes that the past is a reasonable predictor of the future.
While this faith is justified in the physical world, where physical parameters
do not change, such a faith in constancy is suspect in the human world of the
markets. Consumers, producers, and investors all change habits overnight in
response to fads, bubbles, rumors, news, and real changes in the economic
environment. Their change in economic behavior changes the parameters.

Models can have other problems which are more social than mathe-
matical. Sometimes the use of the models can change the market priced
by the model. This feedback process is known in economics as counter-
permittivity and it has been noted with the Black-Scholes model, [52].
Sometimes special derivatives can be so complex that modeling them re-
quires too many assumptions, yet the temptation to make an apparently
precise model outruns the understanding required for the modeling process.
Special debt derivatives called “collateralized debt obligations” or CDOs im-
plicated in the economic collapse of 2008 are an example. Each CDO was
a unique mix of assets, but CDO modeling used general assumptions which
were not associated with the specific mix. Additionally, the CDO models
used assumptions which underestimated the correlation of movements of the
parts of the mix [52]. Valencia [52] says that the “The CDO fiasco was an
egregious and relatively rare case of an instrument getting way ahead of the
ability to map it mathematically.”

It is important to remember to apply mathematical models only under
circumstances where the assumptions apply [52]. For example “Value At
Risk” or VAR models use volatility to statistically estimate the likelihood
that a given portfolio’s losses will exceed a certain amount. However, VAR
works only for liquid securities over short periods in normal markets. VAR
cannot predict losses under sharp unexpected drops which are known to oc-
cur more frequently than expected under simple hypotheses. Mathematical
economists, especially Nassim Nicholas Taleb, have heavily criticized the mis-
use of VAR models.

Recall that we explicitly assumed that many of the parameters were con-
stant, in particular, volatility is assumed constant. Actually, we might wish
to relax that idea somewhat, and allow volatility to change in time. Of course
this introduces another dimension of uncertainty and also of variability into
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the problem. Still, changing volatility is an area of active research, both
practically and academically.

We also assumed that trading was continuous in time, and that security
prices moved continuously. Of course, continuous change is an idealizing
assumption. In fact, in October 1987, the markets dropped suddenly, almost
discontinuously, and market strategies based on continuous trading were not
able to keep with the selling panic that developed on Wall Street. Of course,
the October 1987 drop is yet another illustration that the markets do not
behave exactly as trading history would predict. [12]

Alternatives to Black-Scholes

Financial economists and mathematicians have suggested a number of alter-
natives to the Black-Scholes model. These alternatives include:

1. stochastic volatility models where the future volatility of a security
price is uncertain,

2. jump-diffusion models where the security price experiences occa-
sional jumps rather than continuous change.

In spite of these flaws, the Black-Scholes model does a good job of gener-
ally predicting market prices. Generally, the empirical research is supportive
of the Black-Scholes model. Observed differences have been small compared
to transaction costs. Even more importantly, the Black-Scholes model shows
how to assign prices to risky assets by using the principle of no-arbitrage ap-
plied to a replicating portfolio and reducing the pricing to applying standard
mathematical tools.

Sources

This section is adapted from: “Financial Derivatives and Partial Differential
Equations” by Robert Almgren, in American Mathematical Monthly, Vol-
ume 109, January, 2002, pages 1–11 , and from Options, Futures, and other
Derivative Securities second edition, by John C. Hull, Prentice Hall, 1993,
pages 229–230, 448–449 and Black-Scholes and Beyond: Option Pricing Mod-
els, by Neil A. Chriss, Irwin Professional Publishing, Chicago, 1997 . Some
additional ideas are adapted from When Genius Failed by Roger Lowenstein,
Random House, New York .
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Problems to Work for Understanding

1. A pharmaceutical company has a stock that is currently $25. Early to-
morrow morning the Food and Drug Administration will announce that
it has either approved or disapproved for consumer use the company’s
cure for the common cold. This announcement will either immediately
increase the stock price by $10 or decrease the price by $10. Discuss
the merits of using the Black-Scholes formula to value options on the
stock.

Outside Readings and Links:

1.
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jump-diffusion models, 265, 266, 271

Khinchin, Aleksandr, 126

Kolmogorov, Andrey, 127
Kronecker delta, 115

Laplace, Pierre-Simon, 139
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lognormal distribution, 209

Markov chain, 58
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put option, 239
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Samuelson, Paul, 11
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security, 74
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simple random walk, 58
speculation, 26, 27
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stochastic, 57
stochastic differential equation, 197
stochastic process, 57
stochastic volatility, 265, 266, 271
stock, 74
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Strong Law of Large Numbers, 127
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Wiener Process, 163
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joint probability density, 164
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quadratic variation, 189
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maximum, 182
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