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Abstract

Chrysodeixis chalcites, an important pest of banana crops on the Canary Islands, is usually

controlled by chemical insecticides. The present study aimed to evaluate the efficacy of the

most prevalent isolate of the Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV, Bacu-

loviridae) as a biological insecticide. Overall the prevalence of ChchNPV infection in C. chal-

cites populations was 2.3% (103 infected larvae out of 4,438 sampled), but varied from

0–4.8% on Tenerife and was usually low (0–2%) on the other islands. On Tenerife, infected

larvae were present at 11 out of 17 plantations sampled. The prevalence of infection in lar-

vae on bananas grown under greenhouse structures was significantly higher (3%) than in

open-field sites (1.4%). The ChchNPV-TF1 isolate was the most abundant and widespread

of four genetic variants of the virus. Application of 1.0x109 viral occlusion bodies (OBs)/l of

ChchNPV-TF1 significantly reduced C. chalcites foliar damage in young banana plants as

did commonly used pesticides, both in greenhouse and open-field sites. The insecticidal effi-

cacy of ChchNPV-TF1 was similar to that of indoxacarb and a Bacillus thuringiensis (Bt)-

based insecticide in one year of trials and similar to Bt in the following year of trails in green-

house and field crops. However, larvae collected at different time intervals following virus

treatments and reared in the laboratory experienced 2–7 fold more mortality than insects

from conventional insecticide treatments. This suggests that the acquisition of lethal dose

occurred over an extended period (up to 7 days) compared to a brief peak in larvae on plants

treated with conventional insecticides. These results should prove useful for the registration

of a ChchNPV-based insecticide for integrated management of this pest in banana crops on

the Canary Islands.
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Introduction

Banana is the main crop on the Canary Island archipelago, covering an area of about 9,000

hectares and a total production of 381,983 tonnes in 2015 [1]. The tomato looper, Chysodeixis
chalcites is a noctuid pest of bananas in the Canary Islands [2, 3]. Larvae often feed on banana

fruit, causing damage to the epidermis that greatly reduces the market value of damaged fruit

[3]. Control of this pest mainly involves the use of pesticides [2–4]. However, the low number

of active compounds authorized for this crop in the European Union, and the repeated use of

these products during the crop cycle [2, 5] favors the development of resistance [6], further

reducing the effectiveness of the currently approved pesticides. In addition, since 2014 inte-

grated pest management (IPM) is mandatory in crops grown in Spain (Royal decree 1311/

2012, which incorporates Directive 2009/128/EEC). IPM is an ecologically based pest control

strategy that favors natural mechanisms of pest control with minimal disruption from broad-

spectrum pesticides [7, 8].

Lepidopteran nucleopolyhedroviruses (genus Alphabaculovirus, Baculoviridae) are virulent

and selective pathogens with an established track-record as effective biological insecticides [9].

A single-nucleocapsid nucleopolyhedrovirus isolated from a single infected C. chalcites larva

collected in banana crops in southern Tenerife, was characterized and named ChchNPV-TF1

[5]. Laboratory and small-scale greenhouse trials on young banana plants indicated that the

high pathogenicity and fast speed of kill of this isolate favored its development as a biological

insecticide for the control of this pest [5, 10]. Studies on other lepidopteran-nucleopolyhedro-

virus pathosystems indicate that genetic diversity in the pathogen population has a marked

influence on major phenotypic traits including pathogenicity, measured in terms of concentra-

tion-mortality metrics, speed of kill and production of progeny virus particles in each infected

insect [11–13]. As these characteristics are of major importance to the efficacy of virus-based

biological insecticides, the genetic identity of the virus is an issue of key importance when select-

ing the active material for production, formulation and field testing of virus-based products.

The objective of the present study was to estimate the genetic diversity of ChchNPV vari-

ants present in C. chalcites populations on the Canary Islands and to evaluate the insecticidal

efficacy of ChchNPV-TF1, which was the most prevalent variant. Efficacy trials were per-

formed in comparison with two frequently used insecticides in young banana plants grown in

small-scale greenhouse and open-field conditions.

Materials and methods

Insects

The C. chalcites colony, used for artificial infestation of plants in greenhouse and open-field tri-

als, was established with larvae collected in banana crops in southern Tenerife. This colony

was maintained in the Instituto Canario de Investigaciones Agrarias (ICIA), Tenerife, at 25

±1˚C, 60–80% relative humidity and a photoperiod of 16:8 h (light:dark) on a semi-synthetic

diet based on cornflour, wheatgerm and yeast [14]. Adults were fed ad libitum with 10% v/v

honey solution.

Prevalence and diversity of ChchNPV in C. chalcites populations in

banana crops

During field surveys conducted in banana crops on the Canary Islands over a two-year period,

from December 2012 to December 2014, plantations at 11 localities in Tenerife, 10 in La

Palma, 7 in Gran Canaria, 4 in La Gomera and 2 in El Hierro were surveyed with the aim of

determining the natural prevalence of ChchNPV infection (Table 1). No specific permissions
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were required for access to the plantations and the field studies did not involve endangered or

protected species. Each location was classified as infested or not by C. chalcites, based on direct

observation of feeding damage on leaves and fruit [E. Fuentes, pers. communication]. Thereaf-

ter in each infested plantation, larvae were collected from plants that showed C. chalcites feed-

ing damage, both mature and immature plants. The sampling effort was similar for each

location and involved a 4-hour period collecting larvae, or until ~100 larvae had been collected

at each site. Collections were performed intermittently over the two year period. As the density

of infestation varied, the number of larvae collected at each site varied accordingly (Table 1).

Larvae were collected using a soft paintbrush, and individualized in 25 ml plastic pots con-

taining diet. Larvae were maintained in a laboratory rearing chamber at 25 ± 2˚C, 70 ± 15%

RH and 16:8 hours (L:D) photoperiod, until death or pupation. Larvae were inspected daily

and those died with the typical signs of polyhedrosis disease were individually frozen at -20˚C

for subsequent analysis. All larvae that died were observed using an optical microscope

(x1000) to determine the presence of OBs.

To determine the identity of isolates from virus-killed field-collected insects, restriction

endonuclease analysis (REN) was performed. For this, viral occlusion bodies (OBs) were puri-

fied from cadavers by homogenization in 0.1% (wt/vol) sodium dodecyl sulfate (SDS) and

were filtered through muslin to remove debris. The resulting suspension was centrifuged at

3,800 x g for 5 minutes, OBs were resuspended in 500 μl of 0.1% SDS and centrifuged again at

3,800 x g for 5 minutes. OBs were finally resuspended in sterile distilled water. For viral DNA

extraction, 100 μl of purified OB suspension was mixed with 100 μl of 0.5M Na2CO3, 50 μl of

10% SDS and distilled water to a final volume of 500 μl, incubated at 60˚C for 10 minutes and

centrifuged at 3,800 x g for 5 minutes. The resulting supernatant was treated with 25 μl of pro-

teinase K (20 mg/ml) at 50˚C for 30 minutes and then treated twice with 500 μl of TE-saturated

phenol and once with 500 μl chloroform. The aqueous phase was recovered and DNA was pre-

cipitated by adding 1/10 volume 3M sodium acetate at pH 5.2 and 2.5 volumes of 100% cold

ethanol. The DNA pellet was washed with 70% cold ethanol and resuspended in 50–100 μl

0.1x TE (Tris HCl-EDTA) buffer. For REN analysis, 2 μg of viral DNA were incubated with

5 units of BglII (Takara) at 37˚C for 4 hours following the manufacturer’s instructions. The

reaction was stopped by adding 4 μl of loading buffer (0.25% w/v bromophenol blue, 40% w/v

sucrose). Samples were loaded on 1% agarose gel and subjected to electrophoresis in TAE

buffer (40 mM Tris-acetate, pH 8.0; 1 mM EDTA). The gel was stained using ethidium bro-

mide, observed on a UV transilluminator and photographed using the GeneSnap Chemi-Doc

package (BioRad, CA).

Production of ChchNPV-TF1 OBs

For field trials, ChchNPV-TF1 isolate OBs were produced by inoculating fifth and sixth instar

laboratory-reared C. chalcites larvae with 5.00x107 OBs/ml or 9.02x108 OBs/ml, respectively [5,

10]. OB inocula were suspended in 10% sucrose solution and 0.001% Fluorella blue food dye,

and fed to larvae using the droplet feeding method [15]. Inoculated larvae were placed in 24

well tissue culture plates with semi-synthetic diet and incubated at 25˚C. Larvae were checked

daily for signs of polyhedrosis disease and dead insects were collected and stored at -20˚C. OBs

were collected by thawing infected insects, followed by homogenization, filtration through

muslin and centrifugation at 3,800 x g for 5 minutes. The resulting pellet of OBs was resus-

pended in sterile water and OB concentration was determined by counting triplicate samples

using an improved Neubauer hemocytometer (Superior Marienfield, Laude-Koeningshofen,

Germany) under phase contrast microscopy at x400. Purified OBs were stored at 4˚C until use.

The identity of OBs produced for field trials was confirmed by REN analysis using BglII [5].

Chrysodeixis chalcites nucleopolyhedrovirus

PLOS ONE | https://doi.org/10.1371/journal.pone.0181384 July 27, 2017 3 / 19

https://doi.org/10.1371/journal.pone.0181384


Table 1. ChchNPV surveys. Detailed information on ChchNPV surveys indicating the localities prospected, the crop system (OF: open-field and GH: mesh

greenhouses), the number of surveys performed, the number of larvae collected and the larvae that died from virus infection and finally the ChchNPV isolates

identified.

Canary Islands banana crops sample Coordinates Crop

system

Surveys

(n)

Larvae

(n)

Isolates (n) (%

prevalence)

ChchNPV isolates (number

of larvae infected)Island Locality Area Lat. (N) Long.

(W)

Tenerife Fasnia Fasnia 28˚ 13’

45”

16˚ 24’

57”

OF/GH 1 91 0 (0) -

Güimar Puertito

Güimar

28˚ 17’

21”

16˚ 23’

04”

GH 2 83 1 (1.2) TF1 (1)

Granadilla San Isidro 28˚ 02’

33”

16˚ 33’

33”

GH 1 26 1 (3.9) TF1 (1)

Arona El Cordero 28˚ 02’

43”

16˚ 37’

51”

GH 2 223 6 (2.7) TF1 (5)

El Fraile 28˚ 01’

50”

16˚ 39’

23”

GH 4 261 7 (2.7) TF1 (6)

Las Galletas 28˚ 01’

13”

16˚ 40’

24”

GH 2 102 1 (0.9) TF1 (1)

Valle Grande 28˚ 01’

47”

16˚ 39’

07”

GH 2 199 0 (0) -

Parque La

Reina

28˚ 02’

43”

16˚ 39’

08”

GH 3 204 0 (0) -

Guaza 28˚ 01’

35”

16˚ 39’

11”

GH 1 34 1 (2.9) TF3 (1)

Adeje Caldera del

Rey

28˚ 04’

19”

16˚ 43’

02”

OF/GH 4 463 22 (4.8) TF1 (12), TF2 (8)

Guı́a Isora Abama 28˚ 10’

37”

16˚ 47’

18”

OF 1 61 0 (0) -

Alcalá- Aurora 28˚ 13’

08”

16˚ 49’

40”

OF 1 81 0 (0) -

Buenavista La Laja 28˚ 23’

12”

16˚ 50’

15”

GH 1 48 1 (2.1) TF2 (1)

Los Silos Caleta 28˚ 23’

07”

16˚ 49’

39”

OF 1 56 2 (3.6) TF1 (1), TF2 (1)

Puerto Cruz La Vera 28˚ 24’

24”

16˚ 33’

30”

OF 2 171 2 (1.2) -

Valle Guerra Catesa 28˚ 31’

20”

16˚ 24’

43”

GH 3 367 12 (3.3) TF1 (10)

Tejina Tejina Costa 28˚ 32’

24”

16˚ 22’

44”

GH 1 66 0 (0) -

Total 2536 56(2.2) TF1 (37), TF2 (10), TF3 (1)

La Palma Fuencaliente La Ballena 28˚ 29’

11”

17˚ 52’

14”

OF 3 167 3 (1.8) TF1 (1)

Los Llanos El Remo 28˚ 33’

18”

17˚ 53’

15”

GH 3 128 1 (0.8) TF1 (1)

Charco verde 28˚ 34’

26”

17˚ 53’

55”

OF/GH 2 43 0 (0) -

Todoque 28˚ 36’

50”

17˚ 54’

20”

OF/GH 2 123 0 (0) -

Tijarafe Tijarafe 28˚ 41’

45”

17˚ 57’

58”

GH 1 28 0 (0) -

Puntallana Cabrera 28˚ 45’

36”

17˚ 44’

34”

OF 1 42 0 (0) -

Martı́n Luis 28˚ 42’

59”

17˚ 44’

26”

OF/GH 1 100 1 (1) TF1 (1)

(Continued )
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Determining the optimal ChchNPV-TF1 concentration

To determine the most appropriate concentration for ChchNPV-TF1 OB application under

field conditions we followed previous studies in which three viral concentrations were evalu-

ated to estimate the most suitable concentration for use in field assays [10]. For this, trials were

performed in 2013 using young banana plants (Musa acuminata, var. Dwarf Cavendish) of

approximately 3 months old with 7 leaves and ~50 cm height. Plants were grown in 21 cm

diameter pots in the experimental plots of the Instituto Canario de Investigaciones Agrarias

(ICIA) (Tenerife, Spain). Trials were conducted in a plastic greenhouse of 600 m2 on the

Table 1. (Continued)

Canary Islands banana crops sample Coordinates Crop

system

Surveys

(n)

Larvae

(n)

Isolates (n) (%

prevalence)

ChchNPV isolates (number

of larvae infected)Island Locality Area Lat. (N) Long.

(W)

Barlovento Faro 28˚ 50’

16”

17˚ 46’

48”

OF 1 55 0 (0) -

San Andrés Charco Azul 28˚ 48’

25”

17˚ 45’

47”

OF 1 21 0 (0) -

Mazo El Pocito 28˚ 35’

43”

17˚ 45’

33”

OF 1 54 3 (5.6) TF1 (3)

Breña Alta El Socorro 28˚ 39’

34”

17˚ 46’

32

OF 1 54 1 (1.9) TF2 (1)

Total 815 9 (1.1) TF1 (6), TF2 (1)

Gran

Canaria

Vecindario Pozo

Izquierdo

27˚ 50’

28”

15˚ 25’

51”

GH 5 264 0 (0) -

Mogán Arguineguı́n 27˚ 46’

41”

15˚ 39’

57”

OF 1 52 0 (0) -

Veneguera 27˚ 52’

23”

15˚ 45’

37”

OF 1 16 0 (0) -

La Aldea La Aldea 27˚ 59’

13”

15˚ 47’

12”

OF/GH 1 36 0 (0) -

Gáldar Gáldar Costa 28˚ 09’

25”

15˚ 40’

42”

OF/GH 1 72 0 (0) -

Gáldar 28˚ 08’

11”

15˚ 38’

36”

OF/GH 4 86 0 (0) -

Arucas Bañaderos 28˚ 08’

35”

15˚ 32’

09”

OF 2 39 0 (0) -

Total 565 0 (0) -

La

Gomera

San

Sebastián

Chejelipes 28˚ 06’

26”

17˚ 08’

29

GH 1 38 0 (0) -

Hermigua Hermigua 28˚ 10’

37”

17˚ 10’

59”

OF 1 21 0 (0) -

Vallehermoso La Dama 28˚ 03’

17”

17˚ 18’

33”

GH 1 67 0 (0) -

ValleGranRey Las Malezas 28˚ 05’

33”

17˚ 20’

13”

OF 1 63 1 (1.6) TF3 (1)

Total 189 1 (0.5) TF3 (1)

El Hierro Frontera El Matorral 27˚ 46’

08”

18˚ 00’

59”

GH 11 269 37 (13.8) TF1 (33), TF3 (1), TF5 (3)

El Pinar Tacorón 27˚ 39’

50”

18˚ 01’

03”

GH 1 64 0 -

Total 333 37 (11.1) TF1 (33), TF3 (1), TF5 (3)

Total overall 4,438 103 (2.3) TF1 (76), TF2 (11), TF3 (3),

TF5 (3)

https://doi.org/10.1371/journal.pone.0181384.t001
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southern slope of Tenerife (28˚ 19’ 2.8’’ N; 16˚ 22’ 59’’ W) and in a 500 m2 open-field plot on

the northern slope of the same island (28˚ 31’ 43.5’’ N; 16˚ 23’ 13’’ W).

Trials involved ChchNPV OBs applied at four different concentrations: 107, 108, 109, 1010

OBs/l (equivalent to 1010, 1011, 1012 and 1013 OBs/ha assuming an application volume of 1000

l/ha), and water as the control. All treatments included 0.1% (v/v) Agral (Agro S.A., Madrid,

Spain) wetter-sticker and were applied using a 2 l compressed-air hand sprayer (SOLO1 402,

Sindelfingen, Germany). The experimental design consisted of randomized plots with four

replicates per treatment.

Experimental plots of 25 m2 comprised four rows of five plants each at a distance of 1 m

from the adjacent plant (total = 20), of which 12 were border plants and 8 were central plants.

Plants were artificially infested with C. chalcites eggs placed on the underside of the three youn-

gest leaves of each plant. The number of eggs put in each plant varied from 50–150. Seven days

later, when larvae had reached the second instar, plots were sprayed with a 1 l volume of each

treatment (equivalent to 400 l/ha, which is usual for small banana plants). All applications

were made between 8.00–11.00 am.

The efficacy of the different OB concentrations was calculated using the formula described

by Henderson-Tilton [16]:

% Eff icacy : 1 � ðLta x Lcb= Lca x LtbÞ x 100

Where Lta is the number of living larvae in plots after treatment, Ltb the number of living lar-

vae in plots before treatment, Lca the number of living larvae in control plots after treatment

and Lcb the number of living larvae in control plots before treatment.

In addition, the percentage of larval mortality at different time intervals after treatment was

also determined. For this, 25 C. chalcites larvae were collected at random from the twelve bor-

der plants from each plot at time point 0 (immediately prior to the application of treatments),

and at 1, 3, 5 and 7 days post-application. Larvae were reared individually in the laboratory in

25 ml plastic cups with semi-synthetic diet until death or pupation. Larvae that died with the

characteristic signs of virus infection were stored at -20˚C and REN analysis was performed

subsequently to confirm that they had died due to ChchNPV-TF1 infection.

Insecticidal efficacy of ChchNPV-TF1 in greenhouse and open-field trials

ChchNPV efficacy was compared with two conventional treatments in greenhouse and open-

field trials during 2013 and 2015 at the same sites used for the concentration-mortality trials.

Similarly, 3 month old banana plants var. Dwarf Cavendish, ~50 cm height and with 7 leaves

grown in pots were used in greenhouse and open-field trials.

The experiments involved four treatments: (i) indoxacarb 30% WG (Steward, DuPont,

Paris, France) applied at 0.04 g/l; (ii) Bacillus thuringiensis var. kurstaki 32% WG (Dipel DF,

Kenogard, Barcelona, Spain) applied at 0.5 g/l; (iii) ChchNPV-TF1 OBs applied at 109OBs/l

and (iv) water control. All treatments included 0.1% (v/v) Agral wetter-sticker. Treatments

were applied in a volume of 1 l using a 2 l capacity compressed-air hand sprayer (SOLO1 402,

Sindelfingen, Germany). All applications were made between 8.00 and 11.00 am.

In 2013, greenhouse and open-field experimental plots comprised four rows of 5 plants dis-

tributed over an area of 25 m2, as described for the concentration-mortality trials. In 2015,

plots comprised 24 plants, distributed in 4 rows with 6 plants per row, with 16 border plants

and 8 central plants. Plants were placed at 1 m intervals with a 1 m space between rows within

each plot. Plots were separated by a 2 m high cloth curtain to avoid cross-contamination be-

tween treatments. In the greenhouse trial the pots were placed on the ground whereas in open-

field pots were buried in the ground to avoid being blown over by the wind. In both years,

Chrysodeixis chalcites nucleopolyhedrovirus
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greenhouse trials involved a fully randomized plot design with three replicates per treatment,

while open-field trials were based on a Latin square design with four replicates per treatment.

Plants were artificially infested with eggs batches 7 days prior to treatments that were

applied as described in the concentration-mortality trials. Similarly, insecticidal efficacy at 7

days post-application, and larval mortality in insects collected at 1, 3, 5 and 7 days post-appli-

cation and reared in the laboratory until death or pupation, were measured as described in the

concentration-mortality trials.

Foliar damage was also estimated. In 2013, damage was estimated by calculating the per-

centage increase in foliar damage in all the leaves (at least 7) of the eight central plants by

counting the initial number of foliar perforations characteristics of C. chalcites feeding damage

(old damage) on each leaf in each treatment prior to insecticidal treatments, and the final

number of perforations, using the formula:

Damage increase ð%Þ ¼ ðDa � Db= DaÞ x 100

Where Db is the damage before treatment, and Da the damage after treatment.

In contrast in 2015, foliar damage was estimated using the ImageJ image processing soft-

ware (Java and National Institutes of Health, USA). For this, in each plot one leaf per plant was

randomly selected from each of the 8 central plants (total 8 leaves per plot). Leaves were col-

lected at the end of the trial, scanned using a conventional scanner and analyzed using ImageJ

software. The percentage of each leaf that had been consumed by C. chalcites was calculated

based on the entire leaf area.

Statistical analyses

When necessary percentage values for foliar damage were normalized by arcsine transforma-

tion. The percentage of efficacy and the percentage of foliar damage increase were subjected to

analysis of variance (ANOVA) and mean separation by Tukey’s test (P<0.05), using the Statis-

tix v.10 package (Analytical Software, Tallahassee, FL, USA). Mortality of larvae collected from

treated and control plants and reared in the laboratory at sequential times post-application

was subjected to repeated measures analysis of variance (ANOVA).

Results

Prevalence and diversity of ChchNPV infection in C. chalcites

populations

A total of 4,438 larvae were collected from greenhouse and open-field banana crops, across 30

different sites on the islands (Table 1). The majority of larvae were collected in Tenerife (57%),

followed La Palma (18%), Gran Canaria (13%), El Hierro (8%,) and La Gomera (4%). Of these,

103 larvae (2.3%) developed the characteristic signs of lethal polyhedrosis disease during labo-

ratory rearing. None of the larvae were observed with signs of polyhedrosis disease during

the process of collecting insects in the field. Overall, 95 (2.1%) larvae died due to parasitism,

mostly by larval endoparasitoids such as Cotesia spp. or Hyposoter spp. Parasitism was ~3-fold

higher in larvae collected in open-field than in greenhouse conditions, but was not analyzed in

detail.

Of the virus diseased larvae, 56 were collected on Tenerife, 37 on El Hierro, 9 on La Palma,

a single larva on La Gomera and no larvae on Gran Canaria (Table 1). The prevalence of infec-

tion varied from 0–4.8% on Tenerife and was usually low (0–2%) on the other islands, except

for a single site on El Hierro where 13.8% of larvae were infected (37 out of 269 insects col-

lected). The number of sites at which infected larvae were collected varied significantly between
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islands, from 11 out of 17 sites on Tenerife to a minimum of 0 out of 7 sites on Gran Canaria

(Fisher’s exact, P = 0.029).

The influence of the greenhouse structure on the prevalence of virus infection was deter-

mined by examining the number of infected and healthy larvae collected from each type of

production system using the values given in Table 1. Sites at which both open-field and green-

house structures were sampled were classified as greenhouse samples. The overall prevalence

of infection in greenhouse structures was 3% (91 infected out of 3027 larvae sampled), which

was twice the prevalence of infection in larvae collected in open-field sites (1.4%, 12 infected

out of 846 larvae sampled) (χ2 = 6.44, df = 1, P = 0.011, not including sites on Gran Canaria on

which no infected larvae were collected). This relationship remained significant even when all

mixed sites (open-field and greenhouse) were removed from the analysis (χ2 = 6.63, df = 1,

P = 0.010).

Of the 103 virus infected larvae, 93 isolates could be identified by their restriction profile.

The majority of isolates (N = 76) were identified as ChchNPV-TF1, representing 82% of the

identified isolates. ChchNPV-TF2 was the next most prevalent with 11 isolates (12%), followed

by ChchNPV-TF3 and ChchNPV-TF5 profiles with 3 isolates each (3% each). The previously

characterized ChchNPV-TF4 variant restriction profile was not observed in any of the infected

larvae. The ChchNPV-TF1 isolate was present in the islands of Tenerife (37 isolates), El Hierro

(33 isolates) and La Palma (6 isolates), while ChchNPV-TF2 was present on Tenerife (10 iso-

lates), and La Palma (1 isolate). ChchNPV-TF3 was present at low prevalence on Tenerife, La

Gomera and El Hierro (1 isolate on each island). Finally, ChchNPV-TF5 was only present on

El Hierro (3 isolates). Variants ChchNPV-TF1, -TF2, -TF3 and -TF5 were collected from

insects in greenhouse production systems, whereas variants -TF1, -TF2 and -TF3 were present

in insects from open-field sites. As ChchNPV-TF1 was the most abundant and widespread var-

iant on the archipelago, and was previously showed to be highly infective [5], a single

ChchNPV-TF1 isolate from Caldera del Rey in Tenerife was selected for field assays, as the

majority of ChchNPV-TF1 isolates were found in Tenerife, especially at the Caldera del Rey

site.

Determining the optimal ChchNPV-TF1 concentration

In terms of efficacy, significant differences were observed between the different viral con-

centrations applied both in greenhouse (F3,12 = 40.47, P<0.01) (Fig 1A) and open-field plots

(F2,9 = 13.19, P = 0.002) (Fig 1B). The two highest concentrations, 109 and 1010 OBs/l, were

similarly effective at controlling C. chalcites in both types of setting (Tukey’s test, P>0.05),

with up to 98% and 88% efficacy under greenhouse and open-field conditions, respectively.

Application of 108 OB/l resulted in intermediate control efficacy (38–72% depending on set-

ting), whereas 107 OB/l resulted in zero control efficacy of C. chalcites in the open-field and

32% control efficacy in greenhouse grown plants (Fig 1A and 1B).

In relation to the larval mortality produced at different time points after treatments, the dif-

ferent OB concentrations produced variable mortalities across the different time points both

in greenhouse (Fig 2A) and open-field plots (Fig 2B). In the greenhouse trial, the three highest

viral concentrations, 108, 109 and 1010 OBs/l, produced similar mortalities at different time

points, between 87% to 100% (Tukey´s test, P>0.05), which were significantly higher than

mortalities observed at the lowest concentration 107 OBs/l (Tukey´s test, P<0.05) which fluc-

tuated around 50% during the 7 days of the trial. In contrast, in the open-field, the two highest

concentrations produced similar mortalities of 86–100% (Tukey’s test, P>0.05), whereas mor-

tality in the lowest concentration treatment (107 OB/l) declined rapidly following a peak of

73% at day 1, and the 108 OB/l treatment fluctuated between 80 and 31% mortality during the
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trial (Fig 2B). DNA extracted from each group of dead larvae showed the same profile as the

ChchNPV-TF1 variant, confirming that larvae died due to ChchNPV-TF1 infection.

According to these results, the concentration of 109 OBs/l was selected as the most suitable

concentration for subsequent trials in greenhouses and open-field plots, since this concentra-

tion produced mortalities similar to those of the highest concentration tested.

Insecticidal efficacy of ChchNPV-TF1 in greenhouse and open-field trials

Under greenhouse conditions the percentage increase in foliar damage did not differ signifi-

cantly between the different treatments and control plots, with a 43–64% increase in foliar

damage across all treatments and control in 2013 (F3,66 = 2.37, P = 0.08) (Fig 3A), In open-

Fig 1. Insecticidal efficacy of ChchNPV-TF1 concentrations. Percentage of insecticidal efficacy of

different concentrations of ChchNPV-TF1 in greenhouse (A) and open-field (B) trials. Values followed by

identical letters did not differ significantly (ANOVA, Tukey’s test, P>0.05). Vertical lines indicate the standard

error.

https://doi.org/10.1371/journal.pone.0181384.g001
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field trials in 2013, the increase in foliar damage varied significantly among treatments

(F3,124 = 17.64, P<0.01) (Fig 3B). Specifically, foliar damage increased significantly less in

the ChchNPV-TF1 treatment and the Bt treatment compared to the control (Tukey’s test,

P<0.05), whereas the indoxacarb treatment resulted in the lowest increase in foliar damage in

2013 (Tukey’s test, P<0.05) (Fig 3B).

In trials performed in 2015 percentage of foliar damage was estimated (rather than the

increase in damage that was measured in the previous 2013 trials). In greenhouse trials

Fig 2. Percentage of larval mortality over time. Percentage of larval mortality in insects collected at

different times after treatment with different concentrations of ChchNPV-TF1 in greenhouse (A) and open-

field (B) trials. Insects were reared in the laboratory until death or pupation. Values followed by identical letters

did not differ significantly for comparisons of treatments within each time point (repeated-measures ANOVA,

Tukey’s test, P>0.05). Vertical lines indicate the standard error.

https://doi.org/10.1371/journal.pone.0181384.g002
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performed in 2015 percentage of foliar damage ranged from 0.6–1.5% and did not differ signif-

icantly among treatments (F3,44 = 1.44, P = 0.24) (Fig 3C). In contrast, in open field trials in

2015 foliar damage was significantly lower in treated plots than control plots (F3,60 = 5.78,

P = 0.001) (Fig 3D), with the lowest foliar damage in the indoxacarb and Bt treatments and

intermediate damage in the ChchNPV-TF1 treatment (Tukey’s test, P>0.05) (Fig 3D).

The insecticidal efficacy of ChchNPV-TF1 OBs in 2013 was similar to that of the other

insecticides used in the greenhouse trial (F2,6 = 2.63, P = 0.15) (Fig 4A) and open-field trial

(F2,9 = 3.67, P = 0.07) (Fig 4B). Similarly, in 2015 ChchNPV-TF1 was as effective as Bt and

indoxacarb in open-field plots (F2,9 = 2.79, P = 0.11) (Fig 4C), whereas in greenhouses the

ChchNPV-TF1 treatment was slightly less effective than indoxacarb but similar to that of Bt

(F2,6 = 21.33, P = 0.002) (Fig 4D).

ChchNPV-TF1 was the only treatment that resulted in a high prevalence of mortality in

larvae collected over time. In 2013, control mortality was consistently low (1–8%) in insects

collected over time from both greenhouse (Fig 5A) and open-field plots (Fig 5B). Insects

from ChchNPV-TF1 treated plots experienced 76–96% mortality during laboratory rearing in

samples from the greenhouse trial (Fig 5A) and 95–100% in the open-field trial (Fig 5B). In

Fig 3. Foliar damage. Percentage increase in foliar damage produced by C. chalcites in greenhouse (A) and open-field (B) in 2013 trials, and

percentage of foliar damage in greenhouse (C) and open-field (D) trials in 2015. Values followed by identical letters did not differ significantly

(ANOVA, Tukey’s test, P>0.05) for comparisons of treatments. Vertical lines indicate the standard error.

https://doi.org/10.1371/journal.pone.0181384.g003
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contrast, insects from the indoxacarb and Bt treated plots had an intermediate prevalence of

mortality during laboratory rearing, which tended to decrease over time, from 53–57% (day 1)

to 13–16% (day 7) in larvae collected from the greenhouse plots (Fig 5A) and 41–52% (day 1)

to 0–23% (day 7) in the open-field plots (Fig 5B). The low mortality observed in larvae col-

lected in indoxacarb and Bt treatment was likely due to the rapid action of these insecticides in

comparison with the virus, resulting in an initial peak of mortality that declined over time.

During the trials performed in 2015, insects from the control treatment experienced low

mortality during laboratory rearing in the greenhouse (1–5%) and open-field trial (1–10%)

(Fig 5C and 5D). Mortality during laboratory rearing varied in the ChchNPV treatment in the

greenhouse trial (49–63% mortality) and the open-field trial (39–65% mortality), which was

generally higher than mortalities observed in the other insecticide treatments. Laboratory-

reared larvae from both indoxacarb and Bt treatments initially experienced intermediate prev-

alence of mortality in the greenhouse (26–41%) and open-field trail (31–33%), but mortality

declined in samples taken during the trails both in the greenhouse (Fig 5C) and open-field

plots (Fig 5D). At some time points near to the end of the trials (at day 5 and 7 post-applica-

tion), no larvae were present on experimental plants treated with conventional insecticides,

Fig 4. Insecticidal efficacy. Percentage of insecticidal efficacy of different treatments in greenhouse (A) and open-field (B) trials in 2013 and in

open-field (C) and greenhouse (D) trials in 2015. Values followed by identical letters did not differ significantly (ANOVA, Tukey’s test, P>0.05).

Vertical lines indicate the standard error.

https://doi.org/10.1371/journal.pone.0181384.g004
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likely due to the insecticidal activity and rapid action of Bt (Fig 5C) and indoxacarb (Fig 5B

and 5C).

Discussion

The present study aimed to evaluate the natural diversity of ChchNPV on the Canary Islands

and the efficacy of this virus to control C. chalcites populations on young banana plants both in

greenhouses and open-field trials. Overall, 2.3% of larvae collected from natural infestations of

C. chalcites on banana plants died from ChchNPV infection during laboratory rearing,

although cadavers with the characteristic signs of polyhedrosis disease were never observed in

the field (except during field trials following application of the virus). In a smaller scale study

in 2006 involving surveys of C. chalcites larvae on the islands of Tenerife, La Palma, Gran

Canaria and El Hierro, overall 2.5% died due to lethal polyhedrosis disease [5]. This rather low

prevalence of enzootic infection is similar to that reported in other nucleopolyhedrovirus

pathosystems such as the nucleopolyhedrovirus of Spodoptera frugiperda (SfMNPV) on maize

Fig 5. Percentage of larval mortality over time. Percentage of larval mortality in laboratory-reared larvae collected at different time intervals after

treatments in greenhouse (A) and open-field (B) trials in 2013 and in greenhouse (C) and open-field (D) trials in 2015. Values followed by identical letters did

not differ significantly for comparisons of treatments within each time point (repeated-measures ANOVA, Tukey’s test, P>0.05). Vertical lines indicate the

standard error.

https://doi.org/10.1371/journal.pone.0181384.g005
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in Mexico [17], Colombia [18] or Brazil [19]. In contrast, high prevalence of infection and, on

occasions, epizootics of lethal disease, have been detected in other nucleopolyhedrovirus-insect

pathosystems, particularly in high density insect populations [20–22].

Parasitism in laboratory-reared larvae was 2.1% overall, indicating a modest contribution

of larval parasitoids to the control of C. chalcites populations at densities at which growers are

likely to apply insecticidal control measures. Very similar results were obtained during a small

scale survey performed in 2006 in which 2.3% of field-collected larvae died from parasitism

[5].

The majority of virus-infected C. chalcites larvae were collected on Tenerife (54%) and El

Hierro (36%), in agreement with a previous study in which 69% and 22% of infected larvae

were collected on Tenerife and El Hierro, respectively [5]. Although the highest numbers of

larvae were collected on Tenerife (indicating a higher prevalence of infestation of banana

crops by this pest on this island), there was no clear relationship between numbers of larvae

collected and the prevalence of virus infection detected during laboratory rearing.

In contrast to parasitism, which was more prevalent in open-field collected larvae than in

greenhouses (3:1), the prevalence of virus infection in greenhouse structures was twice that in

open-field sites. This may in part be due to higher densities of infestation under greenhouse

conditions, given that four-fold more larvae were collected during greenhouse compared to

open-field sampling. However, a more likely explication resides in the protection from ultravi-

olet light provided by the greenhouse structure. Baculoviruses are rapidly inactivated by ultra-

violet light [23] and plastic greenhouses effectively filter a large part of the ultraviolet spectrum

[24, 25]. Although the effect of the mesh-built greenhouses used for banana production on

incident ultraviolet light was not measured in the present study, it seems likely that reduced

ultraviolet radiation on banana crops under plastic mesh could favor the conservation of

ChchNPV OBs on foliage and in the upper layers of soil, resulting in a higher prevalence of

virus infection in larvae compared to those feeding in open-field plantations.

In line with our previous study [5] ChchNPV-TF1 was the most prevalent variant in the

Canary Islands. The ChchNPV-TF2, ChchNPV-TF3 and ChchNPV-TF5 variants were isolated

from larvae collected across the different islands, whereas previously we had only found these

variants on southern Tenerife [5]. The prevalence of the ChchNPV-TF1 variant over that of

other variants and its presence at numerous sites across the islands, in addition to its high

pathogenicity [5], led us to use this variant in field trials. Previously we developed a specific

mixture of ChchNPV genotypes with increased pathogenicity and virulence that has been the

subject of a European Patent [26]. The stability of the specific genotype mixture was corrobo-

rated in the laboratory but not in field conditions, which may favour transmission of different

proportions of certain genotypes resulting in changes to the overall phenotypic characteristics

[13, 21, 22, 27]. Clearly this issue requires empirical testing but the ChchNPV-TF1 variant pro-

vided a useful model against which we will be able to evaluate the insecticidal efficacy of the

specific genotype mixture in the future.

The insecticidal efficacy of the ChchNPV-TF1 variant was compared in greenhouse and

open-field conditions, as ~65% of the banana production is produced in open-field conditions

in the Canary Islands [1], and we had not previously performed such a comparison [10]. As

greenhouse conditions tend to be more stable than those of open-field crops [28, 29], the

harsher conditions of open-field crops might have implications for the quantities of viral OBs

required for effective control or may affect the persistence of viral OB treatments on crop

foliage [30]. Contrary to our expectations, application of 109 OBs/l resulted in high mortality

of C. chalcites larvae both in greenhouse and open-field banana plants. Previous studies had

indicated that 109 OBs/l might be sufficient to protect banana plants from C. chalcites feeding

damage under greenhouse conditions [10]. This concentration of viral OBs is similar to that

Chrysodeixis chalcites nucleopolyhedrovirus
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reported in other baculoviruses used as biological insecticides, such as those of nucleopolyhedro-

viruses applied for the control of Spodoptera spp. in greenhouse and field crops [30–32]. As the

leaf area and presence of fruit in the crop changes during growth the volume required to treat

large plants tends to increase so that the overall quantity of OBs applied per hectare depends on

the growth stage and crop phenology. For example, in the present study one liter of spray sus-

pension at 109 OBs/l was used to treat 25 m2 of young banana plants. As adult plants require vol-

umes of up to 2,000 l/ha in commercial plantations [E. Fuentes, pers. communication], this

would involve up to 2x1012 OBs/ha. This amount is within the range of OB applications typically

used for commercial biological insecticides targeted at lepidopteran pests [30].

The high natural larval mortality observed in greenhouse and open-field trials did not mask

the efficacy of ChchNPV-TF1 as a biological insecticide. This natural mortality might be due

to environmental factors such as wind or high temperatures recorded in greenhouses during

the trials (up to 40˚C), as well as to the presence of predators or the movement of larvae from

experimental plants in search of additional food resources [33, 34]. Generally, ChchNPV-TF1

was as effective as conventional treatments reducing foliar damage and number of larvae

under greenhouse and open-field conditions. We had previously observed that application of

108 OB/l of the ChchNPV-TF1 variant was as effective as indoxacarb and Bt treatments in con-

trolling pest infestation and foliar damage under greenhouse conditions [10]. Indeed, applica-

tions of 109 OBs/l were significantly more effective than the conventional treatments in the

previous study. The reasons for this higher efficacy remain unclear. This may be due to varia-

tion in environmental conditions as previous field trials were performed in autumn, whereas

those of the present study were performed during summer months during periods of high

temperatures and strong sunlight that could have reduced OB persistence on plants. The insect

colony used to infest experimental plants in the present study may also have been less suscepti-

ble to infection than colony used during the previous study, as strain variation in insect suscep-

tibility to pathogens is a well-recognized phenomenon [35].

Nonetheless in the present study, the insecticidal efficacy of ChchNPV was clearly demon-

strated under both greenhouse and open-field conditions. Indeed, under certain conditions

baculoviruses can be as effective as chemical insecticides, although other characteristics such

as their specificity, persistence in insect populations and their ability to control pests that are

resistant to chemical insecticides make them uniquely valuable pest control agents in a range

of situations [9, 36, 37]. However, the efficacy of the virus in protecting banana fruit from C.

chalcites feeding damage remains to be tested. This is crucial because foliar feeding by this pest

has little effect on banana yields whereas direct damage to bananas totally eliminates the com-

mercial value of scarred fruit. Experiments are in progress to evaluate the efficacy of the virus

in plantations of fruiting adult plants.

Application of ChchNPV-TF1 OBs resulted in an extended period of larval mortality in lar-

vae collected and reared in the laboratory. Most larvae died 5–7 days after application of the

virus, but the fact that larvae collected at up to 7 days post-treatment continued to show high

levels of lethal virus disease during laboratory rearing suggests that they had acquired a lethal

dose of the virus several days after application of the virus. In contrast, indoxacarb and Bt

treatments resulted in a rapid peak in mortality that declined over the 7-day sampling period,

reflecting the different modes of action of these products compared to that of the virus. Similar

results have been observed in samples taken over time in crops treated with baculoviruses and

conventional insecticides for control of Spodoptera exigua in greenhouses [25, 38, 39] or Heli-
coverpa armigera [40, 41]. These results indicate a greater persistence of ChchNPV-TF1 OBs

on the banana plant with respect to conventional treatments. Therefore, ChchNPV may pro-

vide an extended period of pest control, producing larval mortality for longer, compared to the

other insecticides used in our study.
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Currently, a low number of active substances are authorized for C. chalcites control in

banana crops, with indoxacarb and Bt var. kurstaki being the most frequently used products

[E. Fuentes, pers. communication]. ChchNPV-TF1 provides an attractive alternative to Bt for

C. chalcites control as a highly effective and highly specific insecticide that does not leave xeno-

biotic residues in fruit and is compatible with IPM systems that aim to conserve natural enemy

populations [8, 34, 42]. ChchNPV-TF1 based products could be incorporated into integrated

pest management programs, given the compatibility of this virus with biological and chemical

control measures, thus reducing farmer dependence on synthetic insecticides and thereby

reducing the likelihood of the development of insecticide resistance in the pest population. As

a low number of substances are authorized and those are used repeatedly, the market for a

ChchNPV-TF1-based product is well defined and could be commercially viable if adopted by

banana growers on the islands.
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Trevor Williams, Primitivo Caballero.

Writing – review & editing: Ernesto Gabriel Fuentes, Estrella Hernández-Suárez, Oihane
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18. Gómez-Valderrama JA, Guevara-Agudelo EJ, Barrera-Cubillos GP, Cotes-Prado AM, Villamizar-Riv-

ero LF. Aislamiento, identificación y caracterización de nucleopoliedrovirus nativos de Spodoptera frugi-

perda en Colombia. Rev Facul Nac Agron Medellı́n 2010; 63: 5511–5520.

Chrysodeixis chalcites nucleopolyhedrovirus

PLOS ONE | https://doi.org/10.1371/journal.pone.0181384 July 27, 2017 17 / 19

http://www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/
http://www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/
http://www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/
https://doi.org/10.1002/ps.3969
http://www.ncbi.nlm.nih.gov/pubmed/25534715
https://doi.org/10.1002/ps.3637
https://doi.org/10.1002/ps.3637
http://www.ncbi.nlm.nih.gov/pubmed/23983128
https://doi.org/10.1016/j.jip.2005.03.008
https://doi.org/10.1016/j.jip.2005.03.008
http://www.ncbi.nlm.nih.gov/pubmed/15876438
https://doi.org/10.1371/journal.pone.0181384


19. Valicente FH, Barreto M. Levantamento dos inimigos naturais da lagarta do cartucho do milho, Spodop-

tera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), na região de Cascavel, PR. An Soc Entomol

Bras. 1999; 28: 333–337.

20. Caballero P, Aldebis HK, Vargas-Osuna E, Santiago-Álvarez C. Epizootics caused by a nuclear polyhe-

drosis virus in populations of Spodoptera exigua in Southern Spain. Biocontrol Sci Techn. 1992; 2: 35–

38.

21. Cory JS, Myers JH. Within and between population variation in disease resistance in cyclic populations

of western tent caterpillars: a test of the disease defence hypothesis. J Anim Ecol. 2009; 78: 646–655.

https://doi.org/10.1111/j.1365-2656.2008.01519.x PMID: 19220564

22. Graham RI, Tyne WI, Possee RD, Sait SM, Hails R. Genetically variable nucleopolyhedroviruses iso-

lated from spatially separate populations of the winter moth Operophtera brumata (Lepidoptera: Geo-

metridae) in Orkney. J Invertebr Pathol. 2004; 87: 29–38. https://doi.org/10.1016/j.jip.2004.06.002

PMID: 15491596

23. Ignoffo CM, Garcia C. Combinations of environmental factors and simulated sunlight affecting activity of

inclusion bodies of the Heliothis (Lepidoptera: Noctuidae) nucleopolyhedrosis virus. Environ Entomol.

1992; 21: 210–213.

24. Costa HS, Robb KL, Wilen CA. Field trials measuring the effects of ultraviolet-absorbing greenhouse

plastic films on insect populations. J Econ Entomol. 2002; 95: 113–120. PMID: 11942745
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