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GLOSSARY OF ABREVIATIONS USED

ACN /PCN aircraft classification number / pavement classification number
ACNSG : aircraft classification number study group
BLG ; body landing gear
BPOA ; béton, précontraintes et ouvrages d’art
CCTP : cahier des clauses techniques particuliéres
CG ; center of gravity
DGAC ; direction générale de I'aviation civile
HUGA ; humidified untreated graded aggregate
ICAO ; international civil aviation organisation
LCPC : laboratoire central des ponts et chaussées
LRE ; laboratoire régional de I'équipement
LVDT ; Linear Variable Differential Transformer
NLA : new large aircraft
MTOW ; maximum take off weight
PEP ; pavement experimental programme
STBA ; service technique des bases aériennes
WLG ; wing landing gear

11

Rigid P.E.P. brochure



INTRODUCTION

@ General context

In the context of the new large airplane (NLA), AIRBUS proposes the A380 programme, an
aircraft whose mission is to transport 555 passengers over 7920 nm.

The aircraft sets the standard for new code F airports (80m wing span, Landing Gear (L/G)
overall track >14m) and will feature 20 or 22 Main Landing Gear wheels for maximum take off
weight (MTOW) ranging from 560 T to 600 T with potential development beyond 650 T.

This work, the A380 Pavement Experimental Programme (A380 PEP) rigid phase, deals with
rigid pavement compatibility under high aeronautical loads. In fact, problems occurs because the
current “arcraft classification number / pavement classification number” ACN/PCN method
seems to have reached its limit of reliability with 6 wheels bogie loads. So a group of pavement
designers felt the need for a research programme aiming at defining more accurate pavement
design methods. The group consisted of:

The pavement designers from Airport and Airforce Bases Engineering Department
(DGAC-STBA), ICAO ACNSG European member,

The pavement structure and materials experts (French Laboratory for Civil Engineering —
LCPC),

The European aircraft manufacturer AIRBUS.

@ Objectives

The A380 PEP, including flexible and rigid phases, was launched in June 1998 with the aim of
studying the impact on pavements, of using aircraft of large capacity such as the A380. Both
phases consist in simulating aircrafts passages on a airport runway using a vehicle simulator able
to reproduce various types of aircraft bogies such as A340, A380, B747, B777 or MD11. The
variable parameters were mainly the load applied (load at wheel, tires pressure), the geometrical
configuration of the landing gears (track, base, type of bogie) under a given thermal load. Up to
22 wheels could be individually loaded up to 32 tons.

The first stage, devoted to flexible tests, consisted in designing and testing a pavement with
varying instrumented surfaces of bituminous materials. Results gave place to a conference and a
previous brochure (October 2001).

The present phase deals with rigid pavements. The aims of the rigid phase are, firstly, to obtain a
set of data to improve pavements knowledge and secondly to correlate mathematical models
using finite element method. These models would supersede the ACN / PCN method and obtain
a much more reliable classification of aircrafts and pavements.

@ Report content, future results

This brochure presents the rigid phase of the PEP, which took place from June 2002 to October
2003 on a taxiway zone reserved by AIRBUS France. As for the flexible phase, the rigid phase
includes a static and a fatigue campaign. Many complementary tests and a post investigation are
also realized.

The first part of the document is devoted to the presentation of the experimental runway. After a
brief description of the site, the pavement foundation and design are studied. Then we show
some descriptions of the works during the construction of the runway.
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The second section presents the instrumentation used during the rigid pavement
experimentation. The principles of the expected measurement are recalled. Then the types of
sensors, the experimental device and the method used for the data acquisition are described.

The static tests are exposed in the third part. The tested configurations, the load passages and
the main trajectories are detailed.

Finally the main results and a first analysis are carried out in the last part of the present brochure.
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|. EXPERIMENTAL RUNWAY PRESENTATION

Many parameters are to be taken into account when designing cement concrete aeronautical
pavements:

subgrade,

type of foundation,

size of the slabs,

dowelling or not,

environment (temperature, etc.).

O O0OO0Oo0OOo

Many of these parameters can vary over time. As the life of a rigid pavement is at least twenty
years, the "world-wide population” of cement concrete pavements is fairly heterogeneous and
various techniques coexist. So it is therefore not easy to select a typical structure. The test runway
must therefore include several zones using various techniques to evaluate their behaviours under
aeronautical loads.

.1 Site description

Logically following the flexible pavement tests, the rigid PEP is based on the same assumptions,
that is full scale and "open air" tests under environmental conditions (especially thermal and
hygrometric) representative of operational conditions.

Taxiway
extension

¥ AIRBUSFRANCE site [
S N Nl R o e T N

Figure I-1 : The Toulouse-Blagnac site.

The site selected for the flexible PEP was located in the extension of taxiway B20 at the Toulouse
Blagnac airport. This site incurred a certain number of constraints during the flexible runway
tests especially utilisation restrictions under low visibility procedures conditions. The main
negative point remains however the premature interruption of the fatigue campaign to hand over
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the zone to the airport manager in order to extend this taxiway. That is why the site chosen for
the rigid PEP is located within the AIRBUS France site away from all aeronautical constraints
and independent of the airport development scheme. The fatigue test phase will therefore not be
interrupted. The selected site provides a surface area of around 250 m x 100 m. Lastly, the test
runway must be constructed according to techniques used traditionally for cement concrete
pavements (mainly use of slip-form; all manual construction is to be prohibited). The selected
slab pattern must not create constraints making the sections unrepresentative of the operational
pavements.

1.2 Pavement foundation

1.2.1 Subgrade

The dimensioning problem of the test runway is quite different from conventional dimensioning.
The aim is here to construct a pavement representative of real runways, representative of the
types of subgrade considered by the ACN / PCN method, from very low to very high strength.
Indeed, rigid pavements are in general advantageous on low bearing capacity subgrades; most of
the reference platforms for the A380 are thus listed in classes B and C.

The underlying hypothesis was to retain a typical foundation commonly used today:

0 15 cm of lean concrete
o 25cm of humidified untreated graded aggregate (HUGA)

Knowing the K, modulus of the subgrade and considering the equivalent thickness of 47.5 cm
given by the selected foundation, it is possible to determine the K. modulus what give the
pavement class in the sense used by ACN / PCN method. So by using the modulus correction
curve in reverse, we can determine the K, modulus from the K. modulus. With K. modulus, we
can also directly calculate the thickness of concrete slab.

Thus, by choosing to construct a class C experimental pavement with therefore a representative
modulus K. = 40 MN/m?, the corrected modulus K, of the subgrade is therefore well below 20
MN/m?® (between 5 and 10), which represents a very poor subgrade and especially difficult (or
even impossible) to reconstruct. Also, compacting a foundation course of 25 cm of HUGA on
such a subgrade is quite impossible.

This also means that with the foundation courses used at present, the provided protection and
the modulus correction are such that the pavement cannot be placed in class D (the only airport
of the A380 target airports in this class is the Djakarta airport which corresponds in fact to a
runway constructed "on piles”...). Most of the runways classed as R/D in the sense used by the
ACN 7/ PCN method have in fact very weak foundations (or even no foundation at all) — see
Annexe 1.

The weakest category of experimental sections has been chosen so that the base ground will be
"reconstructable”. The limit of categories B and C has been chosen, this means K. = 60 MN/m?
and K, = 25 MN/m® (corresponding to a CBR = 3 which had already been difficult to
reconstruct for the flexible PEP). The second chosen category corresponds to the limit of
categories A and B, i.e. K. =120 MN/m?®and K, = 80 MN/m".

1.2.1.1 Experimental check

As obtaining K. is important for the classification of the structures, it is decided to do an
experimental check on the theoretical correction of modulus K. given by the foundation course.
As a Westergaard plate test has no significance on the lean concrete, modulus K’. on the HUGA
course is submitted to a check and validation:
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Figure I-2 : STBA design method — correction of K. modulus.

1.2.1.2 Subgrades

The theoretical values (correction of 47.5 cm equivalent for K, and correction of 22.5 cm
equivalent for K';) are:

Table I-1 : Subgrade characteristics.

Subgrade N°.1 Subgrade N°.2
K. =60 MN/m’ K. = 120 MN/m°
K'c =45 MN/m® K’c =100 MN/m®
Ko = 25 MN/m? Ko= 80 MN/m®

Experimental test plates are made on reconstructed subgrades to adjust the HUGA thickness in
order to measure on this course the values given by theory. The results are as follows:

Table I-2 : HUGA thicknesses.
Subgrade N°.1 Subgrade N°.2

Target K’. 45 MN/m? 100 MN/m®
Theoretical thickness 25cm 25cm
Thickness required 43 cm 30 cm

1.2.1.3 Conclusions

The overthickness to be used in relation to theory can have two explanations: either the
correction curves are inaccurate or, more probably, (this seems to be confirmed by the flexible
PEP cyclic loaded triaxial tests) the quality of the HUGA used is fairly poor which would mean
that its equivalence coefficient is lower than 1. In theory, it is equal to 25/43 and 25/30. The
difference between the HUGA equivalence coefficient on the two subgrades can be explained by
approaching road pavement modeling techniques where the modulus of the HUGA oourses is
fixed proportionally to the one of the subgrade.
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[.2.2 Subbase

1.2.2.1 HUGA

It consists of a humidified untreated graded aggregate (HUGA) 0/20 type B2, manufactured by
mixing various size fractions in a level 2 plant as defined by standard NF P 98 115. It must be in
compliance with the standard NF P 98 129 and is reconstructed from at least two separate size
fractions in compliance with standard XP P 18 540.

1.2.2.1.1  Intrinsic characteristics
The aggregate must be at least category D.

1.2.2.1.2  Manufacturing characteristics

The aggregates must be at least category I11.
The sands must be at least category "b".

1.2.2.1.3 Additional characteristics

o Graduation

The composition and the characteristics of HUGA 0/20 type B2 will be determined
according to the methodology given in standard NF P 98 125

o Angularity

The crushing ratio Ic will be greater than or equal to 60%.

0 Frost sensitivity

The aggregate must be classed SGn as per standard NFP 98 080-1, the aggregates must be
insensitive to frost G < 25% as per P 18 593).

1.2.2.2 Lean concrete

The average strength of the concrete is measured in compression at 28 days on 16 mm diameter
and 32 cm high test specimens. Taking the normal manufacturing scatter into account, the
concrete will be in class 2 (NF P 98 170) i.e. an average strength greater than 20 MPa (mean
strength as determined by splitting tests: 1.7 MPa). The minimum cement content required is 160
kg/m?® of concrete.

The characteristics required for the aggregates comprising the lean concrete (and the surface
concrete) are as follows:

1.2.2.2.1 Intrinsic characteristics

0 The aggregates of grain size 5/20 and 20/40 used for the surface and the foundation
concrete must belong to category "D" defined by standard XP P 18 540 in compliance
with standard NF P 98 170.

CPA=0.40  (for surface concrete).
o Concerning sand 0/5
Sand friability: FSb for foundation concrete.
Sand friability: FSa for surface concrete.
Sand water absorption coefficient: Vg £ 5 for the foundation concrete

Sand water absorption coefficient: Vg £ 2.5 for the surface concrete (Applicable when it has
been demonstrated that the concrete is free from risks of bleeding. If no test has been conducted, we will
specify that the water absorption coefficient is £ 2.5)
o Total sulphur content
Sg for the foundation concrete.
S, for the surface concrete.

17

Rigid P.E.P. brochure



1.2.2.2.2  Manufacturing characteristics

0 The aggregates must belong to category "HI" defined by standard XP P 18 540 in
compliance with standard NF P 98 170.

o The sand 0/5 must belong to category "al" defined by standard XP P 18 540 in
compliance with standard NF P 98 170.

o The fillers, used as granulometric corrector must meet the specifications given in standard
XP P 18 540.

1.2.2.2.3  Formulation of the cement

The cement entering into the composition of the concretes intended to manufacture the lean
concrete foundation course and the concrete slabs must be at least of Portland CPA-CEM | 32.5

or CPJ-CEM 11 (A or B) 32.5 type.
The suitability tests led to the choice of the following formulation for the lean concrete
(Quantities per cubic metre of concrete):

Table I-3 :Formulation of the lean concrete cement.
Cement CPJ CEM II/A-LL 52.5 N CE CP2 NF 200 kg

Aggregates 5/12.5 435 kg
Aggregates 10/20 690 kg
Sand 0/4 875 kg

Water 1501
Air-entraining agent AER Sika 0.06%
Plasticiser 22S Sika 0.6%

1.2.2.2.4  Joint characteristics

Special care is brought to the positioning of the longitudinal lean concrete joint. Indeed, it is very
important that no superimposition between the lean concrete and surface concrete construction
joints occurred (for more details on surface joint see § 1.3.2.3). The chosen solution allows a
minimum distance of 50 cm to be obtained between the lean concrete and surface concrete
longitudinal joints.

Figure 1-3 : lean concrete longitudinal joint.
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The lean concrete surface is realised by seven strips (6 and 9m width) which are obtained by a
single slip-form pass (around 250 ml each). No transverse joints are created by sawing, so natural
cracking appeared during drying. The longitudinal construction joints have no load transfer
systems of tongue-groove type or other. The edges are smooth, like shown in Figure I-3.

1.3 Pavement design

1.3.1 Thickness calculation

Knowing K. modulus, allowed flexural strength stress of concrete and designing traffic, we can
calculate with the French rigid airfield pavement design method the thickness of concrete slabs.
Three structures are to be dimensioned:

o Dowelled structure (s, = 6/1.8 = 3.33 Mpa) on subgrade n°.1 (K. = 60 MN/m°
0 Undowelled structure (s, = 6/2.6 = 2.22 Mpa) on subgrade n°.1 (K. = 60 MN/m°)
0 Undowelled structure (s, = 6/2.6 = 2.22 Mpa) on subgrade n°.2 (K. = 120 MN/m?)

The dual constraint is here as follows:

- on one hand, designing a pavement allowing, during the static tests, in situ measurement by
means of instrumentation of displacement and strain values sufficiently high to be representative
(low thickness preferable),

- on the other hand, considering that the pavement should not fracture during the static tests and
not fracture at a too early stage during the fatigue tests (high thickness preferable).

Finally, the dimensioning is done on the basis of 10,000 movements of B747-400 at maximum
weight (395.9 T), taking into account the current fatigue law of the French design method. The
load weighting coefficient retained is 1.

Table I-4 : Thicknesses of concrete layers.

Subgrade N°.1 Subgrade N°.2
K. = 60 MN/m® K. =120 MN/m®
With dowels Without dowels Without dowels
Slab 30.1cm 41.2 cm 36.2 cm

thickness rounded off to 31 cm rounded off to 42 ¢m rounded off to 37 cm

The following table presents the pavements life sensitivity due to a slight variation in thickness.
The number of allowable movements are calculated with the current fatigue law of the French
design method for a B747-400 on subgrade n°1 with dowelled slabs.

The table below gives the theoretical number of allowable movements of the main aircraft
loading the test runway either during the static tests or during the fatigue tests. This permits to
"visualize" the fracture risks for different kinds of aircraft:
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Table I-5 : Number of allowable movements.

Subgrade N°.1 Subgrade N°.2
K = 60 MN/m® K = 120 MN/m®
With dowels Without Without dowels
dowels
B 747-400 » 17,000 » 13,500 » 14,250
qé % A 333-(5;300 » 15,500 » 12,000 » 12,800
v D
= g A380-800BLG »9700  » 3,800 » 8,900
> ) _
T; £ A 3\?\?L200F »7400  »5700 » 6,000
s -
Sg AR 4500 »1500 » 4,000
22
- © B 777- 300 » 8,700 » 3,700 » 8,100
B 777 -300ER » 1,500 » 600 » 1,400

Finally, the final configuration of the test runway is as follows:

Subgrade n°1  Ky=25 MN/m® Subgrade n°2 K =80 MN/m?®
K'. = 45 MN/m® K'. = 100 MN/m?
K. =60 MN/m° K, =120 MN/m®
AR C { 42 cm for undowelled slabs e
R ONCrete = 31 ¢m for dowelled slabs Essd Concrete slab 37 cm
Lean concrete 15 cm . Lean concrete 15 cm
HUGA 43 cm HUGA 30 cm
7777777 1 7777777 l
Limit of classes B/C in Limit of classes A/B in
ACN/PCN method ACN/PCN method

Figure I-4 : Cross sections of pavement.
1.3.2 Slabs arrangement

1.3.2.1 Preliminary remarks

The test runway must allow both static tests and fatigue tests to be conducted. In the same way as
for the flexible campaign, the fatigue tests will consist in comparing different aircrafts. So choices
of slabs pattern induce many consequences.

Firstly, the independency of the bogies will require at least one complete slab between each
trajectory of the tested bogies (During fatigue tests, two bogies of two different aircrafts must
never run on the same slab). Already at this stage, this parameter and the geometrical limits of the
simulator exclude the possibility of testing four different bogies as for the flexible tests. The
fatigue campaign is devised considering the hypothesis of an hybrid simulator configuration
combining the main landing gear of the B 777-300ER and 3/4 of the A380-800F landing gear.
The second problem concerns the choice of the critical trajectory for the fatigue campaign. This
trajectory varies according to the climatic conditions and, in particular, the thermal gradient in
concrete slab. A longitudinal trajectory at slab edge will be penalizing for negative gradients
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(convex curvature of slab, raised corners), whereas a longitudinal trajectory in the centre of the
slab will be penalising for positive gradients (concave curvature of slab) as shown in Figure I-5:

Positive gradient in slab

3 )

Megative gradient in slab

t2

- -
5
-1

Figure I-5 : positive and negative gradient in slab.

The conventional pathology of cement concrete aeronautical pavements consists mainly of
corner breaks for negative gradient and also cracks in the centre of the slab for positive gradient.
To best estimate life of a given section, several trajectories must be tested at the same time, i.e. at
constant gradient. This presents the advantage of not having to make a preliminary choice for the
critical trajectory.

On account of the many parameters and the fact that the fatigue of section can only be observed
over a minimum of four slabs (longitudinally), we can see that it is impossible © study all
parameters one by one (for example, for a given subgrade and slab size, we study the influence of
the dowelling on two sections for the fatigue approach... then, we modify subgrade, etc.). The
test runway must at least allow a comparison by crossed parameters.

1.3.2.2 Slabs width and length

Commonly, dimensions of aeronautical slabs are varying between 4 and 7.5m. Thus, the trend
has been to move away from the short undowelled slabs used in the '60's (Californian technique)
to the larger slabs used today with dowelling according to the areas (gates, runways, taxiways,
holding areas, etc.). Short slabs present the advantage of being less sensitive to thermal
fluctuations, but need more maintenance.

So it seems to be interesting to take into account two dimensions of square slabs: 5m and 7.5m.
This leads to many configurations considering the dimensions slabs, the subgrade or even the
kind of joints.

1.3.2.3 Slabs junction

Usually the concrete pavement are classified according to the localization and the treatment of
the discontinuities due to concrete shrinkage. In order to be the most representative of existing
structures, it is decided to construct dowelled and undowelled slabs (Figure I-6). Placed at semi-
height of slabs, the dowels permit to improve joints behavior and load transfer at joint. Note that
the dowelling technique is often used for large airplanes traffics.

So the runway will be composed of:

0 Short square undowelled slabs (5m)

o0 Square undowelled slabs (7.5m)
o Square dowelled slabs (7.5m)
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Figure 1-6 : Cross section of contraction joints.

Dowels supports (Figure F7) and dowels are in compliance with standard NF P 98 170 and
standards of subseries NF P A 35-015. The dowels are smooth and straight, of grade at least
equal to FE 240, 40 mm in diameter and 50 cm long. These are coated with a thin film of a
product preventing adhesion to the concrete (completely for dowels placed on baskets, on the
unsealed part for dowels installed by drilling). Also, a metal or plastic cap is placed on the end of
the expansion joint dowels on coated side. The selected dowel spacing is 40 cm.

Figure 1-7 : Dowels on basket / Concreting.
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1.3.2.4 Joints characteristics

1.3.2.4.1 Expansion joint

Because of the presence of offsets, the slip-form paver can not cast concrete form one side to
another. So the installation plane has been divided into "straight sections". Each installation
section is then separated by an expansion joint (Figure 1-8). The table I-6 presents the installation
date of concrete strips.

Secondary strip

(keying or 142 keying) = Expansion joint

Figure 1-8 : Expansion joints and concrete strips.

Table I-6 : Installation date of concrete strips.

28/09 | 7 |03/10 |13 |01/10 |18 |14/09 |25|18/09
21/09 | 8 |13/09 |14 |16/09 |19 |24/09 |26 |21/09
03/10 | 9 |02/10 |15(02/10 |20|29/09 |27 |18/09
27/09 |10 |13/09 |16 |20/10 |21|24/09 |28 |24/09
04/10 | 11|03/10 |17 |25/09 |22|14/09 |29 |19/09
27/09 |12 |13/09 23(24/09 |30 (24/09
24 (17/09 | 3120709

DO B|W[N| -

1.3.2.4.2  Transition joints

Figure 1-9 : Corrugated profile at transition joint.

The transition joints are ensured by corrugated profiles (Figure 1-9) chosen to ensure load
transfer. The selected profile, in terms of wave geometry, is the same for the three slab
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thicknesses. This permits to simplify the placing of the concrete because only one wave has to be
constructed. Even if general practice recommends to select three different profiles, the load
transfer is still well assured. The corrugated profile is placed directly on the slip-form placer.

1.3.2.4.3  Contraction joints
There are two types of contraction joints, depending on the presence of dowels (Figure 1-10).

Figure 1-10 : Contraction joints.

Because of the low length of certain sections (for example strips 18 to 24), shrinkage cracks may
not appeared at the joints but over the complete length. To avoid this phenomenon, the depth of
the saw mark is fixed to 1/3 of the slab thickness, instead of the standard recommendation of
1/4. The joint sealing is realised with a silicon joint filler.

1.3.3 Pavement materials

The surface layer is made of cement concrete. The mean strength of the concrete at 28 days is
determined by splitting tests on 16 cm diameter and 32 cm high test specimens. Taking the
normal manufacturing scatter expected on the site into account, the concrete will be class 6 (NF
P 98 170), i.e. a mean strength determined by splitting tests greater than 3.3 MPa (corresponding
to a bending tensile strength of 6 MPa; value used for designing). The minimum content required

for the cement is 330 kg/m? of concrete. The ratio water / cement VEV must be £ 0.45.

The range of fluctuation of the consistency at placement location is 3 cm and occluded air
content in compliance with standard NF P 98 170.

1.3.3.1 Material characteristics

Recommendations are the same as the ones for the materials comprising the lean concrete (see
§1.2.2.2).
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