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A biased distribution of local network structures, or network motifs, has been widely observed
but remains poorly understood. By comprehensively studying their dynamics, we show that some
network motifs are fundamentally more versatile—capable of executing a variety of tasks—than
others. We calculate the value of a motif by comparing its versatility to its range of possible update
rules. Our work suggests that network motifs are not optimised to perform a single dynamical task,
but that some motifs are recurrent because, by a change of rules, they possess a broad range of
functionality.

Complex dynamical networks [1] are found in the brain
[2], genetic regulation and transcription [3], the World
Wide Web [4], transport and traffic and ecological food
webs [5]. Recently it was observed that some local net-
work structures, or network motifs, are much more fre-
quently observed in complex networks than would be ex-
pected by chance [6, 7]. Although this biased distribution
of motifs appears to apply to a broad range of networks,
it remains unclear why some motifs are ubiquitous and
others are not. Understanding the comparative advan-
tages of different small networks would explain why real
dynamical networks make disparate use of motifs.

Recent work on network motifs includes the develop-
ment of efficient methods of motif identification [8] and
understanding the distribution of motifs imposed by un-
derlying network geometry [9]. Certain motifs exhibit-
ing dynamical behaviour have been identified as essen-
tial ingredients of specific biological processes [10–13].
The transition from inactivity to periodic and chaotic be-
haviour has been studied on small networks in the context
of continuous neural networks [14].

In this Letter we comprehensively study the dynamics
of network motifs by evaluating all possible binary up-
date rules over all possible network connectivities. We in-
troduce a formalism for classifying dynamical behaviour
and show that some network motifs are fundamentally
more versatile—capable of executing a variety of tasks—
than others. Because it is more likely to be capable of
an arbitrary task, a versatile motif would ostensibly oc-
cur more frequently in real networks, all else being equal.
While versatility roughly increases with motif complex-
ity, we find evidence of a critical complexity, after which
increasing the number of bonds confers no advantage.

In addition to studying the range of tasks that can
be executed by a given motif, we consider the range of
network motifs which can perform a given task (the net-
work design problem). We find that for a given task,
there are typically many update rules running on differ-
ent networks which can execute it, but with varying de-
grees of network versatility, simplicity, and resistance to

mutations. Plotting these networks/rules in the associ-
ated phase space, we find evidence of a trade-off between
the quantities; in other words, there is limited freedom
in choosing how a network performs a given task.

To understand the dynamical behaviour of network
motifs, we consider the most general class of discrete,
binary dynamics, boolean networks. We evaluate all pos-
sible update rules over each network for 2 and 3 nodes
(Figure 1). Beyond this, the complexity of the problem
explodes: there are 1019 update rules and 3044 networks
for 4 nodes (Table I). Unlike others [6, 7, 9, 14], we in-
clude networks with self-interactions; these are important
in many natural networks, particularly genetic networks,
which rely heavily on autoregulation [3]. Moreover, we
find that their presence dramatically increases the variety
of tasks that a motif can achieve.
Boolean dynamics and endofunctions—A boolean
network has two parts: a directed network of N nodes
and from 0 to N2 edges, in which each node can take the
value 0 or 1 (the hardware); and a set of local update rules
for the nodes (the software). An update rule assigns an
output of 0 or 1 for each of the possible combinations of
inputs. The state of the network is the vector of values

FIG. 1: Directed networks with self-interactions, ordered by
number of edges. There are 10 distinct networks on 2-nodes
and 104 networks on 3 nodes. For 10 nodes, the number of
networks is of the order of Avogadro’s number.
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FIG. 2: Examples of dynamics and their reduced represen-
tations, called endofunctions, for N = 2 and 3 nodes. The
left dynamic can be written a → b, b → c, c → d, d → a, or
abcd→ bcda, or simply bcda. Similarly, the center and right
dynamics are bbab and eadhaccc.

of the N nodes, and thus there are 2N possible states.
The state is updated according to the combined set of
local update rules, which is called a boolean function
(bf). The number of possible update rules per node is
22k

, where k is the number of inputs (not outputs). For a
fully connected network, there are B = (2N )2

N

bfs. The
number of networks grows with N as 2, 10, 104, 3044, . . .;
this is the number of structures of finite relations (Sloane
A000595). We call an instance of the hardware a network
and an instance of the software a program.

In accordance with the bf, each state in a network is
followed by another new state until the dynamics enters
into an endless loop, or cycle. The 2 node network, for
example, has 4 possible states: 00, 01, 10, 11. We label
these a, b, c, d. Then the dynamic 00→01, 01→11, 10→
00, 11 → 01, say, can be written a → b, b → d, c → a,
d→ b or abcd→ bcda, or simply bcda. The 44 = 256 bfs
on the fully connected network correspond to the 256
words that can be composed of the letters abcd. The be-
haviour of a bf, or word, is best appreciated by drawing
its graph. When we leave the labels on the graph, we
call the graph a dynamic, but when we drop the labels,
we call the graph an endofunction (Figure 2). There is
a one-to-one correspondence between bfs and dynamics,
but the number of endofunctions is much smaller, since
two different labelled graphs may have the same unla-
belled graph. There are 19 endofunctions for 4 states:
� � � � � � � � � � � �

�
� �
� �

� � � � � � � �
� �

�
�

�
�

� �,
where it is understood that all graphs contain 4 nodes
and the circles � � � �are cycles of length 1, 2, 3, 4.

An endofunction is a function from some set S to the
same set S, where the elements of S are unlabeled. There
is a one-to-one correspondence between endofunctions on

N Net- B Boolean E Endo- CP Cycle CL Cycle
Nodes works functions functions patterns lengths

1 2 22 3 3 2
2 10 44 19 11 4
3 104 88 951 66 8
4 3044 1616 3799624 914 16
5 291968 3232 9.06 × 1013 43819 32

TABLE I: Properties of small boolean networks. The last
4 columns, which are the 2N th terms of more natural series,
apply to the fully connected network only. How they diminish
with the cutting of bonds is the subject of this Letter.

j elements and directed graphs of j points and j edges,
the only rule being that only one arrow can leave each
node. The number of endofunctions grows with j as
1, 3, 7, 19, 47, 130, . . . (Sloane A001372). When convert-
ing dynamics to endofunctions, some of the latter occur
more frequently than others. The least frequent is the
identity endofunction abcd . . . (a set of N 1-cycles), which
occurs only once; the most frequent is aabcd . . . (a 1-cycle
followed by a linear tail), with frequency 2N !.
Versatility—Versatility is the ability to do many differ-
ent tasks with minimal reorganisation. In the case of net-
work motifs, this means adopting many endofunctions by
a change of software whilst keeping the hardware fixed.

For N = 2, there are 10 possible networks (Figure 1
top). For the fully connected network, the distribution of
endofunctions given a random program is given by (10).
What happens to the distribution when we cut bonds
from the fully connected network? This is described by
the so-called master equations:

PE( ) = � (1)
PE( ) = 1

4 [2 � + � �+ �] (2)
PE( ) = 1

4 [2 � + 2
�
] (3)

PE( ) = 1
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�
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+ 12(

�
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These equations can be inverted to solve for the distri-
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FIG. 3: The 104 3-node networks (we do not plot disjoint net-
works). From top, the numbers of boolean functions B (lines),
distinct bfs B̄ (+s, if different), endofunctions E (lines), cycle
patterns CP (dotted lines) and cycle lengths CL (lines).
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bution of networks for a given endofunction.
A coarser picture, which only considers the long

term behaviour, results from grouping together dynam-
ics which have the same set of cycle lengths. For N = 2,
these cycle patterns are � � � �

� �
� �
� � � �

�
�
� �

�
� � �

�

�. The number of cycle patterns CP grows with N as
3, 11, 66, 914 . . . (the 2N th terms of Sloane A026905); the
Nth term is the sum of the first 2N partition numbers.

The coarsest classification associates all dynamics that
contain at least one cycle of a given length. The possible
cycle lengths (CLs) are the circles of size 1 to 2N ; for
N = 2, � � � �. Note that one dynamic can be a
member of more than one cycle length class.

The distributions of cycle patterns and cycle lengths
can be deduced directly from a network’s master equa-
tion. For the fully connected network ( ), they are

PCP( ) = 1
256 [64 � + 48( � �+ �) + 36 �

� + 24 �
� (11)

+12 �
� �+ 8 �+ 6( �

� �+ �) + 3
�
�+ � �

� �] and
PCL( ) = 1

256 [191 �+ 93 � + 32 �+ 6 �]. (12)

For N = 3, there are 104 networks (Figure 1 bottom)
and 88 � 1.7×107 boolean functions, which generate 951
endofunctions. However, not all of the 104 networks can
yield all possible endofunctions. The less connected net-
works exhibit a surprisingly limited range of behaviour.
For example, the master equations for the feedback ( )
and feed-forward ( ) networks are

PE( ) = +1/16 (6 6 + + + )2 63
3

2 (13)

PE( ) = +3 +2+1/16 (5 )++2+2 .(14)

The feedback network exhibits a broad range of cycle
lengths, whereas the feed-forward shows a variety of
basins of attraction but only around 1-cycles (the only
connected network with ≥ 3 bonds to do so). By con-
trast, the superposition + = , which we call
feed-forback, has 19 endofunctions, including all cycle
lengths but 8. Interestingly, adding a self-interaction to
a network can increase its versatility dramatically: ,

and can generate 5.3, 5 and 11 times as many
endofunctions as , and (Table II). Networks
without self-interactions can generate at most 6.7% and
29% of the possible endofunctions and cycle patterns.

The feed-forward network has been identified as
an important ingredient in several biological processes
[10–13]. An example is a pulse generator in synthetic
biology [11] which can be modeled by with a switch
(left node), an inhibitor (top node ) and an output (right
node). The pulse generation itself is represented by the
following sequence of active (1) and inactive (0) states
of switch/inhibitor/output: 000 ⇒ 100 → 111 → 110,

where ⇒ denotes switching on the generator (i.e., chang-
ing the constant rule on the switch node from 0 to 1).
This dynamic is represented by the fourth term of the
rhs of (14). Another example using is a sign-sensitive
delay element in transcription networks [13]. This is a
circuit that responds slowly to the off-on and rapidly to
the on-off switching of a signal.

Feedback is also an essential part of various biological
mechanisms. Examples include (i) a cellular digital clock,
which generates series of pulses of protein expression [10],
and (ii) negative autoregulation [12]. The first can be
modeled using the 2-node feedback network ( ) while
the second requires an additional self-interaction ( ).
The dynamics are represented by �

� and
�
.

Value—The fully connected network can, with the ap-
propriate software, emulate anything a simpler network
can do. But a complicated network is more costly than
a simple one. The number of edges is one measure of
network complexity. A more natural definition is the
amount of memory M necessary to specify the boolean
function: M = 2k1 + 2k2 + . . ., where k1, k2, . . . are the
number of inputs at each node. Note that M = log2 B
and that M is a function of the network hardware only.

The number of endofunctions over the number of pro-
grams is the extent to which a network can convert the
space of programs into a variety of tasks. It is a measure
of the value of a network. While for most networks the
number of distinct programs is equal to 2M , this is not
the case for networks with symmetries. For instance,
will give the same behaviour for a given bf under any
permutation of the points, whereas this is not true for

. In other words, the 128 programs on are all dis-
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FIG. 4: The 104 3-node networks, ordered by memory M .
The 13 motifs without self-interactions are highlighted as
squares; disjoint networks are not shown. TOP: Versatility E
(endofunctions). After 16 bits, increasing network complexity
confers little advantage. BOTTOM: Value E/B̄. Again, the
most valuable networks tend to be less complex.
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Net. B B̄ E CP CL Net. B B̄ E CP CL

32 26 2 1 1 256 19 10 7

64 63 4 1 1 1024 33 10 7

32 3 1 1 4096 816 64 19 7

128 10 3 3 256 13 3 2

64 5 3 3 2048 37 3 2

256 250 10 3 3 256 25 7 5

128 7 1 1 4096 1376 143 33 7

64 24 5 3 4 1024 78 15 7

512 392 18 3 3 4096 209 31 8

256 250 9 3 3 65536 834 53 8

TABLE II: The 13 connected 3-node motifs without self-
interactions (studied in [6, 7]) and 7 other networks of in-
terest. We show the network diagram and the number of
boolean functions B, distinct bfs B̄ (if different), endofunc-
tions E, cycle patterns CP and cycle lengths CL.

tinct, whereas only 24 of the 64 programs are distinct.
The reduction of programs B to distinct programs B̄ can
be determined by the symmetry of the network:

B − B̄ = 22k

(22k − 1)(α22k

+ β), (15)

where α, β = 0, 1/2 for 2-fold symmetry and α, β =
5/6, 1/3 for 6-fold symmetry, and k is the number of in-
puts on the symmetric nodes. For 3 nodes, we plot B and
B̄ in Figure 3 and E/B̄ in Figure 4 (bottom). The most
valuable networks tend to have lower complexity M , with
feedback with 0 and 3 self-interactions being exceptional.
Stability— If we make a mutation to a program (bf) by
flipping a 0 to a 1 or 1 to 0, we may or may not cause the
resulting endofunction or cycle pattern or cycle length to
change. The fraction of the M possible mutations to the
program (genotype) which do not change the behaviour
(phenotype) is the stability S. There are times when it
is important to have a high stability, such as when the
environment is constant. In other circumstances there
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FIG. 5: Boolean networks which generate the cycle pattern
�
� � , plotted in M -S phase space (many of the points are de-
generate). Stability ranges from 0.08 to 0.7; the most stable
bfs do not correspond to the simplest networks.

may be a need to swap to different tasks by changing
single bits. We calculated the stability S with respect
to cycle patterns (long-term behaviour) for all boolean
functions/networks. We find that, within a set of pro-
grams which produce the same cycle pattern, there is a
broad range in stability.

Stability S can be combined with versatility E and
complexity M to create a unified picture in the context
of network design. Given a particular behaviour, consider
the set of boolean functions/networks which generate it.
Typically this set is very large, and we plot the ensemble
in E-M -S phase space. We find that there is limited
freedom in specifying E, M and S, because optimising
one tends to be in conflict with optimising another.

The conflict between program stability and network
simplicity is illustrated by projecting the E-M -S phase
space onto the M -S plane for a particular cycle pattern
(Figure 5). There is a clear trade-off between low M
and high S, and this is typical of other cycle patterns.
Similarly, we have already seen a trade-off between ver-
satility and simplicity in Figure 4 (top). The emerging
picture suggests that in biological and other naturally
occurring networks, robustness and versatility may come
at the price of increased connectivity.

Our work suggests that elementary network circuits
are not optimised to perform a single dynamical task,
but are typically capable of generating a host of different
dynamics via a change of update rules. This supports
the evolutionary mechanism of co-opting a network used
for one task to perform another; in other words, do not
reinvent, borrow and modify. Boolean motifs provide an
explicit set of dynamical building blocks for hierarchically
constructing more complex task-specific networks, such
as a clock of arbitrary period.
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