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ABSTRACT Protein, lipid, carbohydrate, and energy contents of three artificial diets (Xal2, Met1, and
Met2) used for laboratory-rearing and mass-rearing the Mexican fruit fly, Anastrepha ludens (Loew), for
a sterile insect technique program were measured. The larval survival, pupation, pupal weight, adult
emergence, sex ratio, and flight capacity of the flies reared on each of these diets were also quantified.
The diet with the highest nutrient and energy content was Xal2 followed by Met2 and Met1, but larval
recovery and percent pupation was significantly higher in flies reared on either the Met1 or Met2 diets.
A. ludens reared on Xal2 exhibited the highest proportion of adults capable of flight. No other response
variable differed significantly among the three diets tested. This suggests that a high content of nutrients
and multiple sources of protein (dried yeast and wheat germ in the case of the Xal2 diet) do not necessar-
ily improve overall performance or fly quality. We conclude that nutritious diets for A. ludens can be
modified to reduce their cost without compromising the performance of artificially reared flies.
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Introduction

Fruit flies (Diptera: Tephritidae) are major pests of
fruit crops, and some species in the economically im-
portant genera Anastrepha, Bactrocera, Ceratitis, and
Rhagoletis have been colonized for laboratory or mass
rearing on artificial diets (Christenson et al. 1956,
Tzanakakis et al. 1968, Hernández et al. 2009, Köppler
et al. 2009, Domı́nguez et al. 2010, Gutiérrez et al.
2013, Sacchetti et al. 2013). Mass rearing of tephritid
flies on an artificial diet is critical for the application of
area-wide management programs such as the sterile in-
sect technique (SIT) (Gutiérrez et al. 2013), and also
provides the necessary substrate on which to mass rear
parasitoids used for inundative biological control
(Montoya et al. 2000, Zamek et al. 2012, Gutiérrez
et al. 2013). In addition, fly colonies support studies on
the defensive role of host plant secondary metabolites
(Pascacio-Villafán et al. 2014), life-history strategies
(Salum et al. 2014), nutrition physiology (Nestel et al.
2004), and facilitate the development of new parasitoid
rearing and colonization techniques (Aluja et al. 2009).

Tephritid artificial diets, as with many other insect
diets, are usually mixtures of various ingredients that
provide nutrients such as proteins, lipids,

carbohydrates, vitamins, and minerals, together with
preservatives, pH modifiers, bulking agents, gelling
agents, and water (Cohen 2004, Hernández et al.
2010). While fly species differ in their nutritional re-
quirements and need larval growing media varying in
consistency and texture (Vera et al. 2007, Hernández
et al. 2010), diets are often generated from existing for-
mulations developed for other species (Hernández
et al. 2010). This is the case of artificial diets for rearing
the Mexican fruit fly, Anastrepha ludens (Loew), which
were originally adapted from a diet used to rear the ori-
ental fruit fly, Dacus (Bactrocera) dorsalis (Hendel)
(Spishakoff and Hernández-Dávila 1968).

A. ludens is a tropical, polyphagous, and multivoltine
fruit fly (Aluja et al. 2001) distributed from southern
Texas to Central America (Birke et al. 2013), where it at-
tacks fruit such as citrus (Citrus spp.), mango (Mangi-
fera indica L.), and peach (Prunus persica [L.] Batsch;
Aluja et al. 2000). A. ludens is considered a pest of eco-
nomic importance across most of its range (Aluja 1993,
Aluja and Mangan 2008), and it is likely that it will ex-
pand its range because of global climate change (Birke
et al. 2013, Aluja et al. 2014). Under such circumstances,
A. ludens could exploit new hosts including some apple
(Malus� domestica Borkh) cultivars (Aluja et al. 2014).
As part of governmental management programs aimed
at suppressing A. ludens populations, millions of artifi-
cially reared flies are produced and sterilized on a daily
basis at the Programa Moscafrut facilities located at
Metapa de Domı́nguez, Chiapas, Mexico. These are em-
ployed in SIT releases, and used to mass rear the para-
sitoid Diachasmimorpha longicaudata (Ashmead)
(Hymenoptera: Braconidae) for augmentative biological
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control (Gutiérrez et al. 2013). Artificial A. ludens diets
have also been used in the fruit fly laboratories of the
Red de Manejo Biorracional de Plagas y Vectores
(RMBPV) of the Instituto de Ecologı́a, A.C., in Xalapa,
Veracruz, Mexico, to provide experimental subjects, and
as hosts for 14 species of hymenopteran parasitoids colo-
nized at the RMBPV (Aluja et al. 2009).

Artificial diets from Moscafrut and RMBPV are oligi-
dic (i.e., their ingredients are not fully chemically de-
fined) and differ in the content and proportion of some
ingredients (Table 1). The nutrient content in terms of
protein, lipid, and carbohydrate percent of the RMBPV
diets is often greater than that of A. ludens host fruit
(Cicero 2011). In the case of the Moscafrut diets, we are
not aware of any published information on its exact nu-
trient content. We suspected that the high nutrient con-
tent in artificial diets may not be fully utilized by
artificially reared flies, resulting in an unnecessarily ex-
pensive diet. Given this, we recognized the need to de-
termine whether the nutritional content of A. ludens
artificial diets exceeds the needs of the flies that they are
used to rear. A first step in this direction was to define
the nutrient content of the Moscafrut and RMBPV diets
and evaluate a number of quality control parameters of
the flies reared on each diet. We predicted a priori that
diet Xal2, which contained dried yeast and wheat germ

(Table 1), would have the higher nutritional content,
and that the overall performance of the flies reared on
this diet would be superior to that of Met1 and Met2.

Materials and Methods

Experimental Flies. A. ludens used in this study
were obtained from a strain maintained on an artificial
diet at the RMBPV, originally provided by the Comité
Estatal de Sanidad Vegetal (DGSV-SAGARPA) in
Xalapa, Veracruz, Mexico (Aluja et al. 2009). Parental
flies aged 13–16 d were held in Plexiglas cages (30 by
30 by 60 cm) with ad libitum access to water and food
(a mixture of hydrolyzed protein and refined sugar).
Flies oviposited on transparent silicon substrates and
eggs were washed and incubated for 4 d until hatch
(for rearing details see Aluja et al. 2009). Larvae were
subsequently reared on the experimental diets
described in Artificial Diets section.

Artificial Diets. Two artificial diet formulations
based on the recipes used at Moscafrut (hereafter
Met1 and Met2; Domı́nguez et al. 2010) and one from
the RMBPV (hereafter Xal2; Aluja et al. 2009) were
tested (Table 1).

To prepare the Xal2 diet, all ingredients except water
and hydrochloric acid were weighed individually on a

Table 1. Composition and cost of 1 kg of each of the artificial diets tested

Diet components Diet type

Xal2 Met1 Met2

% by weight Costa (USD) % by weight Costa (USD) % by weight Costa (USD)

Nutrients
Dried yeastb 9.70 $0.44 6.00 $0.27 7.00 $0.32
Sugarc 9.70 $0.05 8.20 $0.04 9.20 $0.05
Wheat germd 9.70 $0.34 – – – –

Vitamins
Viterra plus capsulese 0.14 $0.23 – – – –

Bulking and texturizing agents
Corn cob fractionsf 14.55 $0.17 19.00 $0.22 19.00 $0.22
Corn flourg,h – – 5.30 $0.04 5.30 $0.04

Preservatives
Sodium benzoatei 0.78 $1.32 0.40 $0.68 0.40 $0.68
Methylparabenj – – 0.10 $0.008 0.20 $0.02

Acidifying agents
Citric acidk – – 0.44 $0.007 0.44 $0.007
Hydrochloric acidl 0.58 $0.06 – – – –

Gelling agents
Guar gumm – – 0.10 $0.014 0.10 $0.014
Purified watern 54.83 $0.03 60.46 $0.032 58.36 $0.032

Total cost $2.64 $1.31 $1.37

a Costs were estimated from the unit price of single ingredients in Mexican pesos as indicated below, and then transformed to USD (exchange
rate at the time of writing: 1 MXN¼ 0.077 USD).

b Lake States Div. Rhinelander, WI, USA (22.7 kg cost $1,331.00 MXN).
c Refined sugar (50 kg cost $345.00 MXN).
d Fit grain Nutrisa, Mexico City (600 g cost $27.00 MXN).
e Pfizer SA de CV, Toluca, Mexico (30 capsules cost $46.14 MXN, 1 capsule¼ ca. 710.8 mg).
f Mt. Corn cob fractions 100 Pulaski, Products Inc., Chicago, IL (23.33 kg cost $356.82 MXN).
g Minsa, Grupo Minsa, Mexico (1 kg cost $8.86 MXN).
h Although corn flour has been employed as a texturizing agent (Rivera et al. 2012), it also provides nutrients to the diet—mainly protein and

carbohydrate.
i Baker, J.T. Baker S.A. de C.V., Xalostoc, Mexico (500 g cost $1,099.35 MXN).
j Alfa Delta, Mexico (1 kg cost $112.8 MXN).
k Cava Nutrialimentos, S.A. de C.V., Mexico (1 kg cost $21.74 MXN).
l Baker, J.T. Baker S.A. de C.V., Xalostoc, Mexico (2.5 liter cost $350.05 MXN, 1 liter¼ 1.448 kg).
m Cava Nutrialimentos, S.A. de C.V, Mexico (1 kg cost $179.59 MXN).
n Econopura, Mexico (20 liter cost $14.00 MXN).
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digital scale (Ohaus TP4KD) and then mixed by hand
for 5 min in a plastic tray (30 cm in length by 25 cm in
width by 13 cm in height). Next, water and hydro-
chloric acid diluted in 25% of the total volume of water
were added to the tray and hand mixed with the other
ingredients until a homogeneous mixture free of lumps
was obtained. Met1 and Met2 diets were prepared by
mixing the nutrients, bulking and texturizing agents,
and guar gum (Table 1) for 5 min in a plastic tray of the
same size as above. Preservatives and citric acid were
dissolved in 25% of the total water (Rivera et al. 2012)
prior to incorporation, together with the rest of the
water, to the plastic tray containing the rest of the diet
ingredients. Met1 and Met2 diets were also hand
mixed until no lumps were present.

Nutrient Determination. Samples of 500 g of
each artificial diet were analyzed following the Associa-
tion of Official Analytical Chemists (AOAC) (1975) and
the Norma Oficial Mexicana NOM-051-SCFI-1994
(1994) standard analytical procedures, at the Laborator-
ios de Alta Tecnologı́a de Xalapa, S.C. (LATEX), in
Xalapa, Veracruz, Mexico. Protein content was deter-
mined by the Kjeldahl method; lipids were determined
directly with a Soxhlet extractor; the nitrogen-free
extract was considered as total carbohydrates and was
calculated using the following equation: percentage
carbohydrate¼ 100 – (% proteinþ% lipidþ%
moistureþ% ashes). The energy calculation was per-
formed using the following conversion factors: carbohy-
drates 4 kcal/g, proteins 4 kcal/g, and lipids 9 kcal/g.
Each diet was analyzed four times to assess potential
experimental error due to diet preparation or
processing.

Experimental Procedure. The experiments were
performed at the laboratories of the RMBPV on four
separate days. Each artificial diet was replicated 14–18
times.

Portions of 200 g of each artificial diet were placed
in plastic containers (11 cm in diameter by 7 cm in
height) together with 250 neonate larvae (<10 h old) of
A. ludens. Containers were covered with pieces of pan-
tyhose (Cannon Mills) and incubated in a dark room at
30 6 1�C and 70 6 5 % relative humidity (RH). Follow-
ing standard rearing procedures (Rivera et al. 2012),
9 d after the beginning of the experiment, larvae were
recovered from the diet by gently washing it with tap
water through a plastic strainer (18 cm in diameter)
with nylon mesh (1 mm). Recovered larvae were
counted and placed in a plastic container (7 cm in
diameter by 6 cm in height) with vermiculite (1:1,
larvae:vermiculite). The container was closed with a lid
that had a 5-cm-diameter hole covered with organdy
cloth, and placed in a laboratory at 22 6 1�C, 70 6 5%
RH, and a photoperiod of 12:12 (L: D) h to promote
pupation. After 24 h, pupae were counted and moved
to a laboratory at 26 6 1�C, 60 6 5% RH, and a photo-
period of 12:12 (L: D) h. To standardize the age of the
recovered pupae, larvae that did not pupate after the
24-h period were discarded. Three days following
pupation, pupae were weighted on an analytical scale
(Sartorius CP64). Ten days later (13 d after pupation),
samples of 100 pupae from each diet were placed

inside individual cells (1.6 by 1.6 cm) of a grid until
adult emergence. In addition, samples of pupae (range
of 14–100 pupae) from each diet were placed inside
PVC cylinders to evaluate flight capacity (black PVC
cylinders [9 cm in diameter by 10 cm in height] coated
with unscented talcum powder on the interior, on the
top of Petri dishes). Cylinders with pupae were placed
in a 90-cm-long- by 100-cm-wide- by 90-cm-tall mesh
cage, and adults were allowed to emerge and fly out
the tubes. To minimize the incidence of flies that
escaped from the PVC cylinders (i.e., fliers) falling
back inside a tube, they were removed twice a day. In
addition, two traps consisting of transparent plastic bot-
tles (600 ml capacity) with three round perforations
(fly entrance) on the top, and 300 ml of grape soft drink
(Sangria Casera) as bait, plus four sticky traps were
hung on the ceiling of the cage. Flightless individuals
died inside the tubes. When emergence had ceased,
the remaining contents of the cylinders were counted.

Response Variables. The response variables were
based on the following six quality control parameters
previously established for mass-reared tephritid flies
(Food and Agriculture Organisation–International
Atomic Energy Agency–U.S. Department of Agricul-
ture [FAO-IAEA-USDA] 2003): 1) larval recovery, esti-
mated as the proportion of larvae recovered from diet
after 9 d in relationship to the total number of larvae
seeded in each diet; 2) pupation at 24 h, expressed as
the percentage of larvae that pupated 24 h after being
separated from the diet; 3) mean pupal weight (mg),
estimated by weighting all pupae from each diet and
dividing the total weight by the total number of pupae
weighed; 4) adult emergence, calculated as the per-
centage of adults that emerged from the pupae placed
individually inside cells of grids; 5) sex ratio, expressed
as the proportion of males relative to the total adults
emerged from the pupae placed individually inside
cells of grids; and 6) flight capacity (fliers), expressed as
the proportion of adults that emerged and flew outside
the black PVC cylinders in relation to the total pupae
placed inside them.

Statistical Analyses. The software R (R Core Team
2013) was used in all analyses. Mixed model ANOVAs
were used to identify significant effects of diet type on
the response variables. The fixed component of the
model was diet type with three levels (Xal2, Met1, and
Met2), whereas the random component was block with
four levels (days 1–4). The mixed model tested for sig-
nificance of the fixed components (Xal2, Met1, and
Met2) and allowed us to account for error variability
due to daily (block) variation in fly characteristics. To
meet the model assumptions, variance was modeled
using a power function and a compound symmetry cor-
relation structure (Pinheiro et al. 2009). When signifi-
cant effects were detected, t-test contrasts were used to
explore differences among diet levels (Warnes 2009).
Replicate plastic containers, 100 cell grids and PVC
black cylinders were the observational units, so all anal-
yses were performed on replicate means.

One-way ANOVA was used to identify significant
differences among protein, lipid, carbohydrate, and
energy content in the diets. After ANOVA, the
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assumptions of the model were verified using diagnos-
tic plots (Crawley 2007), confirming homoscedasticity
of the residuals and normality of errors in all cases.
When significant effects were detected, t-test contrasts
were performed.

Results

Protein (F¼ 84.63; df¼ 2, 9; P< 0.0001), lipid
(F¼ 5.07; df¼ 2, 9; P¼ 0.0335), and energy (F¼ 18.67;
df¼ 2, 9; P< 0.001) content differed significantly
among diets, but the carbohydrate content did not
(F¼ 0.701; df¼ 2, 9; P¼ 0.521; Fig. 1A–D). Protein
content in Xal2 was about twice that of either Met1
(t¼ 11.92; df¼ 9; P< 0.0001) or Met2 (t¼ 10.48;
df¼ 9; P< 0.0001). Xal2 also had significantly more
lipid than did Met1 (t¼ 3.14; df¼ 9; P¼ 0.012), but
was similar to that of Met2 (t¼ 2.04; df¼ 9; P¼ 0.071).
The energy content of Xal2 was significantly higher
than either Met1 (t¼ 5.82; df¼ 9; P< 0.001) or Met2
(t¼ 4.52; df¼ 9; P< 0.001). No significant differences
were observed between Met1 and Met2 for protein
(t¼ 1.44; df¼ 9; P¼ 0.1846), lipid (t¼ 1.09; df¼ 9;
P¼ 0.3037), or energy (t¼ 1.3; df¼ 9; P¼ 0.2268)
content.

Larval recovery differed significantly among diet
types (F¼ 19.94; df¼ 2, 46; P< 0.0001; Fig. 2A), with
more larvae recovered from Met1 (t¼ 5.8; df¼ 46;
P< 0.0001) and Met2 (t¼ 6.3; df¼ 46; P< 0.0001)
than from Xal2. Percent pupation (F¼ 17.73; df¼ 2,
46; P< 0.0001; Fig. 2B) on Met1 (t¼ 5.9; df¼ 46;
P< 0.0001) and Met2 (t¼ 5.8; df¼ 46; P< 0.0001) was
significantly superior to Xal2. No significant differences
were observed for pupal weight (F¼ 0.675; df¼ 2, 44;
P¼ 0.52), adult emergence (F¼ 0.80; df¼ 2, 44;
P¼ 0.46), or sex ratio (F¼ 0.17; df¼ 2, 44; P¼ 0.84;
Figs. 2C-E). Flight capacity (F¼ 4.7; df¼ 2, 44;
P¼ 0.01; Fig. 2F) differed significantly among diets;
higher proportions of flies reared on Xal2 flew out of
PVC cylinders compared to flies reared on Met1
(t¼ 2.8; df¼ 44; P¼ 0.007) or Met2 (t¼ 2.4; df¼ 44;
P¼ 0.0229).

Discussion

Significant differences were detected in the nutrient
content of the three diets tested and in the perform-
ance of flies reared on them. As predicted, the Xal2
diet containing both dried yeast and wheat germ had
the highest nutrient content. Contrary to our predic-
tion, the Met1 and Met2 diets were superior in terms
of larval recovery and pupation, whereas the Xal2 diet
yielded the highest proportion of flying adults. Despite
the differences observed in percent pupation and flight
capacity among flies reared on the different diets, these
proportions were all near or above 80%, which meet
the recommended quality control values in A. ludens
mass rearing protocols (Dirección General de Sanidad
Vegetal-Dirección de Moscas de la Fruta [DGSV-
DMF] 2009, Santiago et al. 2012). We recognize that
discarding larvae that did not pupate after 9 d, as per-
formed in our study, could have possibly biased our
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for mixed-effect models (t-test contrasts, P > 0.05).
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comparison on percent pupation, as it is likely that
development in Met1 and Met2 was more rapid than
in Xal2.

Flight ability is of paramount importance in flies
used for SIT (Collins and Taylor 2010), and this repre-
sents one of the most sensitive and informative quality
control parameters (Rull et al. 2012). Wheat germ is
known to have high protein content, and it contains
carbohydrates and lipids that are rich in fatty acids and
phytosterols (Cohen 2004). Consequently, wheat germ
may have been the ingredient responsible for the
increased flight of flies reared on Xal2. Fatty acids in
wheat germ could contribute to energy levels required
for flight muscle functioning (Arrese and Soulages
2010), and its absence in Met1 and Met2 may have
induced an overexpression of the flightless-I protein
(fli-I; Cho et al. 2013), and so reduced the prevalence
of flight-capable adults. Indeed, the flight ability of B.
dorsalis increased with the amount of wheat germ oil
in the larval diet, and Chang and Vargas (2007) sug-
gested that fatty acids and vitamin E were involved in
this effect. Similarly, Ceratitis capitata (Wiedemann)
reared without fatty acids had flight capacity of only
�20%, in contrast to �90% when reared on a diet con-
taining fatty acids (Cho et al. 2013).

In addition to fatty acids, vitamins also influenced
C. capitata flight ability (Chang et al. 2001). If true for
A. ludens, we suggest that Met1 (with the lowest cost
and nutrient content, and overall high fly performance)
could serve as a base diet to evaluate the effect of

wheat germ and vitamins on flight capacity. This should
be done estimating the cost:benefit ratio of incorporat-
ing both ingredients into the diet, and analyzing any
tradeoffs between flight capacity and other traits such
as male sexual competitiveness (Marden 2000).

The protein content of 3.6% present in the Met1 diet
was sufficient to rear high-quality A. ludens. However,
the minimum protein content required might be still
lower, and future studies should test concentrations
below 3.6%. While protein is essential to dipteran
development (Nash and Chapman 2014), high concen-
trations can have a detrimental effect (Sentinella et al.
2013). Perhaps the low larval recovery observed in Xal2
(�80% in contrast to �100% in Met1 and Met2) was
the result of its relatively high protein content (7.12%).
However, our results are insufficient to establish such a
relationship, and other components may also have influ-
enced this parameter. For example, guar gum in Met1
and Met2 might have a positive influence on larval sur-
vival, as it improves the consistency of diets by modify-
ing high water content into a gel so that insects do not
die if the food substrate collapses on them when tun-
neling (Cohen 2004). Also, the inclusion of certain pres-
ervatives (sodium benzoate) in artificial diets have been
observed to be lethal to A. fraterculus (Wiedemann)
unhatched eggs (J. Rull, personal communication), and
perhaps the quantity of sodium benzoate in Xal2
(Table 1) affected neonate larvae as well.

As observed in Table 1, sodium benzoate was the
ingredient that contributed the most to the high cost of
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Xal2, followed by dried yeast, wheat germ, and vita-
mins. If, as suggested above, the high amount of
sodium benzoate in Xal2 affected larval survival, and as
our data showed, high protein content do not improve
artificial A. ludens rearing and might even be detrimen-
tal, the amounts of such components in Xal2 needs to
be reduced. We also question if the dried yeast levels
in Met1 and Met2 diets could be reduced maintaining
its high quality and production of flies. Additional
research is necessary to address these questions, as arti-
ficial rearing of A. ludens would benefit from any diet
modification that result in high-quality flies from effi-
cient and more economical diets.

In summary, the large amounts of nutrients in some
A. ludens artificial diets do not generate higher num-
bers or a better quality of adult flies, and are, therefore,
not necessary for artificial rearing of this fly pest. Diets
now in use for mass rearing, Met1 and Met2, yielded
higher larval recoveries and percent pupations than the
research diet Xal2; however, they were inferior in terms
of flight capacity. Because flight capacity is critical for
mass-reared flies used in SIT programs, the identifica-
tion of the compound(s) responsible for differences
among diets could result in further improvements. Fur-
ther experiments to elucidate minimum levels of
nutrients are warranted considering the high costs asso-
ciated with ingredients such as dried yeast and wheat
germ, and the preservative sodium benzoate (Table 1).
We conclude that systematic studies on A. ludens nutri-
tional requirements are required, as the results of our
study suggest that nutrient-rich diets may be unneces-
sary for rearing high-quality flies suitable for use in
SIT-based programs of area-wide pest control.
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