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Abstract

The recent progress in neural networks (NN) opens
a vast field of opportunities to the processing of
medical signals and images. The particular attraction
of NN for such applications lies in the nonlinear and
often non-analytical nature of biological signals.

To illustrate at least a few aspects of such
applications, we discuss two specific applications,
both related to the authors' research into
electromyographic (EMG) signals. The first concerns
the decomposition of surface (transcutaneous) EMG into
its inaccessible motor unit action potentials {MUAP)
for the purpose of determining the sequence of single
(or groups) of MUAP which form the corresponding
surface EMG signal., If extended to EMG
surface-electrode arrays, this should also yield
information on locations of motor units (MU) relative
to electrode location in the array. This application
is of importance both as a non-invasive diagnostic
tool, to yield information on single or group MU
innervation during nomal- or test-activity of a
patient. It can also serve for subsequent control of
prostheses, orthoses, or functional neuromuscular
stimulation (FNS) of paraplegics.

The second application concerns the discrimination
between intended walking functions (to be activated by
FNS) of paraplegics from parameters of signature
patterns (AR parameters or equivalent) of above-lesion
surface EMG. This above-lesion EMG is as generated by
natural posture changes of a paraplegic's upper trunk
when preparing to perform the respective
walking-related function (taking right or left step
etc ...), thus controlling FNS to paralyzed limbs.

The two applications above, one being a diagnostic
inverse problem and the other being a functional
pattern-discrimination problem, are intended to
illustrate some of the opportunities provided by
medical applications of NN.

1. Introduction

T The recent advances in neural network theory
[1-5] and its applications now yield a realistic
and powerful tool to deal with a wide array of
signal and image processing, discrimination and
decision problems, especially those that are ill
defined, nonlinear and which are even
non-analytical, or which defy analytical analysis
with conventional Von-Neuman-based computing
machines (at least, at reasonable computational
power and programming time). Medical data and
medical signals or images fit very much the above
description of a nontinear or non-analytical
nature. It is thus a natural area for vast
opportunties in applying neural nets, both for
medical diagnosis and for functional medical
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applications (control of prostheses, of neuromuscular
stimulation, of artificial organs, of implants,
pacemakers, etc ... ).

In this paper we describe two applications of NN
that are being studied at the authors' laboratories,
and which are intended to provide an illustration of
some of the capabilities of NN-based medical signal
processing. One application is mainly of diagnostic
significance, though it has also functional potential,
as a possible approach to control of functional
neuromuscular stimulation (FNS) in paraplegics. The
other application is mainly functional (for controlling
FNS), though diagnostic uses are possible. The first
application is to an inverse processing problem and the
second is to a signature (patern) discrimination
problem. Both applications employ surface (EMG) as
obtained in vivo from human patients during tests or
while performing normal tasks. The first application
is an EMG decomposition problem that follows one of the
author's work on decomposition of [6,7]. The second is
based on previous work of another author on EMG
signature discrimination to control artificial 1limbs in
amputees [8,9] and to control walking under FNS in
(complete) paraplegics [10,11,12] and which facilitated
such walking (while using non-NN pattern
discrimination) at that author's lab for the last
several years,

2. Decomposition of Surface EMG Signals
2.1 The Nature of the surface EMG signal

The surface EMG signal 1s a signal that is picked
up by transcutaneous electrodes attached to the surface
of the skin and which consist of the electrical
response of a muscle in response to trains of
individual electrical signals of a multitude (hundreds
in major muscles) of motor neurons [14]. The
electrical activity of a motor neuron is in turn a
sequence of more-or-less fixed-form signals known as
motor-unit action potentials (MUAP) produced and
prorogated to the muscle-fiber/neuron interface and
which are the motor neuron's (MU's) response to a train
of triggering impulses inputted to the MU from the
spinal cord and hence from the central nervous system
(CNS). The surface EMG is thus a spatial integration
of a multitude of such MUAP's. There can be several
(tens of such fibers) connected to a single MU,
Thousands or tens of thousands of such fibers thus
constitute a major muscle, such as the biceps or
quadriceps muscle in man. See Fig. 1. The individual
MUAP signal (X. of Figure 1 involves rather complex
dynamics, and 0 of a more-or-less fixed shape, as
shown in Fig. 2, where t_,. is the instant of a neural
(firing) at the input to®the MU, coming from the spinal
cord (SC), where also the time scales involved can be
considered fixed (as first approximation, at least) for
a given muscle. Gain (amplitude) terms and low-pass
time constant element terms should contribute to
changes of these patterns. These terms will be
introduced later, the gain terms being one aspect of
what is to be determined for each MUAP by the NN as is
in fact, a sequence of t ,.(K) for the k'th
of MUi). A few hundred? &f MU's may be involved
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in a major muscle. Hence, if we consider two EMG
electrodes 05 a relatively large surface area
(around 1 cm®) and spaced at about 25 mm (center
to center), we record the summation of activities
of a 10-20 of MU's. This recording will also
consist of some 10-20 branches of each of the
MU's involved, where the MUAP is thus
synchronized, differing only by the velocity of
propagation of the AP, which may be assumed over
a short recording interval (say, 1.0 sec) to be
constant ‘at a given electrode location [14]. In
the method of recording for the purposes of the
present paper, cross talk between motor units of
adjacent muscles is acceptable, This
acceptability is an important additional feature
of the proposed decomposition method, The
present NN-based decomposion differs from that of
[14] in that (a) no grid needle electrode is
employed, (b) decomposition is possible over a
multitude of trains of MUAP's by a single
electrode pair, rather than by measuring each
MUAP directly (without decomposition) with point
electrodes, where contact problems, short
circuits between electrodes and the need to
process hundreds of electrodes are eliminated.
However, for evaluation and calibration, the
approach of [14] can serve as a valuable
reference approach. When topographic mapping is
performed then still an array of hundreds of
point electrodes as in [14] is replaced by a
'single pair in the present approach.

2.2 The Surface EMG Decompostion Problem

Noting the nature of the surface EMG signal
as described in Section 2.1 above, this signal
y(t) is considered to be a summation of many
MUAP's of almost identical shape (voltage/time
pattern) and of different (random-1ike) arrival
times. The decomposition problem thus becomes
that of decomposing the random-like [15], [16]
signal y(t), as recorded over a fixed time window
(of say, 1.0 second) to its component MUAP's.

For this purpose we first e?p1oy a single pair of
broad (approximately 1.0 cm®) skin surface
electrodes located at approximately 25 mm
center-to-center inter-electrode distance.
Whereas y(t) is as in Fig. 1, the individual MUAP
is as in Fig. 2. y(t) above is composed of both
near-surface MUAP's and of more distant below
surface MUAP's. However the latter's
contribution is minor. It is not neglected in
our analysis, but only a spatial (2 dimensional)
distribution will be performed in the present
analysis.

Decomposition of y(t) in terms of its formant
MUAP's, is thus in terms of determining the
relative amplitude and arrival time of each of a
finite set of MUAP's pi(t - ti)’ considering the
surface EMG model

N
y(t) = iZ_EI Ky py(t-ty) (1)

t. denoting arrival time and k. denoting the
rdlative amplitude of p; in y(f). Furthermore,
for the NN realization K, and t; belong to a
finite set of possible gsins and times of arrival
k, that differs from one MUAP to another due to
dlstance from the electrode, depth and intensity
of neural activity, and where synchronous MUAP's
contribute to a single AP. We note that several
decomposed p; above with different t; and ki may

belong to different branches of one MU. The
grouping of AP's according to MU's will be
considered in Section 2.3 below.

The NN approach for the EMG decomposition
problem above, is a parallel to the approach of
and Hopfield [17] where a complicated )
(Gaussian~-sums-type) probability density function
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is decomposed into individual formant Gaussian density
functions with different means and different variances.
The different means paralell the arrival times in the
EMG decomposition problem, whereas the gains K.
parallel the different variances in [17]. 1

The algorithm of eqn. (1) can be extended to cover
a finite set of different MUAP patterns and not just a
single pattern, say patterns p..(t-t.) where j denotes
a pattern shape of a set of M ﬂdssibfe shapes, such
that NN

vty = 2 2K
i=1 j=1
This modification will account for effects of filtering
of MUAP's through the tissue. For practical reasons M
should be small as is reasonable to assume noting the
known shapes of MUAP's, such as in [14].
2.3 The Neural Network Solution to the Decomposition

'ijp‘ij(t_t'ij) (2)

ProbTem
2.3 The NN Solution for the Decomposition Problem.
Consider
3>
t) = L FL(t-ts
y(t) &5 Ki;F5(t-t5) (3)

where y(t) is the received EMG signal, f.eF belongs to
a finite set of stereotype of motor unit’action
potential wavefarms, tieT is the time delay and K,
K. The sets T and K are finite sets of real numberdd
The decomposition problem is the determination of
constants K. ., time delays ¢, and functions f. from a
given EMG sidnal y(t). ! J

This problem can be solved by the Hopfield neural
Eetgnrk using a method suggested by Tank and Hopfield

171.
Let 6= (it [k KGeT Fert  (4)
G is the exhaustive set of all possible waveforms. It
is finite because K,T and F are finite. Denote
6 = {g (t)|k=1,2,..0,L} (5)

for some finite L. Eq. (1) can be rewritten in the

form
L
y(t) = kZl Vg (t) (6)
where V, = 0 or 1. The decomposition problem becomes

the detEnTination of v, fpom y(t). Consider
k2" y 2
E=g Iy -Zugll®+ i: S ERTIFRIENT)

where 11 ° l‘ is an Lz-norm in a functional space. Let

Ve [0,1]. Clearly,
E™> 0. Furthermore, E = 0 if and only if
N
y ={,Vk9k (8)
and V, = 0 or 1. This is a solution of the

decombosition problem. Hopfield neural network is an
analog circuit which is designed so that E of (7)
becomes minimum at equilibrium points of the neural

network. In fact, according to [17], we have the design
parameters as follows.

Tek' (<959 " >s k # k' (9)

R A e AT

1 2

L= <yag > + 5 gl (10)
where T.. is the strength (cogﬁuctance) o{hthe
intercoﬁﬂection between the i~ and the j~ processor,

and Ik is the externally supplied input currents. For
the construction of the neural networks, see [17].

The complexity of the neural network is determined
by the cardinal number L of G, which depends on the
cardinal numbers of K,T and F. It should be noted
that the neural network may approach a local minimum,
instead of the desirable global minimum. On the other
hand, its convergence rate is 0(n), where n is the
complexity of network. This is an important advantage
over alternative methods, especially when n is large.



2.4 Spacial localization of Motor Units via

Decomposition from ETectrode Arrays

For diagnostic neurological Studies [14] and for
using EMG for control of prostheses [8,9] and of
electrical stimulation in paraplegics [10-13], not the
decomposition itself is of importance but the ability
to obtain (in a non-invasive manner) a mapping of
innervation across a muscle or a group of adjacent
muscles. The present surface electrode approach has
also the advantage (vs. implanted electrodes) that the
patient is not conscious or constrained in normal
movements by the electrodes.

When an array of surface electrodes as in Sections
2.1, 2.2 is considered, to which decomposition is
applied as in Sections 2.2, 2.3, approximate spatial
mapping can be accomplished. For this purpose eqn.
(1) becomes

N
yh(t) ='Zl K'ih pih(t-tih)’
'|=
R being the number of electrodes in the array.
Once NN-based decomposition has been performed per
each member of the array, i.e., per each y, (t),
localization can be performed via considerQng relative
gains of members of a sequence of one electrode vs. an
adjacent electrode, when accounting for times of
arrival.

Furthermore, when accounting for propagation
velocities, MAUP's of branches of the same MU can be
mapped and inter-related [14]. The mapping may be
performed by another NN subsystem, though conventional
correlation algorithms can also be effectively used
for this purpose.

3. Function Discrimination from Surface EMG
~Signatures Tor ControlTing Neuromuscular

StimuTation in Paraplegics
3.1 Functional Neuromuscular stimulation (FNS)

EMG Signature Discrimination

Tt was shown in [8,9] that the parameters of a
time series model of the surface EMG
(electromyographic) signal can serve as parameters to
control artificial 1imbs in amputees and electrical
neuromuscular stimulation (ENS) in paraplegics
[10-13]. Such control is based on the nature of the
surface EMG signal as the electrical response of the
muscle at the skin's surface to the firing of motor
neurons which cause that muscle to contract.
Consequently, changes in modes (patterns) of muscle
contraction in major muscies {or at an electrode
location which receives an EMG signal generated by
neural firing at adjacent muscles) produce changes in
the EMG time-series parameters, such as the AR
(autoregressive) parameters. Hence contraction or
posture changes at chest muscles above the level of a
spinal-cord lesion in parapleics, when the patient
prepares himself to execute a walking function, is
reflected by a set of AR (or ARMA, etc...) parameters
that are more or less unique and repeatabie for such
an intended walking function.

3,2 The Signature Discrimination Problem

The AR model of the discrete-time EMG signal y(k)

is describable by:
n

h=1 ... R (11)

via

n
y(t) = ,.§la1-¥k-i * W 11;1
w, being inaccessible white noise.

e decision to activate a particular walk function
(right step, left step, sit down, etc ...) by ENS }s
thus based on the parameter vector a £ [a, ... an]
being within a certain subspace of The pa}ameters
space. Once it is determined that a is within the
appropriate region, ENS is applied to the paralyzed
limbs to activate the desired walk function
corresponding (by precalibration) to that function.
See Fig. 3.

The parameters a, are repeatedly identified by a
recursive near-least squares lattice identifier [18].

k=0,1,2, ... (12)
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Our NN decision problem is thus formulated as follows:
Given a set of identified time series (say, AR)
parameters a., which walk function F, [i=1l, «e.m]
should the FAS controller activate?
3.3 The NN Solution to the Signature Discrimination
ProbTem

Let Y be the set of EMG signals y(t) of a
particular patient. Let there exist a partition of Y
into a finite number of groups, say 5 groups as
follows:

Y, - Stand up
Y, = Right leg up
? - Left leg up
¥, - sit down

Yo - Dgn't change status
The discriminatioﬁ problem is to find a partition which
separates each group from others, Furthermore, after
the partition is made, the discriminator should
identify the correct group for each incoming EMG
signal.
The neural network can be used to solve this
discrimination problem, provided the following
condition is met. Each signal y(t) can be represented
by a set ofnfinite number of parameters, say {x.,, Xos
sees X, R"}, so that its associated five grouas Xl’
X,s sess Xo cCan be partitigned by a set of fintie
nﬁnber of ﬁyperp]anes in R, To find the suitable set
of parameters for a given problem is sometimes the most
difficult problem. For example, the sampled value{y,}
of y(t) is not suitable for this purpose. Graupe, e#
al [8-13 ] have found that if the AR coefficients is
used then the five groups can indeed be separated by a
set of finite numbers of hyperplanes. Specifically,
let the AR time series model for the left and the right
EMG signal be given as follows:

n

=2 At

(13)

It was found in [8-13] that if the following parameters
are used:

V¢

Xy =3y (right EMG signal)
X, = a (right EMG signal) 14
X3 =@ (right EMG signal) (14)

Xg Varignce (right EMG signal)

and similarly x.,x_,x, and x, are defined for the left
EMG signal, theR tﬁe Zorrespgnding parameters x =
(xl,x s eees Xo) Of EMG signa1s can indeed be separated
by 1iﬁear hypeﬁplanes in R”,

Based on the above, a multi-layer neural net can
be constructed. The number of perceptrons at the input
layer is determined by the number of parameters needed
to represent each signal. The number of perceptrons in
the output layer is determined by the number of groups
needed to be partitioned into. The number of
perceptrons in the hidden (middie) layer is determined
by the number of hyperplanes needed to separate these
groups. A (8,3,5) multi-layer neural networks is shown
in Figure 4,

The x.'s, zi's and u.'s are the inputs, outputs
and intermddiate'variablel respectively. The outputs
are computed as follows:

8
uj = g(1'2=:1 Wii%q= j) (15)
3
z, = g(?glvihui'gh) (16)
where g is the sigmoid function
A 1
g(x) = =X (17)
1+e
and v, , W.., 8 and §. are the parameters to be
adjusléd, 137 3

There exist many different ways to adjust (train)
these parameters [1] . The back propagation algorithm
by Rumelhart et al [19] will be presented here.

For each input x,thereis associated a desired



ou put d. For example, if x belongs to Group 2, then
(0,1,0,0,0,). We would like to have z = d for
every input x. Now, for a set of training inputs
{x(k) |k = 1,2,...,n}, the coefficients are adjusted in
the following way.
Step 1: Initially, set all coefficients
v(1), w(1),8(1) and p(1) to small
random numbers.
Step 2: Compute u{1l) and z(1) from x(1) by
(1) and (2).
Step 3: Adjust the coefficients by the
following formu1ae
85(k) = z:(k){1-2;(k))(d;(K)),
=1, Q,...,B

85(k) = ug (k) (1-uy(K)) 2, 85(k)vy

=19
né §k)u (k)

k),i=t;z

k+1
éJEk:1;
w 3 (k+1)

k

4+

Vi

Qzﬂ%k) 15! &)

W + nA X n=1, 2,...,8
B}(kﬂ) p3lk)+ mad) "7

and n is a constant chosen between 0 and 1.

Step 4: Repeat step 2 until the process is

convergent.,

If and when the process is convergent then the neural

net becomes a discriminator, which will yield the

correct output for each input, provided that the
training input sequence is widely excited, i.e., it
covers the five groups extensively.

Note that the neural network discriminator is
patient-independent. Each patient can train the
discriminator himself by mere pressing of 4 desired
knobs d to d, ("no pressing" thus implies dS)' No
adjustments 6y experts are needed.

4, Conclusions
We have considered to biomedical problems whose

solution via NN was outlined.

The NN solution for the first problem, which is mainly

a diagnostic one, facilitates decomposition of surface

EMG signals into their formal action potentials. Such

decomposition is otherwise not possible in a

non-invasive manner but for when using a very large

number of point-EMG channels, where both computation
is excessive and the number of channels is in the many
hundres [147. Via NN, 1-to 5 channels will suffice to
cover a muscle area of many square inches.

~ Furthermore, the NN-based method can be employed
without affecting the patient's freedom of movement,
and without making him constrained or bothered at all
by the electrodes themselves.

The second problem is an ENS control problem whose
solution by conventional AI has already been tested
[10], but where NN provide a more elegant and
convenient solution.

Both problems are mere examples of the power and
breath of possible important applications of NN in
concrete medical problems. They also illustrate how
(artificial) neural nets can be utilized to decode
information and structuree in (biologic) neural nets
for functional and diagnostic medical purposes.
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