
Exercise 4: Force and motion
Equipment:

1-meter pieces of butcher paper

wood blocks with hooks

string

masses to put on top of the blocks to increase friction

spring scales (preferably calibrated in Newtons)

Suppose a person pushes a crate, sliding it across the floor at a certain speed, and then repeats
the same thing but at a higher speed. This is essentially the situation you will act out in this
exercise. What do you think is different about her force on the crate in the two situations?
Discuss this with your group and write down your hypothesis:

1. First you will measure the amount of friction between the wood block and the butcher paper
when the wood and paper surfaces are slipping over each other. The idea is to attach a spring
scale to the block and then slide the butcher paper under the block while using the scale to
keep the block from moving with it. Depending on the amount of force your spring scale was
designed to measure, you may need to put an extra mass on top of the block in order to increase
the amount of friction. It is a good idea to use long piece of string to attach the block to the
spring scale, since otherwise one tends to pull at an angle instead of directly horizontally.

First measure the amount of friction force when sliding the butcher paper as slowly as possi-
ble:

Now measure the amount of friction force at a significantly higher speed, say 1 meter per second.
(If you try to go too fast, the motion is jerky, and it is impossible to get an accurate reading.)

Discuss your results. Why are we justified in assuming that the string’s force on the block (i.e.,
the scale reading) is the same amount as the paper’s frictional force on the block?

2. Now try the same thing but with the block moving and the paper standing still. Try two
different speeds.

Do your results agree with your original hypothesis? If not, discuss what’s going on. How does
the block “know” how fast to go?
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What forces act on the girl?

Chapter 5

Analysis of Forces

5.1 Newton’s third law
Newton created the modern concept of force starting from his insight
that all the effects that govern motion are interactions between two
objects: unlike the Aristotelian theory, Newtonian physics has no
phenomena in which an object changes its own motion.
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a / Two magnets exert forces
on each other.

b / Two people’s hands exert
forces on each other.

c / Rockets work by pushing
exhaust gases out the back.
Newton’s third law says that if the
rocket exerts a backward force
on the gases, the gases must
make an equal forward force on
the rocket. Rocket engines can
function above the atmosphere,
unlike propellers and jets, which
work by pushing against the
surrounding air.

Is one object always the “order-giver” and the other the “order-
follower”? As an example, consider a batter hitting a baseball. The
bat definitely exerts a large force on the ball, because the ball ac-
celerates drastically. But if you have ever hit a baseball, you also
know that the ball makes a force on the bat — often with painful
results if your technique is as bad as mine!

How does the ball’s force on the bat compare with the bat’s
force on the ball? The bat’s acceleration is not as spectacular as
the ball’s, but maybe we shouldn’t expect it to be, since the bat’s
mass is much greater. In fact, careful measurements of both objects’
masses and accelerations would show that mballaball is very nearly
equal to −mbatabat, which suggests that the ball’s force on the bat
is of the same magnitude as the bat’s force on the ball, but in the
opposite direction.

Figures a and b show two somewhat more practical laboratory
experiments for investigating this issue accurately and without too
much interference from extraneous forces.

In experiment a, a large magnet and a small magnet are weighed
separately, and then one magnet is hung from the pan of the top
balance so that it is directly above the other magnet. There is an
attraction between the two magnets, causing the reading on the top
scale to increase and the reading on the bottom scale to decrease.
The large magnet is more “powerful” in the sense that it can pick
up a heavier paperclip from the same distance, so many people have
a strong expectation that one scale’s reading will change by a far
different amount than the other. Instead, we find that the two
changes are equal in magnitude but opposite in direction: the force
of the bottom magnet pulling down on the top one has the same
strength as the force of the top one pulling up on the bottom one.

In experiment b, two people pull on two spring scales. Regardless
of who tries to pull harder, the two forces as measured on the spring
scales are equal. Interposing the two spring scales is necessary in
order to measure the forces, but the outcome is not some artificial
result of the scales’ interactions with each other. If one person slaps
another hard on the hand, the slapper’s hand hurts just as much
as the slappee’s, and it doesn’t matter if the recipient of the slap
tries to be inactive. (Punching someone in the mouth causes just
as much force on the fist as on the lips. It’s just that the lips are
more delicate. The forces are equal, but not the levels of pain and
injury.)

Newton, after observing a series of results such as these, decided
that there must be a fundamental law of nature at work:
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d / A swimmer doing the breast
stroke pushes backward against
the water. By Newton’s third law,
the water pushes forward on him.

e / Newton’s third law does
not mean that forces always can-
cel out so that nothing can ever
move. If these two ice skaters,
initially at rest, push against each
other, they will both move.

Newton’s third law
Forces occur in equal and opposite pairs: whenever object A exerts
a force on object B, object B must also be exerting a force on object
A. The two forces are equal in magnitude and opposite in direction.

Two modern, high-precision tests of the third law are described
on p. 806.

In one-dimensional situations, we can use plus and minus signs
to indicate the directions of forces, and Newton’s third law can be
written succinctly as FA on B = −FB on A.

self-check A
Figure d analyzes swimming using Newton’s third law. Do a similar
analysis for a sprinter leaving the starting line. . Answer, p. 565

There is no cause and effect relationship between the two forces
in Newton’s third law. There is no “original” force, and neither one
is a response to the other. The pair of forces is a relationship, like
marriage, not a back-and-forth process like a tennis match. Newton
came up with the third law as a generalization about all the types of
forces with which he was familiar, such as frictional and gravitational
forces. When later physicists discovered a new type of force, such
as the force that holds atomic nuclei together, they had to check
whether it obeyed Newton’s third law. So far, no violation of the
third law has ever been discovered, whereas the first and second
laws were shown to have limitations by Einstein and the pioneers of
atomic physics.

The English vocabulary for describing forces is unfortunately
rooted in Aristotelianism, and often implies incorrectly that forces
are one-way relationships. It is unfortunate that a half-truth such as
“the table exerts an upward force on the book” is so easily expressed,
while a more complete and correct description ends up sounding
awkward or strange: “the table and the book interact via a force,”
or “the table and book participate in a force.”

To students, it often sounds as though Newton’s third law im-
plies nothing could ever change its motion, since the two equal and
opposite forces would always cancel. The two forces, however, are
always on two different objects, so it doesn’t make sense to add
them in the first place — we only add forces that are acting on the
same object. If two objects are interacting via a force and no other
forces are involved, then both objects will accelerate — in opposite
directions!
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f / It doesn’t make sense for the
man to talk about using the
woman’s money to cancel out his
bar tab, because there is no good
reason to combine his debts and
her assets. Similarly, it doesn’t
make sense to refer to the equal
and opposite forces of Newton’s
third law as canceling. It only
makes sense to add up forces
that are acting on the same ob-
ject, whereas two forces related
to each other by Newton’s third
law are always acting on two dif-
ferent objects.

A mnemonic for using Newton’s third law correctly

Mnemonics are tricks for memorizing things. For instance, the
musical notes that lie between the lines on the treble clef spell the
word FACE, which is easy to remember. Many people use the
mnemonic “SOHCAHTOA” to remember the definitions of the sine,
cosine, and tangent in trigonometry. I have my own modest offering,
POFOSTITO, which I hope will make it into the mnemonics hall of
fame. It’s a way to avoid some of the most common problems with
applying Newton’s third law correctly:

A book lying on a table example 1
. A book is lying on a table. What force is the Newton’s-third-law
partner of the earth’s gravitational force on the book?

Answer: Newton’s third law works like “B on A, A on B,” so the
partner must be the book’s gravitational force pulling upward on
the planet earth. Yes, there is such a force! No, it does not cause
the earth to do anything noticeable.

Incorrect answer: The table’s upward force on the book is the
Newton’s-third-law partner of the earth’s gravitational force on the
book.

This answer violates two out of three of the commandments of
POFOSTITO. The forces are not of the same type, because the
table’s upward force on the book is not gravitational. Also, three
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Optional topic: Newton’s
third law and action at a dis-
tance
Newton’s third law is completely
symmetric in the sense that nei-
ther force constitutes a delayed
response to the other. Newton’s
third law does not even mention
time, and the forces are supposed
to agree at any given instant.
This creates an interesting situ-
ation when it comes to noncon-
tact forces. Suppose two people
are holding magnets, and when
one person waves or wiggles her
magnet, the other person feels an
effect on his. In this way they
can send signals to each other
from opposite sides of a wall, and
if Newton’s third law is correct, it
would seem that the signals are
transmitted instantly, with no time
lag. The signals are indeed trans-
mitted quite quickly, but experi-
ments with electrically controlled
magnets show that the signals do
not leap the gap instantly: they
travel at the same speed as light,
which is an extremely high speed
but not an infinite one.

Is this a contradiction to New-
ton’s third law? Not really. Ac-
cording to current theories, there
are no true noncontact forces.
Action at a distance does not ex-
ist. Although it appears that the
wiggling of one magnet affects
the other with no need for any-
thing to be in contact with any-
thing, what really happens is that
wiggling a magnet creates a rip-
ple in the magnetic field pattern
that exists even in empty space.
The magnet shoves the ripples
out with a kick and receives a kick
in return, in strict obedience to
Newton’s third law. The ripples
spread out in all directions, and
the ones that hit the other magnet
then interact with it, again obeying
Newton’s third law.

objects are involved instead of two: the book, the table, and the
planet earth.

Pushing a box up a hill example 2
. A person is pushing a box up a hill. What force is related by
Newton’s third law to the person’s force on the box?

. The box’s force on the person.

Incorrect answer: The person’s force on the box is opposed by
friction, and also by gravity.

This answer fails all three parts of the POFOSTITO test, the
most obvious of which is that three forces are referred to instead
of a pair.

If we could violate Newton’s third law. . . example 3
If we could violate Newton’s third law, we could do strange and
wonderful things. Newton’s third laws says that the unequal mag-
nets in figure a on p. 154 should exert equal forces on each
other, and this is what we actually find when we do the experi-
ment shown in that figure. But suppose instead that it worked as
most people intuitively expect. What if the third law was violated,
so that the big magnet made more force on the small one than the
small one made on the big one? To make the analysis simple, we
add some extra nonmagnetic material to the small magnet in fig-
ure g/1, so that it has the same mass and size as the big one. We
also attach springs. When we release the magnets, g/2, the weak
one is accelerated strongly, while the strong one barely moves. If
we put them inside a box, g/3, the recoiling strong magnet bangs
hard against the side of the box, and the box mysteriously accel-
erates itself. The process can be repeated indefinitely for free, so
we have a magic box that propels itself without needing fuel. We
can make it into a perpetual-motion car, g/4. If Newton’s third law
was violated, we’d never have to pay for gas!

g / Example 3. This doesn’t actually happen!
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. Solved problem: More about example 2 page 183, problem 20

. Solved problem: Why did it accelerate? page 183, problem 18

Discussion questions

A When you fire a gun, the exploding gases push outward in all
directions, causing the bullet to accelerate down the barrel. What third-
law pairs are involved? [Hint: Remember that the gases themselves are
an object.]

B Tam Anh grabs Sarah by the hand and tries to pull her. She tries
to remain standing without moving. A student analyzes the situation as
follows. “If Tam Anh’s force on Sarah is greater than her force on him,
he can get her to move. Otherwise, she’ll be able to stay where she is.”
What’s wrong with this analysis?

C You hit a tennis ball against a wall. Explain any and all incorrect
ideas in the following description of the physics involved: “According to
Newton’s third law, there has to be a force opposite to your force on the
ball. The opposite force is the ball’s mass, which resists acceleration, and
also air resistance.”

5.2 Classification and behavior of forces
One of the most basic and important tasks of physics is to classify
the forces of nature. I have already referred informally to “types” of
forces such as friction, magnetism, gravitational forces, and so on.
Classification systems are creations of the human mind, so there is
always some degree of arbitrariness in them. For one thing, the level
of detail that is appropriate for a classification system depends on
what you’re trying to find out. Some linguists, the “lumpers,” like to
emphasize the similarities among languages, and a few extremists
have even tried to find signs of similarities between words in lan-
guages as different as English and Chinese, lumping the world’s lan-
guages into only a few large groups. Other linguists, the “splitters,”
might be more interested in studying the differences in pronuncia-
tion between English speakers in New York and Connecticut. The
splitters call the lumpers sloppy, but the lumpers say that science
isn’t worthwhile unless it can find broad, simple patterns within the
seemingly complex universe.

Scientific classification systems are also usually compromises be-
tween practicality and naturalness. An example is the question of
how to classify flowering plants. Most people think that biological
classification is about discovering new species, naming them, and
classifying them in the class-order-family-genus-species system ac-
cording to guidelines set long ago. In reality, the whole system is in
a constant state of flux and controversy. One very practical way of
classifying flowering plants is according to whether their petals are
separate or joined into a tube or cone — the criterion is so clear that
it can be applied to a plant seen from across the street. But here
practicality conflicts with naturalness. For instance, the begonia has
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h / A scientific classification
system.

separate petals and the pumpkin has joined petals, but they are so
similar in so many other ways that they are usually placed within
the same order. Some taxonomists have come up with classification
criteria that they claim correspond more naturally to the apparent
relationships among plants, without having to make special excep-
tions, but these may be far less practical, requiring for instance the
examination of pollen grains under an electron microscope.

In physics, there are two main systems of classification for forces.
At this point in the course, you are going to learn one that is very
practical and easy to use, and that splits the forces up into a rel-
atively large number of types: seven very common ones that we’ll
discuss explicitly in this chapter, plus perhaps ten less important
ones such as surface tension, which we will not bother with right
now.

Physicists, however, are obsessed with finding simple patterns,
so recognizing as many as fifteen or twenty types of forces strikes
them as distasteful and overly complex. Since about the year 1900,
physics has been on an aggressive program to discover ways in which
these many seemingly different types of forces arise from a smaller
number of fundamental ones. For instance, when you press your
hands together, the force that keeps them from passing through each
other may seem to have nothing to do with electricity, but at the
atomic level, it actually does arise from electrical repulsion between
atoms. By about 1950, all the forces of nature had been explained
as arising from four fundamental types of forces at the atomic and
nuclear level, and the lumping-together process didn’t stop there.
By the 1960’s the length of the list had been reduced to three, and
some theorists even believe that they may be able to reduce it to
two or one. Although the unification of the forces of nature is one of
the most beautiful and important achievements of physics, it makes
much more sense to start this course with the more practical and
easy system of classification. The unified system of four forces will
be one of the highlights of the end of your introductory physics
sequence.

The practical classification scheme which concerns us now can
be laid out in the form of the tree shown in figure i. The most
specific types of forces are shown at the tips of the branches, and
it is these types of forces that are referred to in the POFOSTITO
mnemonic. For example, electrical and magnetic forces belong to
the same general group, but Newton’s third law would never relate
an electrical force to a magnetic force.

The broadest distinction is that between contact and noncontact
forces, which has been discussed in ch. 4. Among the contact forces,
we distinguish between those that involve solids only and those that
have to do with fluids, a term used in physics to include both gases
and liquids.
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i / A practical classification scheme for forces.

It should not be necessary to memorize this diagram by rote.
It is better to reinforce your memory of this system by calling to
mind your commonsense knowledge of certain ordinary phenomena.
For instance, we know that the gravitational attraction between us
and the planet earth will act even if our feet momentarily leave the
ground, and that although magnets have mass and are affected by
gravity, most objects that have mass are nonmagnetic.

Hitting a wall example 4
. A bullet, flying horizontally, hits a steel wall. What type of force
is there between the bullet and the wall?

. Starting at the bottom of the tree, we determine that the force
is a contact force, because it only occurs once the bullet touches
the wall. Both objects are solid. The wall forms a vertical plane.
If the nose of the bullet was some shape like a sphere, you might
imagine that it would only touch the wall at one point. Realisti-
cally, however, we know that a lead bullet will flatten out a lot on
impact, so there is a surface of contact between the two, and its
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orientation is vertical. The effect of the force on the bullet is to
stop the horizontal motion of the bullet, and this horizontal ac-
celeration must be produced by a horizontal force. The force is
therefore perpendicular to the surface of contact, and it’s also re-
pulsive (tending to keep the bullet from entering the wall), so it
must be a normal force.

Diagram i is meant to be as simple as possible while including
most of the forces we deal with in everyday life. If you were an
insect, you would be much more interested in the force of surface
tension, which allowed you to walk on water. I have not included
the nuclear forces, which are responsible for holding the nuclei of
atoms, because they are not evident in everyday life.

You should not be afraid to invent your own names for types of
forces that do not fit into the diagram. For instance, the force that
holds a piece of tape to the wall has been left off of the tree, and if
you were analyzing a situation involving scotch tape, you would be
absolutely right to refer to it by some commonsense name such as
“sticky force.”

On the other hand, if you are having trouble classifying a certain
force, you should also consider whether it is a force at all. For
instance, if someone asks you to classify the force that the earth has
because of its rotation, you would have great difficulty creating a
place for it on the diagram. That’s because it’s a type of motion,
not a type of force!

Normal forces

A normal force, FN , is a force that keeps one solid object from
passing through another. “Normal” is simply a fancy word for “per-
pendicular,” meaning that the force is perpendicular to the surface
of contact. Intuitively, it seems the normal force magically adjusts
itself to provide whatever force is needed to keep the objects from
occupying the same space. If your muscles press your hands together
gently, there is a gentle normal force. Press harder, and the normal
force gets stronger. How does the normal force know how strong to
be? The answer is that the harder you jam your hands together,
the more compressed your flesh becomes. Your flesh is acting like
a spring: more force is required to compress it more. The same is
true when you push on a wall. The wall flexes imperceptibly in pro-
portion to your force on it. If you exerted enough force, would it be
possible for two objects to pass through each other? No, typically
the result is simply to strain the objects so much that one of them
breaks.

Gravitational forces

As we’ll discuss in more detail later in the course, a gravitational
force exists between any two things that have mass. In everyday life,
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j / A model that correctly ex-
plains many properties of friction.
The microscopic bumps and
holes in two surfaces dig into
each other.

k / Static friction: the tray doesn’t
slip on the waiter’s fingers.

l / Kinetic friction: the car skids.

the gravitational force between two cars or two people is negligible,
so the only noticeable gravitational forces are the ones between the
earth and various human-scale objects. We refer to these planet-
earth-induced gravitational forces as weight forces, and as we have
already seen, their magnitude is given by |FW | = mg.

. Solved problem: Weight and mass page 184, problem 26

Static and kinetic friction

If you have pushed a refrigerator across a kitchen floor, you have
felt a certain series of sensations. At first, you gradually increased
your force on the refrigerator, but it didn’t move. Finally, you sup-
plied enough force to unstick the fridge, and there was a sudden
jerk as the fridge started moving. Once the fridge was unstuck, you
could reduce your force significantly and still keep it moving.

While you were gradually increasing your force, the floor’s fric-
tional force on the fridge increased in response. The two forces on
the fridge canceled, and the fridge didn’t accelerate. How did the
floor know how to respond with just the right amount of force? Fig-
ure j shows one possible model of friction that explains this behavior.
(A scientific model is a description that we expect to be incomplete,
approximate, or unrealistic in some ways, but that nevertheless suc-
ceeds in explaining a variety of phenomena.) Figure j/1 shows a
microscopic view of the tiny bumps and holes in the surfaces of the
floor and the refrigerator. The weight of the fridge presses the two
surfaces together, and some of the bumps in one surface will settle
as deeply as possible into some of the holes in the other surface. In
j/2, your leftward force on the fridge has caused it to ride up a little
higher on the bump in the floor labeled with a small arrow. Still
more force is needed to get the fridge over the bump and allow it to
start moving. Of course, this is occurring simultaneously at millions
of places on the two surfaces.

Once you had gotten the fridge moving at constant speed, you
found that you needed to exert less force on it. Since zero total force
is needed to make an object move with constant velocity, the floor’s
rightward frictional force on the fridge has apparently decreased
somewhat, making it easier for you to cancel it out. Our model also
gives a plausible explanation for this fact: as the surfaces slide past
each other, they don’t have time to settle down and mesh with one
another, so there is less friction.

Even though this model is intuitively appealing and fairly suc-
cessful, it should not be taken too seriously, and in some situations
it is misleading. For instance, fancy racing bikes these days are
made with smooth tires that have no tread — contrary to what
we’d expect from our model, this does not cause any decrease in
friction. Machinists know that two very smooth and clean metal
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m / Many landfowl, even those
that are competent fliers, prefer
to escape from a predator by
running upward rather than by
flying. This partridge is running
up a vertical tree trunk. Humans
can’t walk up walls because there
is no normal force and therefore
no frictional force; when FN = 0,
the maximum force of static
friction Fs,max = µsFN is also
zero. The partridge, however,
has wings that it can flap in order
to create a force between it and
the air. Typically when a bird
flaps its wings, the resulting force
from the air is in the direction
that would tend to lift the bird
up. In this situation, however,
the partridge changes its style
of flapping so that the direction
is reversed. The normal force
between the feet and the tree
allows a nonzero static frictional
force. The mechanism is similar
to that of a spoiler fin on a racing
car. Some evolutionary biologists
believe that when vertebrate
flight first evolved, in dinosaurs,
there was first a stage in which
the wings were used only as an
aid in running up steep inclines,
and only later a transition to
flight. (Redrawn from a figure by
K.P. Dial.)

surfaces may stick to each other firmly and be very difficult to slide
apart. This cannot be explained in our model, but makes more
sense in terms of a model in which friction is described as arising
from chemical bonds between the atoms of the two surfaces at their
points of contact: very flat surfaces allow more atoms to come in
contact.

Since friction changes its behavior dramatically once the sur-
faces come unstuck, we define two separate types of frictional forces.
Static friction is friction that occurs between surfaces that are not
slipping over each other. Slipping surfaces experience kinetic fric-
tion. The forces of static and kinetic friction, notated Fs and Fk, are
always parallel to the surface of contact between the two objects.

self-check B
1. When a baseball player slides in to a base, is the friction static, or
kinetic?

2. A mattress stays on the roof of a slowly accelerating car. Is the
friction static, or kinetic?

3. Does static friction create heat? Kinetic friction? . Answer, p. 565

The maximum possible force of static friction depends on what
kinds of surfaces they are, and also on how hard they are being
pressed together. The approximate mathematical relationships can
be expressed as follows:

Fs,max = µsFN ,

where µs is a unitless number, called the coefficient of static friction,
which depends on what kinds of surfaces they are. The maximum
force that static friction can supply, µsFN , represents the boundary
between static and kinetic friction. It depends on the normal force,
which is numerically equal to whatever force is pressing the two
surfaces together. In terms of our model, if the two surfaces are
being pressed together more firmly, a greater sideways force will be
required in order to make the irregularities in the surfaces ride up
and over each other.

Note that just because we use an adjective such as “applied” to
refer to a force, that doesn’t mean that there is some special type
of force called the “applied force.” The applied force could be any
type of force, or it could be the sum of more than one force trying
to make an object move.

self-check C
The arrows in figure m show the forces of the tree trunk on the partridge.
Describe the forces the bird makes on the tree. . Answer, p. 565

The force of kinetic friction on each of the two objects is in the
direction that resists the slippage of the surfaces. Its magnitude is
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usually well approximated as

Fk = µkFN

where µk is the coefficient of kinetic friction. Kinetic friction is
usually more or less independent of velocity.

n / We choose a coordinate sys-
tem in which the applied force,
i.e., the force trying to move the
objects, is positive. The friction
force is then negative, since it is
in the opposite direction. As you
increase the applied force, the
force of static friction increases to
match it and cancel it out, until the
maximum force of static friction is
surpassed. The surfaces then be-
gin slipping past each other, and
the friction force becomes smaller
in absolute value.

self-check D
Can a frictionless surface exert a normal force? Can a frictional force
exist without a normal force? . Answer, p. 565

If you try to accelerate or decelerate your car too quickly, the
forces between your wheels and the road become too great, and they
begin slipping. This is not good, because kinetic friction is weaker
than static friction, resulting in less control. Also, if this occurs
while you are turning, the car’s handling changes abruptly because
the kinetic friction force is in a different direction than the static
friction force had been: contrary to the car’s direction of motion,
rather than contrary to the forces applied to the tire.

Most people respond with disbelief when told of the experimen-
tal evidence that both static and kinetic friction are approximately
independent of the amount of surface area in contact. Even after
doing a hands-on exercise with spring scales to show that it is true,
many students are unwilling to believe their own observations, and
insist that bigger tires “give more traction.” In fact, the main rea-
son why you would not want to put small tires on a big heavy car
is that the tires would burst!

Although many people expect that friction would be propor-
tional to surface area, such a proportionality would make predictions
contrary to many everyday observations. A dog’s feet, for example,
have very little surface area in contact with the ground compared
to a human’s feet, and yet we know that a dog can often win a
tug-of-war with a person.
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The reason a smaller surface area does not lead to less friction
is that the force between the two surfaces is more concentrated,
causing their bumps and holes to dig into each other more deeply.

self-check E
Find the direction of each of the forces in figure o. . Answer, p. 565

o / 1. The cliff’s normal force on
the climber’s feet. 2. The track’s
static frictional force on the wheel
of the accelerating dragster. 3.
The ball’s normal force on the
bat.

Locomotives example 5
Looking at a picture of a locomotive, p, we notice two obvious
things that are different from an automobile. Where a car typi-
cally has two drive wheels, a locomotive normally has many —
ten in this example. (Some also have smaller, unpowered wheels
in front of and behind the drive wheels, but this example doesn’t.)
Also, cars these days are generally built to be as light as possi-
ble for their size, whereas locomotives are very massive, and no
effort seems to be made to keep their weight low. (The steam
locomotive in the photo is from about 1900, but this is true even
for modern diesel and electric trains.)

p / Example 5.

The reason locomotives are built to be so heavy is for traction.
The upward normal force of the rails on the wheels, FN , cancels
the downward force of gravity, FW , so ignoring plus and minus
signs, these two forces are equal in absolute value, FN = FW .
Given this amount of normal force, the maximum force of static
friction is Fs = µsFN = µsFW . This static frictional force, of the
rails pushing forward on the wheels, is the only force that can
accelerate the train, pull it uphill, or cancel out the force of air
resistance while cruising at constant speed. The coefficient of
static friction for steel on steel is about 1/4, so no locomotive can
pull with a force greater than about 1/4 of its own weight. If the
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q / Fluid friction depends on
the fluid’s pattern of flow, so it is
more complicated than friction
between solids, and there are
no simple, universally applicable
formulas to calculate it. From
top to bottom: supersonic wind
tunnel, vortex created by a crop
duster, series of vortices created
by a single object, turbulence.

engine is capable of supplying more than that amount of force, the
result will be simply to break static friction and spin the wheels.

The reason this is all so different from the situation with a car is
that a car isn’t pulling something else. If you put extra weight in
a car, you improve the traction, but you also increase the inertia
of the car, and make it just as hard to accelerate. In a train, the
inertia is almost all in the cars being pulled, not in the locomotive.

The other fact we have to explain is the large number of driv-
ing wheels. First, we have to realize that increasing the num-
ber of driving wheels neither increases nor decreases the total
amount of static friction, because static friction is independent of
the amount of surface area in contact. (The reason four-wheel-
drive is good in a car is that if one or more of the wheels is slip-
ping on ice or in mud, the other wheels may still have traction.
This isn’t typically an issue for a train, since all the wheels experi-
ence the same conditions.) The advantage of having more driving
wheels on a train is that it allows us to increase the weight of the
locomotive without crushing the rails, or damaging bridges.

Fluid friction

Try to drive a nail into a waterfall and you will be confronted
with the main difference between solid friction and fluid friction.
Fluid friction is purely kinetic; there is no static fluid friction. The
nail in the waterfall may tend to get dragged along by the water
flowing past it, but it does not stick in the water. The same is true
for gases such as air: recall that we are using the word “fluid” to
include both gases and liquids.

Unlike kinetic friction between solids, fluid friction increases
rapidly with velocity. It also depends on the shape of the object,
which is why a fighter jet is more streamlined than a Model T. For
objects of the same shape but different sizes, fluid friction typically
scales up with the cross-sectional area of the object, which is one
of the main reasons that an SUV gets worse mileage on the freeway
than a compact car.
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r / What do the golf ball and
the shark have in common? Both
use the same trick to reduce fluid
friction. The dimples on the golf
ball modify the pattern of flow of
the air around it, counterintuitively
reducing friction. Recent studies
have shown that sharks can
accomplish the same thing by
raising, or “bristling,” the scales
on their skin at high speeds.

s / The wheelbases of the
Hummer H3 and the Toyota Prius
are surprisingly similar, differing
by only 10%. The main difference
in shape is that the Hummer is
much taller and wider. It presents
a much greater cross-sectional
area to the wind, and this is the
main reason that it uses about 2.5
times more gas on the freeway.

Discussion questions

A A student states that when he tries to push his refrigerator, the
reason it won’t move is because Newton’s third law says there’s an equal
and opposite frictional force pushing back. After all, the static friction force
is equal and opposite to the applied force. How would you convince him
he is wrong?

B Kinetic friction is usually more or less independent of velocity. How-
ever, inexperienced drivers tend to produce a jerk at the last moment of
deceleration when they stop at a stop light. What does this tell you about
the kinetic friction between the brake shoes and the brake drums?

C Some of the following are correct descriptions of types of forces that
could be added on as new branches of the classification tree. Others are
not really types of forces, and still others are not force phenomena at all.
In each case, decide what’s going on, and if appropriate, figure out how
you would incorporate them into the tree.

sticky force makes tape stick to things
opposite force the force that Newton’s third law says relates to ev-

ery force you make
flowing force the force that water carries with it as it flows out of a

hose
surface tension lets insects walk on water
horizontal force a force that is horizontal
motor force the force that a motor makes on the thing it is turning
canceled force a force that is being canceled out by some other

force

5.3 Analysis of forces
Newton’s first and second laws deal with the total of all the forces
exerted on a specific object, so it is very important to be able to
figure out what forces there are. Once you have focused your atten-
tion on one object and listed the forces on it, it is also helpful to
describe all the corresponding forces that must exist according to
Newton’s third law. We refer to this as “analyzing the forces” in
which the object participates.
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t / Example 7.

A barge example 6
A barge is being pulled to the right along a canal by teams of horses on the shores. Analyze all the forces in
which the barge participates.

force acting on barge force related to it by Newton’s third law
ropes’ normal forces on barge,→ barge’s normal force on ropes,←
water’s fluid friction force on barge,← barge’s fluid friction force on water,→
planet earth’s gravitational force on barge, ↓ barge’s gravitational force on earth, ↑
water’s “floating” force on barge, ↑ barge’s “floating” force on water, ↓

Here I’ve used the word “floating” force as an example of a sensible invented term for a type of force not
classified on the tree on p. 160. A more formal technical term would be “hydrostatic force.”
Note how the pairs of forces are all structured as “A’s force on B, B’s force on A”: ropes on barge and barge
on ropes; water on barge and barge on water. Because all the forces in the left column are forces acting on
the barge, all the forces in the right column are forces being exerted by the barge, which is why each entry in
the column begins with “barge.”

Often you may be unsure whether you have forgotten one of the
forces. Here are three strategies for checking your list:

1. See what physical result would come from the forces you’ve
found so far. Suppose, for instance, that you’d forgotten the
“floating” force on the barge in the example above. Looking
at the forces you’d found, you would have found that there
was a downward gravitational force on the barge which was
not canceled by any upward force. The barge isn’t supposed
to sink, so you know you need to find a fourth, upward force.

2. Another technique for finding missing forces is simply to go
through the list of all the common types of forces and see if
any of them apply.

3. Make a drawing of the object, and draw a dashed boundary
line around it that separates it from its environment. Look for
points on the boundary where other objects come in contact
with your object. This strategy guarantees that you’ll find
every contact force that acts on the object, although it won’t
help you to find non-contact forces.

Fifi example 7
. Fifi is an industrial espionage dog who loves doing her job and
looks great doing it. She leaps through a window and lands at
initial horizontal speed vo on a conveyor belt which is itself moving
at the greater speed vb. Unfortunately the coefficient of kinetic
friction µk between her foot-pads and the belt is fairly low, so she
skids for a time ∆t , during which the effect on her coiffure is un
désastre. Find ∆t .
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. We analyze the forces:

force acting on Fifi force related to it by Newton’s
third law

planet earth’s gravitational
force FW = mg on Fifi, ↓

Fifi’s gravitational force on
earth, ↑

belt’s kinetic frictional force Fk
on Fifi, →

Fifi’s kinetic frictional force on
belt, ←

belt’s normal force FN on Fifi, ↑ Fifi’s normal force on belt, ↓

Checking the analysis of the forces as described on p. 168:

(1) The physical result makes sense. The left-hand column con-
sists of forces ↓→↑. We’re describing the time when she’s moving
horizontally on the belt, so it makes sense that we have two ver-
tical forces that could cancel. The rightward force is what will
accelerate her until her speed matches that of the belt.

(2) We’ve included every relevant type of force from the tree on
p. 160.

(3) We’ve included forces from the belt, which is the only object
in contact with Fifi.

The purpose of the analysis is to let us set up equations con-
taining enough information to solve the problem. Using the gen-
eralization of Newton’s second law given on p. 137, we use the
horizontal force to determine the horizontal acceleration, and sep-
arately require the vertical forces to cancel out.

Let positive x be to the right. Newton’s second law gives

(→) a = Fk/m

Although it’s the horizontal motion we care about, the only way to
find Fk is via the relation Fk = µkFN , and the only way to find FN
is from the ↑↓ forces. The two vertical forces must cancel, which
means they have to be of equal strength:

(↑↓) FN −mg = 0.

Using the constant-acceleration equation a = ∆v/∆t , we have

∆t =
∆v
a

=
vb − vo

µkmg/m

=
vb − vo

µkg
.

The units check out:

s =
m/s
m/s2 ,

Section 5.3 Analysis of forces 169



where µk is omitted as a factor because it’s unitless.

We should also check that the dependence on the variables makes
sense. If Fifi puts on her rubber ninja booties, increasing µk , then
dividing by a larger number gives a smaller result for ∆t ; this
makes sense physically, because the greater friction will cause
her to come up to the belt’s speed more quickly. The dependence
on g is similar; more gravity would press her harder against the
belt, improving her traction. Increasing vb increases ∆t , which
makes sense because it will take her longer to get up to a bigger
speed. Since vo is subtracted, the dependence of ∆t on it is the
other way around, and that makes sense too, because if she can
land with a greater speed, she has less speeding up left to do.

u / Example 8.

Forces don’t have to be in pairs or at right angles example 8
In figure u, the three horses are arranged symmetrically at 120
degree intervals, and are all pulling on the central knot. Let’s say
the knot is at rest and at least momentarily in equilibrium. The
analysis of forces on the knot is as follows.
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force acting on knot force related to it by Newton’s
third law

top rope’s normal force on
knot, ↑

knot’s normal force on top
rope, ↓

left rope’s normal force on
knot,

knot’s normal force on left
rope,

right rope’s normal force on
knot,

knot’s normal force on right
rope,

In our previous examples, the forces have all run along two per-
pendicular lines, and they often canceled in pairs. This example
shows that neither of these always happens. Later in the book
we’ll see how to handle forces that are at arbitrary angles, using
mathematical objects called vectors. But even without knowing
about vectors, we already know what directions to draw the ar-
rows in the table, since a rope can only pull parallel to itself at its
ends. And furthermore, we can say something about the forces:
by symmetry, we expect them all to be equal in strength. (If the
knot was not in equilibrium, then this symmetry would be broken.)

This analysis also demonstrates that it’s all right to leave out de-
tails if they aren’t of interest and we don’t intend to include them
in our model. We called the forces normal forces, but we can’t ac-
tually tell whether they are normal forces or frictional forces. They
are probably some combination of those, but we don’t include
such details in this model, since aren’t interested in describing the
internal physics of the knot. This is an example of a more general
fact about science, which is that science doesn’t describe reality.
It describes simplified models of reality, because reality is always
too complex to model exactly.
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Discussion questions

A In the example of the barge going down the canal, I referred to
a “floating” or “hydrostatic” force that keeps the boat from sinking. If you
were adding a new branch on the force-classification tree to represent this
force, where would it go?

B The earth’s gravitational force on you, i.e., your weight, is always
equal to mg, where m is your mass. So why can you get a shovel to go
deeper into the ground by jumping onto it? Just because you’re jumping,
that doesn’t mean your mass or weight is any greater, does it?

5.4 Transmission of forces by low-mass
objects

You’re walking your dog. The dog wants to go faster than you do,
and the leash is taut. Does Newton’s third law guarantee that your
force on your end of the leash is equal and opposite to the dog’s
force on its end? If they’re not exactly equal, is there any reason
why they should be approximately equal?

If there was no leash between you, and you were in direct contact
with the dog, then Newton’s third law would apply, but Newton’s
third law cannot relate your force on the leash to the dog’s force
on the leash, because that would involve three separate objects.
Newton’s third law only says that your force on the leash is equal
and opposite to the leash’s force on you,

FyL = −FLy,

and that the dog’s force on the leash is equal and opposite to its
force on the dog

FdL = −FLd.
Still, we have a strong intuitive expectation that whatever force we
make on our end of the leash is transmitted to the dog, and vice-
versa. We can analyze the situation by concentrating on the forces
that act on the leash, FdL and FyL. According to Newton’s second
law, these relate to the leash’s mass and acceleration:

FdL + FyL = mLaL.

The leash is far less massive then any of the other objects involved,
and if mL is very small, then apparently the total force on the leash
is also very small, FdL + FyL ≈ 0, and therefore

FdL ≈ −FyL.

Thus even though Newton’s third law does not apply directly to
these two forces, we can approximate the low-mass leash as if it was
not intervening between you and the dog. It’s at least approximately
as if you and the dog were acting directly on each other, in which
case Newton’s third law would have applied.
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w / The Golden Gate Bridge’s
roadway is held up by the tension
in the vertical cables.

In general, low-mass objects can be treated approximately as if
they simply transmitted forces from one object to another. This can
be true for strings, ropes, and cords, and also for rigid objects such
as rods and sticks.

v / If we imagine dividing a taut rope up into small segments, then
any segment has forces pulling outward on it at each end. If the rope
is of negligible mass, then all the forces equal +T or −T , where T , the
tension, is a single number.

If you look at a piece of string under a magnifying glass as you
pull on the ends more and more strongly, you will see the fibers
straightening and becoming taut. Different parts of the string are
apparently exerting forces on each other. For instance, if we think of
the two halves of the string as two objects, then each half is exerting
a force on the other half. If we imagine the string as consisting of
many small parts, then each segment is transmitting a force to the
next segment, and if the string has very little mass, then all the
forces are equal in magnitude. We refer to the magnitude of the
forces as the tension in the string, T .

The term “tension” refers only to internal forces within the
string. If the string makes forces on objects at its ends, then those
forces are typically normal or frictional forces (example 9).
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x / Example 9. The forces
between the rope and other
objects are normal and frictional
forces.

Types of force made by ropes example 9
. Analyze the forces in figures x/1 and x/2.

. In all cases, a rope can only make “pulling” forces, i.e., forces
that are parallel to its own length and that are toward itself, not
away from itself. You can’t push with a rope!

In x/1, the rope passes through a type of hook, called a carabiner,
used in rock climbing and mountaineering. Since the rope can
only pull along its own length, the direction of its force on the
carabiner must be down and to the right. This is perpendicular to
the surface of contact, so the force is a normal force.

force acting on carabiner force related to it by Newton’s
third law

rope’s normal force on cara-
biner

carabiner’s normal force on
rope

(There are presumably other forces acting on the carabiner from
other hardware above it.)

In figure x/2, the rope can only exert a net force at its end that
is parallel to itself and in the pulling direction, so its force on the
hand is down and to the left. This is parallel to the surface of
contact, so it must be a frictional force. If the rope isn’t slipping
through the hand, we have static friction. Friction can’t exist with-
out normal forces. These forces are perpendicular to the surface
of contact. For simplicity, we show only two pairs of these normal
forces, as if the hand were a pair of pliers.

force acting on person force related to it by Newton’s
third law

rope’s static frictional force on
person

person’s static frictional force
on rope

rope’s normal force on
person

person’s normal force on
rope

rope’s normal force on
person

person’s normal force on
rope

(There are presumably other forces acting on the person as well,
such as gravity.)

If a rope goes over a pulley or around some other object, then
the tension throughout the rope is approximately equal so long as
the pulley has negligible mass and there is not too much friction. A
rod or stick can be treated in much the same way as a string, but
it is possible to have either compression or tension.

Discussion question

A When you step on the gas pedal, is your foot’s force being transmitted
in the sense of the word used in this section?
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5.5 Objects under strain
A string lengthens slightly when you stretch it. Similarly, we have
already discussed how an apparently rigid object such as a wall is
actually flexing when it participates in a normal force. In other
cases, the effect is more obvious. A spring or a rubber band visibly
elongates when stretched.

Common to all these examples is a change in shape of some kind:
lengthening, bending, compressing, etc. The change in shape can
be measured by picking some part of the object and measuring its
position, x. For concreteness, let’s imagine a spring with one end
attached to a wall. When no force is exerted, the unfixed end of the
spring is at some position xo. If a force acts at the unfixed end, its
position will change to some new value of x. The more force, the
greater the departure of x from xo.

y / Defining the quantities F , x ,
and xo in Hooke’s law.

Back in Newton’s time, experiments like this were considered
cutting-edge research, and his contemporary Hooke is remembered
today for doing them and for coming up with a simple mathematical
generalization called Hooke’s law:

F ≈ k(x− xo). [force required to stretch a spring; valid

for small forces only]

Here k is a constant, called the spring constant, that depends on
how stiff the object is. If too much force is applied, the spring
exhibits more complicated behavior, so the equation is only a good
approximation if the force is sufficiently small. Usually when the
force is so large that Hooke’s law is a bad approximation, the force
ends up permanently bending or breaking the spring.

Although Hooke’s law may seem like a piece of trivia about
springs, it is actually far more important than that, because all
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solid objects exert Hooke’s-law behavior over some range of suffi-
ciently small forces. For example, if you push down on the hood of
a car, it dips by an amount that is directly proportional to the force.
(But the car’s behavior would not be as mathematically simple if
you dropped a boulder on the hood!)

. Solved problem: Combining springs page 182, problem 14

. Solved problem: Young’s modulus page 182, problem 16

Discussion question

A A car is connected to its axles through big, stiff springs called shock
absorbers, or “shocks.” Although we’ve discussed Hooke’s law above only
in the case of stretching a spring, a car’s shocks are continually going
through both stretching and compression. In this situation, how would
you interpret the positive and negative signs in Hooke’s law?

5.6 Simple Machines: the pulley
Even the most complex machines, such as cars or pianos, are built
out of certain basic units called simple machines. The following are
some of the main functions of simple machines:

transmitting a force: The chain on a bicycle transmits a force
from the crank set to the rear wheel.

changing the direction of a force: If you push down on a see-
saw, the other end goes up.

changing the speed and precision of motion: When you make
the “come here” motion, your biceps only moves a couple of
centimeters where it attaches to your forearm, but your arm
moves much farther and more rapidly.

changing the amount of force: A lever or pulley can be used
to increase or decrease the amount of force.

You are now prepared to understand one-dimensional simple ma-
chines, of which the pulley is the main example.

z / Example 10.

A pulley example 10
. Farmer Bill says this pulley arrangement doubles the force of
his tractor. Is he just a dumb hayseed, or does he know what he’s
doing?
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. To use Newton’s first law, we need to pick an object and con-
sider the sum of the forces on it. Since our goal is to relate the
tension in the part of the cable attached to the stump to the ten-
sion in the part attached to the tractor, we should pick an object
to which both those cables are attached, i.e., the pulley itself. The
tension in a string or cable remains approximately constant as it
passes around an idealized pulley. 1 There are therefore two left-
ward forces acting on the pulley, each equal to the force exerted
by the tractor. Since the acceleration of the pulley is essentially
zero, the forces on it must be canceling out, so the rightward force
of the pulley-stump cable on the pulley must be double the force
exerted by the tractor. Yes, Farmer Bill knows what he’s talking
about.

1This was asserted in section 5.4 without proof. Essentially it holds because
of symmetry. E.g., if the U-shaped piece of rope in figure z had unequal tension
in its two legs, then this would have to be caused by some asymmetry between
clockwise and counterclockwise rotation. But such an asymmetry can only be
caused by friction or inertia, which we assume don’t exist.
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Summary
Selected vocabulary
repulsive . . . . . describes a force that tends to push the two

participating objects apart
attractive . . . . describes a force that tends to pull the two

participating objects together
oblique . . . . . . describes a force that acts at some other angle,

one that is not a direct repulsion or attraction
normal force . . . the force that keeps two objects from occupy-

ing the same space
static friction . . a friction force between surfaces that are not

slipping past each other
kinetic friction . a friction force between surfaces that are slip-

ping past each other
fluid . . . . . . . . a gas or a liquid
fluid friction . . . a friction force in which at least one of the

object is is a fluid
spring constant . the constant of proportionality between force

and elongation of a spring or other object un-
der strain

Notation
FN . . . . . . . . . a normal force
Fs . . . . . . . . . a static frictional force
Fk . . . . . . . . . a kinetic frictional force
µs . . . . . . . . . the coefficient of static friction; the constant of

proportionality between the maximum static
frictional force and the normal force; depends
on what types of surfaces are involved

µk . . . . . . . . . the coefficient of kinetic friction; the constant
of proportionality between the kinetic fric-
tional force and the normal force; depends on
what types of surfaces are involved

k . . . . . . . . . . the spring constant; the constant of propor-
tionality between the force exerted on an ob-
ject and the amount by which the object is
lengthened or compressed

Summary

Newton’s third law states that forces occur in equal and opposite
pairs. If object A exerts a force on object B, then object B must
simultaneously be exerting an equal and opposite force on object A.
Each instance of Newton’s third law involves exactly two objects,
and exactly two forces, which are of the same type.

There are two systems for classifying forces. We are presently
using the more practical but less fundamental one. In this system,
forces are classified by whether they are repulsive, attractive, or
oblique; whether they are contact or noncontact forces; and whether
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the two objects involved are solids or fluids.

Static friction adjusts itself to match the force that is trying to
make the surfaces slide past each other, until the maximum value is
reached,

Fs,max = µsFN .

Once this force is exceeded, the surfaces slip past one another, and
kinetic friction applies,

Fk = µkFN .

Both types of frictional force are nearly independent of surface area,
and kinetic friction is usually approximately independent of the
speed at which the surfaces are slipping. The direction of the force
is in the direction that would tend to stop or prevent slipping.

A good first step in applying Newton’s laws of motion to any
physical situation is to pick an object of interest, and then to list
all the forces acting on that object. We classify each force by its
type, and find its Newton’s-third-law partner, which is exerted by
the object on some other object.

When two objects are connected by a third low-mass object,
their forces are transmitted to each other nearly unchanged.

Objects under strain always obey Hooke’s law to a good approx-
imation, as long as the force is small. Hooke’s law states that the
stretching or compression of the object is proportional to the force
exerted on it,

F ≈ k(x− xo).
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Problem 1.

Problem 6.

Problem 7.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A little old lady and a pro football player collide head-on.
Compare their forces on each other, and compare their accelerations.
Explain.

2 The earth is attracted to an object with a force equal and
opposite to the force of the earth on the object. If this is true,
why is it that when you drop an object, the earth does not have an
acceleration equal and opposite to that of the object?

3 When you stand still, there are two forces acting on you,
the force of gravity (your weight) and the normal force of the floor
pushing up on your feet. Are these forces equal and opposite? Does
Newton’s third law relate them to each other? Explain.

In problems 4-8, analyze the forces using a table in the format shown
in section 5.3. Analyze the forces in which the italicized object par-
ticipates.

4 Some people put a spare car key in a little magnetic box that
they stick under the chassis of their car. Let’s say that the box is
stuck directly underneath a horizontal surface, and the car is parked.
(See instructions above.)

5 Analyze two examples of objects at rest relative to the earth
that are being kept from falling by forces other than the normal
force. Do not use objects in outer space, and do not duplicate
problem 4 or 8. (See instructions above.)

6 A person is rowing a boat, with her feet braced. She is doing
the part of the stroke that propels the boat, with the ends of the
oars in the water (not the part where the oars are out of the water).
(See instructions above.)

7 A farmer is in a stall with a cow when the cow decides to press
him against the wall, pinning him with his feet off the ground. An-
alyze the forces in which the farmer participates. (See instructions
above.)
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Problem 8.

Problem 9.

Problem 10.

8 A propeller plane is cruising east at constant speed and alti-
tude. (See instructions above.)

9 Today’s tallest buildings are really not that much taller than
the tallest buildings of the 1940’s. One big problem with making an
even taller skyscraper is that every elevator needs its own shaft run-
ning the whole height of the building. So many elevators are needed
to serve the building’s thousands of occupants that the elevator
shafts start taking up too much of the space within the building.
An alternative is to have elevators that can move both horizontally
and vertically: with such a design, many elevator cars can share a
few shafts, and they don’t get in each other’s way too much because
they can detour around each other. In this design, it becomes im-
possible to hang the cars from cables, so they would instead have to
ride on rails which they grab onto with wheels. Friction would keep
them from slipping. The figure shows such a frictional elevator in
its vertical travel mode. (The wheels on the bottom are for when it
needs to switch to horizontal motion.)
(a) If the coefficient of static friction between rubber and steel is
µs, and the maximum mass of the car plus its passengers is M ,
how much force must there be pressing each wheel against the rail
in order to keep the car from slipping? (Assume the car is not
accelerating.)

√

(b) Show that your result has physically reasonable behavior with
respect to µs. In other words, if there was less friction, would the
wheels need to be pressed more firmly or less firmly? Does your
equation behave that way?

10 Unequal masses M and m are suspended from a pulley as
shown in the figure.
(a) Analyze the forces in which mass m participates, using a table
in the format shown in section 5.3. [The forces in which the other
mass participates will of course be similar, but not numerically the
same.]
(b) Find the magnitude of the accelerations of the two masses.
[Hints: (1) Pick a coordinate system, and use positive and nega-
tive signs consistently to indicate the directions of the forces and
accelerations. (2) The two accelerations of the two masses have to
be equal in magnitude but of opposite signs, since one side eats up
rope at the same rate at which the other side pays it out. (3) You
need to apply Newton’s second law twice, once to each mass, and
then solve the two equations for the unknowns: the acceleration, a,
and the tension in the rope, T .]

√

(c) Many people expect that in the special case of M = m, the two
masses will naturally settle down to an equilibrium position side by
side. Based on your answer from part b, is this correct?
(d) Find the tension in the rope, T .

√

(e) Interpret your equation from part d in the special case where one
of the masses is zero. Here “interpret” means to figure out what hap-
pens mathematically, figure out what should happen physically, and
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Problem 13.

Problem 14.

connect the two.

11 A tugboat of mass m pulls a ship of mass M , accelerating it.
The speeds are low enough that you can ignore fluid friction acting
on their hulls, although there will of course need to be fluid friction
acting on the tug’s propellers.
(a) Analyze the forces in which the tugboat participates, using a
table in the format shown in section 5.3. Don’t worry about vertical
forces.
(b) Do the same for the ship.
(c) If the force acting on the tug’s propeller is F , what is the tension,
T , in the cable connecting the two ships? [Hint: Write down two
equations, one for Newton’s second law applied to each object. Solve
these for the two unknowns T and a.]

√

(d) Interpret your answer in the special cases of M = 0 and M =∞.

12 Someone tells you she knows of a certain type of Central
American earthworm whose skin, when rubbed on polished dia-
mond, has µk > µs. Why is this not just empirically unlikely but
logically suspect?

13 In the system shown in the figure, the pulleys on the left and
right are fixed, but the pulley in the center can move to the left or
right. The two masses are identical. Show that the mass on the left
will have an upward acceleration equal to g/5. Assume all the ropes
and pulleys are massless and frictionless.

14 The figure shows two different ways of combining a pair of
identical springs, each with spring constant k. We refer to the top
setup as parallel, and the bottom one as a series arrangement.
(a) For the parallel arrangement, analyze the forces acting on the
connector piece on the left, and then use this analysis to determine
the equivalent spring constant of the whole setup. Explain whether
the combined spring constant should be interpreted as being stiffer
or less stiff.
(b) For the series arrangement, analyze the forces acting on each
spring and figure out the same things. . Solution, p. 552

15 Generalize the results of problem 14 to the case where the
two spring constants are unequal.

16 (a) Using the solution of problem 14, which is given in the
back of the book, predict how the spring constant of a fiber will
depend on its length and cross-sectional area.
(b) The constant of proportionality is called the Young’s modulus,
E, and typical values of the Young’s modulus are about 1010 to
1011. What units would the Young’s modulus have in the SI (meter-
kilogram-second) system? . Solution, p. 552
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Problem 17.

Problem 19.

17 This problem depends on the results of problems 14 and
16, whose solutions are in the back of the book. When atoms form
chemical bonds, it makes sense to talk about the spring constant of
the bond as a measure of how “stiff” it is. Of course, there aren’t
really little springs — this is just a mechanical model. The purpose
of this problem is to estimate the spring constant, k, for a single
bond in a typical piece of solid matter. Suppose we have a fiber,
like a hair or a piece of fishing line, and imagine for simplicity that
it is made of atoms of a single element stacked in a cubical manner,
as shown in the figure, with a center-to-center spacing b. A typical
value for b would be about 10−10 m.
(a) Find an equation for k in terms of b, and in terms of the Young’s
modulus, E, defined in problem 16 and its solution.
(b) Estimate k using the numerical data given in problem 16.
(c) Suppose you could grab one of the atoms in a diatomic molecule
like H2 or O2, and let the other atom hang vertically below it. Does
the bond stretch by any appreciable fraction due to gravity?

18 In each case, identify the force that causes the acceleration,
and give its Newton’s-third-law partner. Describe the effect of the
partner force. (a) A swimmer speeds up. (b) A golfer hits the ball
off of the tee. (c) An archer fires an arrow. (d) A locomotive slows
down. . Solution, p. 552

19 Ginny has a plan. She is going to ride her sled while her dog
Foo pulls her, and she holds on to his leash. However, Ginny hasn’t
taken physics, so there may be a problem: she may slide right off
the sled when Foo starts pulling.
(a) Analyze all the forces in which Ginny participates, making a
table as in section 5.3.
(b) Analyze all the forces in which the sled participates.
(c) The sled has mass m, and Ginny has mass M . The coefficient
of static friction between the sled and the snow is µ1, and µ2 is
the corresponding quantity for static friction between the sled and
her snow pants. Ginny must have a certain minimum mass so that
she will not slip off the sled. Find this in terms of the other three
variables.

√

(d) Interpreting your equation from part c, under what conditions
will there be no physically realistic solution for M? Discuss what
this means physically.

20 Example 2 on page 157 involves a person pushing a box up a
hill. The incorrect answer describes three forces. For each of these
three forces, give the force that it is related to by Newton’s third
law, and state the type of force. . Solution, p. 553

21 Example 10 on page 176 describes a force-doubling setup
involving a pulley. Make up a more complicated arrangement, using
two pulleys, that would multiply the force by four. The basic idea
is to take the output of one force doubler and feed it into the input
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of a second one.

22 Pick up a heavy object such as a backpack or a chair, and
stand on a bathroom scale. Shake the object up and down. What
do you observe? Interpret your observations in terms of Newton’s
third law.

23 A cop investigating the scene of an accident measures the
length L of a car’s skid marks in order to find out its speed v at
the beginning of the skid. Express v in terms of L and any other
relevant variables.

√

24 The following reasoning leads to an apparent paradox; explain
what’s wrong with the logic. A baseball player hits a ball. The ball
and the bat spend a fraction of a second in contact. During that
time they’re moving together, so their accelerations must be equal.
Newton’s third law says that their forces on each other are also
equal. But a = F/m, so how can this be, since their masses are
unequal? (Note that the paradox isn’t resolved by considering the
force of the batter’s hands on the bat. Not only is this force very
small compared to the ball-bat force, but the batter could have just
thrown the bat at the ball.)

25 This problem has been deleted.

26 (a) Compare the mass of a one-liter water bottle on earth,
on the moon, and in interstellar space. . Solution, p. 553
(b) Do the same for its weight.

27 An ice skater builds up some speed, and then coasts across
the ice passively in a straight line. (a) Analyze the forces, using a
table in the format shown in section 5.3.
(b) If his initial speed is v, and the coefficient of kinetic friction is µk,
find the maximum theoretical distance he can glide before coming
to a stop. Ignore air resistance.

√

(c) Show that your answer to part b has the right units.
(d) Show that your answer to part b depends on the variables in a
way that makes sense physically.
(e) Evaluate your answer numerically for µk = 0.0046, and a world-
record speed of 14.58 m/s. (The coefficient of friction was measured
by De Koning et al., using special skates worn by real speed skaters.)√

(f) Comment on whether your answer in part e seems realistic. If it
doesn’t, suggest possible reasons why.
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Problem 28.

Problem 29.

Problem 31.

28 Mountain climbers with masses m and M are roped together
while crossing a horizontal glacier when a vertical crevasse opens up
under the climber with mass M . The climber with mass m drops
down on the snow and tries to stop by digging into the snow with
the pick of an ice ax. Alas, this story does not have a happy ending,
because this doesn’t provide enough friction to stop. Both m and M
continue accelerating, with M dropping down into the crevasse and
m being dragged across the snow, slowed only by the kinetic friction
with coefficient µk acting between the ax and the snow. There is no
significant friction between the rope and the lip of the crevasse.
(a) Find the acceleration a.

√

(b) Check the units of your result.
(c) Check the dependence of your equation on the variables. That
means that for each variable, you should determine what its effect
on a should be physically, and then what your answer from part a
says its effect would be mathematically.

29 The figure shows a column in the shape of a woman, holding
up the roof of part of the Parthenon. Analyze the forces in which
she participates, using a table in the format shown in section 5.3.

. Solution, p. 553

30 Problem 15, p. 150, which has a solution in the back of the
book, was an analysis of the forces acting on a rock climber being
lowered back down on the rope. Expand that analysis into a table
in the format shown in section 5.3, which includes the types of the
forces and their Newton’s-third-law partners.

31 The figure shows a man trying to push his car out of the mud.
(a) Suppose that he isn’t able to move the car. Analyze the forces
in which the car participates, using a table in the format shown in
section 5.3. (b) In the situation described above, consider the forces
that act on the car, and compare their strengths. (c) The man takes
a nap, eats some chocolate, and now feels stronger. Now he is able
to move the car, and the car is currently moving at constant speed.
Discuss the strengths of the forces at this time, in relation to one
another. (d) The man gets tired again. He is still pushing, but the
car, although still moving, begins to decelerate. Again, discuss the
strengths of the forces in relation to one another.
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Problem 32.

Problem 34.

Problem 35.

32 The figure shows a mountaineer doing a vertical rappel. Her
anchor is a big boulder. The American Mountain Guides Association
suggests as a rule of thumb that in this situation, the boulder should
be at least as big as a refrigerator, and should be sitting on a surface
that is horizontal rather than sloping. The goal of this problem is
to estimate what coefficient of static friction µs between the boulder
and the ledge is required if this setup is to hold the person’s body
weight. For comparison, reference books meant for civil engineers
building walls out of granite blocks state that granite on granite
typically has a µs ≈ 0.6. We expect the result of our calculation
to be much less than this, both because a large margin of safety
is desired and because the coefficient could be much lower if, for
example, the surface was sandy rather than clean. We will assume
that there is no friction where the rope goes over the lip of the cliff,
although in reality this friction significantly reduces the load on the
boulder.
(a) Let m be the mass of the climber, V the volume of the boulder,
ρ its density, and g the strength of the gravitational field. Find the
minimum value of µs.

√

(b) Show that the units of your answer make sense.
(c) Check that its dependence on the variables makes sense.
(d) Evaluate your result numerically. The volume of my refrigerator
is about 0.7 m3, the density of granite is about 2.7 g/cm3, and
standards bodies use a body mass of 80 kg for testing climbing
equipment.

√

33 A toy manufacturer is playtesting teflon booties that slip
on over your shoes. In the parking lot, giggling engineers find that
when they start with an initial speed of 1.2 m/s, they glide for 2.0 m
before coming to a stop. What is the coefficient of friction between
the asphalt and the booties?

√
[problem by B. Shotwell]

34 Blocks M1 and M2 are stacked as shown, with M2 on top.
M2 is connected by a string to the wall, and M1 is pulled to the
right with a force F big enough to get M1 to move. The coefficient
of kinetic friction has the same value µk among all surfaces (i.e., the
block-block and ground-block interfaces).
(a) Analyze the forces in which each block participates, as in section
5.3.
(b) Determine the tension in the string.

√

(c) Find the acceleration of the block of mass M1.√
[problem by B. Shotwell]

35 A person can pull with a maximum force F . What is the
maximum mass that the person can lift with the pulley setup shown
in the figure?

√
[problem by B. Shotwell]
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Problem 36.

36 Blocks of mass m1 and m2 rest, as shown in the figure, on a
frictionless plane, and are squeezed by forces of magnitude F1 and
F2.
(a) Find the force f that acts between the two blocks.

√

(b) Check that your answer makes sense in the symmetric case where
F1 = F2 and m1 = m2.
(c) Find the conditions under which your answer to part a gives
f = 0, and check that it makes sense.
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Motion in Three
Dimensions
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Chapter 6

Newton’s Laws in Three
Dimensions

6.1 Forces have no perpendicular effects
Suppose you could shoot a rifle and arrange for a second bullet to
be dropped from the same height at the exact moment when the
first left the barrel. Which would hit the ground first? Nearly
everyone expects that the dropped bullet will reach the dirt first,
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and Aristotle would have agreed. Aristotle would have described it
like this. The shot bullet receives some forced motion from the gun.
It travels forward for a split second, slowing down rapidly because
there is no longer any force to make it continue in motion. Once
it is done with its forced motion, it changes to natural motion, i.e.
falling straight down. While the shot bullet is slowing down, the
dropped bullet gets on with the business of falling, so according to
Aristotle it will hit the ground first.

a / A bullet is shot from a gun, and another bullet is simultaneously dropped from the same height. 1.
Aristotelian physics says that the horizontal motion of the shot bullet delays the onset of falling, so the dropped
bullet hits the ground first. 2. Newtonian physics says the two bullets have the same vertical motion, regardless
of their different horizontal motions.

Luckily, nature isn’t as complicated as Aristotle thought! To
convince yourself that Aristotle’s ideas were wrong and needlessly
complex, stand up now and try this experiment. Take your keys
out of your pocket, and begin walking briskly forward. Without
speeding up or slowing down, release your keys and let them fall
while you continue walking at the same pace.

You have found that your keys hit the ground right next to your
feet. Their horizontal motion never slowed down at all, and the
whole time they were dropping, they were right next to you. The
horizontal motion and the vertical motion happen at the same time,
and they are independent of each other. Your experiment proves
that the horizontal motion is unaffected by the vertical motion, but
it’s also true that the vertical motion is not changed in any way by
the horizontal motion. The keys take exactly the same amount of
time to get to the ground as they would have if you simply dropped
them, and the same is true of the bullets: both bullets hit the ground
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simultaneously.

These have been our first examples of motion in more than one
dimension, and they illustrate the most important new idea that
is required to understand the three-dimensional generalization of
Newtonian physics:

Forces have no perpendicular effects.
When a force acts on an object, it has no effect on the part of the
object’s motion that is perpendicular to the force.

In the examples above, the vertical force of gravity had no effect
on the horizontal motions of the objects. These were examples of
projectile motion, which interested people like Galileo because of
its military applications. The principle is more general than that,
however. For instance, if a rolling ball is initially heading straight
for a wall, but a steady wind begins blowing from the side, the ball
does not take any longer to get to the wall. In the case of projectile
motion, the force involved is gravity, so we can say more specifically
that the vertical acceleration is 9.8 m/s2, regardless of the horizontal
motion.

self-check A
In the example of the ball being blown sideways, why doesn’t the ball
take longer to get there, since it has to travel a greater distance? .

Answer, p. 566

Relationship to relative motion

These concepts are directly related to the idea that motion is rel-
ative. Galileo’s opponents argued that the earth could not possibly
be rotating as he claimed, because then if you jumped straight up in
the air you wouldn’t be able to come down in the same place. Their
argument was based on their incorrect Aristotelian assumption that
once the force of gravity began to act on you and bring you back
down, your horizontal motion would stop. In the correct Newtonian
theory, the earth’s downward gravitational force is acting before,
during, and after your jump, but has no effect on your motion in
the perpendicular (horizontal) direction.

If Aristotle had been correct, then we would have a handy way
to determine absolute motion and absolute rest: jump straight up
in the air, and if you land back where you started, the surface from
which you jumped must have been in a state of rest. In reality, this
test gives the same result as long as the surface under you is an
inertial frame. If you try this in a jet plane, you land back on the
same spot on the deck from which you started, regardless of whether
the plane is flying at 500 miles per hour or parked on the runway.
The method would in fact only be good for detecting whether the
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c / The shadow on the wall
shows the ball’s y motion, the
shadow on the floor its x motion.

plane was accelerating.

Discussion questions

A The following is an incorrect explanation of a fact about target
shooting:

“Shooting a high-powered rifle with a high muzzle velocity is different from
shooting a less powerful gun. With a less powerful gun, you have to aim
quite a bit above your target, but with a more powerful one you don’t have
to aim so high because the bullet doesn’t drop as fast.”

Explain why it’s incorrect. What is the correct explanation?

B You have thrown a rock, and it is flying through the air in an arc. If
the earth’s gravitational force on it is always straight down, why doesn’t it
just go straight down once it leaves your hand?

C Consider the example of the bullet that is dropped at the same
moment another bullet is fired from a gun. What would the motion of the
two bullets look like to a jet pilot flying alongside in the same direction as
the shot bullet and at the same horizontal speed?

6.2 Coordinates and components
’Cause we’re all
Bold as love,
Just ask the axis.

Jimi Hendrix

How do we convert these ideas into mathematics? Figure b shows
a good way of connecting the intuitive ideas to the numbers. In one
dimension, we impose a number line with an x coordinate on a
certain stretch of space. In two dimensions, we imagine a grid of
squares which we label with x and y values, as shown in figure b.

But of course motion doesn’t really occur in a series of discrete
hops like in chess or checkers. Figure c shows a way of conceptual-
izing the smooth variation of the x and y coordinates. The ball’s
shadow on the wall moves along a line, and we describe its position
with a single coordinate, y, its height above the floor. The wall
shadow has a constant acceleration of -9.8 m/s2. A shadow on the
floor, made by a second light source, also moves along a line, and we
describe its motion with an x coordinate, measured from the wall.
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b / This object experiences a force that pulls it down toward the
bottom of the page. In each equal time interval, it moves three units to
the right. At the same time, its vertical motion is making a simple pattern
of +1, 0, −1, −2, −3, −4, . . . units. Its motion can be described by an x
coordinate that has zero acceleration and a y coordinate with constant
acceleration. The arrows labeled x and y serve to explain that we are
defining increasing x to the right and increasing y as upward.

The velocity of the floor shadow is referred to as the x component
of the velocity, written vx. Similarly we can notate the acceleration
of the floor shadow as ax. Since vx is constant, ax is zero.

Similarly, the velocity of the wall shadow is called vy, its accel-
eration ay. This example has ay = −9.8 m/s2.

Because the earth’s gravitational force on the ball is acting along
the y axis, we say that the force has a negative y component, Fy,
but Fx = Fz = 0.

The general idea is that we imagine two observers, each of whom
perceives the entire universe as if it was flattened down to a single
line. The y-observer, for instance, perceives y, vy, and ay, and will
infer that there is a force, Fy, acting downward on the ball. That
is, a y component means the aspect of a physical phenomenon, such
as velocity, acceleration, or force, that is observable to someone who
can only see motion along the y axis.

All of this can easily be generalized to three dimensions. In the
example above, there could be a z-observer who only sees motion
toward or away from the back wall of the room.
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d / Example 1.

A car going over a cliff example 1
. The police find a car at a distance w = 20 m from the base of a
cliff of height h = 100 m. How fast was the car going when it went
over the edge? Solve the problem symbolically first, then plug in
the numbers.

. Let’s choose y pointing up and x pointing away from the cliff.
The car’s vertical motion was independent of its horizontal mo-
tion, so we know it had a constant vertical acceleration of a =
−g = −9.8 m/s2. The time it spent in the air is therefore related
to the vertical distance it fell by the constant-acceleration equa-
tion

∆y =
1
2

ay∆t2,

or

−h =
1
2

(−g)∆t2.

Solving for ∆t gives

∆t =

√
2h
g

.

Since the vertical force had no effect on the car’s horizontal mo-
tion, it had ax = 0, i.e., constant horizontal velocity. We can apply
the constant-velocity equation

vx =
∆x
∆t

,

i.e.,

vx =
w
∆t

.

We now substitute for ∆t to find

vx = w/

√
2h
g

,

which simplifies to

vx = w
√

g
2h

.

Plugging in numbers, we find that the car’s speed when it went
over the edge was 4 m/s, or about 10 mi/hr.

Projectiles move along parabolas.

What type of mathematical curve does a projectile follow through
space? To find out, we must relate x to y, eliminating t. The rea-
soning is very similar to that used in the example above. Arbitrarily
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e / A parabola can be defined as
the shape made by cutting a cone
parallel to its side. A parabola is
also the graph of an equation of
the form y ∝ x2.

f / Each water droplet follows
a parabola. The faster drops’
parabolas are bigger.

g / Example 2.

choosing x = y = t = 0 to be at the top of the arc, we conveniently
have x = ∆x, y = ∆y, and t = ∆t, so

y =
1

2
ayt

2 (ay < 0)

x = vxt

We solve the second equation for t = x/vx and eliminate t in the
first equation:

y =
1

2
ay

(
x

vx

)2

.

Since everything in this equation is a constant except for x and y,
we conclude that y is proportional to the square of x. As you may
or may not recall from a math class, y ∝ x2 describes a parabola.

. Solved problem: A cannon page 200, problem 5

Discussion question

A At the beginning of this section I represented the motion of a projec-
tile on graph paper, breaking its motion into equal time intervals. Suppose
instead that there is no force on the object at all. It obeys Newton’s first law
and continues without changing its state of motion. What would the corre-
sponding graph-paper diagram look like? If the time interval represented
by each arrow was 1 second, how would you relate the graph-paper dia-
gram to the velocity components vx and vy ?

B Make up several different coordinate systems oriented in different
ways, and describe the ax and ay of a falling object in each one.

6.3 Newton’s laws in three dimensions
It is now fairly straightforward to extend Newton’s laws to three
dimensions:

Newton’s first law
If all three components of the total force on an object are zero,
then it will continue in the same state of motion.

Newton’s second law
The components of an object’s acceleration are predicted by
the equations

ax = Fx,total/m,

ay = Fy,total/m, and

az = Fz,total/m.

Newton’s third law
If two objects A and B interact via forces, then the compo-
nents of their forces on each other are equal and opposite:

FA on B,x = −FB on A,x,

FA on B,y = −FB on A,y, and

FA on B,z = −FB on A,z.
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Forces in perpendicular directions on the same objectexample 2
. An object is initially at rest. Two constant forces begin acting on
it, and continue acting on it for a while. As suggested by the two
arrows, the forces are perpendicular, and the rightward force is
stronger. What happens?

. Aristotle believed, and many students still do, that only one force
can “give orders” to an object at one time. They therefore think
that the object will begin speeding up and moving in the direction
of the stronger force. In fact the object will move along a diagonal.
In the example shown in the figure, the object will respond to the
large rightward force with a large acceleration component to the
right, and the small upward force will give it a small acceleration
component upward. The stronger force does not overwhelm the
weaker force, or have any effect on the upward motion at all. The
force components simply add together:

Fx ,total = F1,x +��
�*0

F2,x

Fy ,total =
�
��>

0
F1,y + F2,y

Discussion question

A The figure shows two trajectories, made by splicing together lines
and circular arcs, which are unphysical for an object that is only being
acted on by gravity. Prove that they are impossible based on Newton’s
laws.
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Summary
Selected vocabulary
component . . . . the part of a velocity, acceleration, or force

that would be perceptible to an observer who
could only see the universe projected along a
certain one-dimensional axis

parabola . . . . . the mathematical curve whose graph has y
proportional to x2

Notation
x, y, z . . . . . . an object’s positions along the x, y, and z axes
vx, vy, vz . . . . . the x, y, and z components of an object’s ve-

locity; the rates of change of the object’s x, y,
and z coordinates

ax, ay, az . . . . . the x, y, and z components of an object’s ac-
celeration; the rates of change of vx, vy, and
vz

Summary

A force does not produce any effect on the motion of an object
in a perpendicular direction. The most important application of
this principle is that the horizontal motion of a projectile has zero
acceleration, while the vertical motion has an acceleration equal to g.
That is, an object’s horizontal and vertical motions are independent.
The arc of a projectile is a parabola.

Motion in three dimensions is measured using three coordinates,
x, y, and z. Each of these coordinates has its own corresponding
velocity and acceleration. We say that the velocity and acceleration
both have x, y, and z components

Newton’s second law is readily extended to three dimensions by
rewriting it as three equations predicting the three components of
the acceleration,

ax = Fx,total/m,

ay = Fy,total/m,

az = Fz,total/m,

and likewise for the first and third laws.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 (a) A ball is thrown straight up with velocity v. Find an
equation for the height to which it rises.

√

(b) Generalize your equation for a ball thrown at an angle θ above
horizontal, in which case its initial velocity components are vx =
v cos θ and vy = v sin θ.

√

2 At the 2010 Salinas Lettuce Festival Parade, the Lettuce Queen
drops her bouquet while riding on a float moving toward the right.
Sketch the shape of its trajectory in her frame of reference, and
compare with the shape seen by one of her admirers standing on
the sidewalk.

3 Two daredevils, Wendy and Bill, go over Niagara Falls. Wendy
sits in an inner tube, and lets the 30 km/hr velocity of the river throw
her out horizontally over the falls. Bill paddles a kayak, adding an
extra 10 km/hr to his velocity. They go over the edge of the falls
at the same moment, side by side. Ignore air friction. Explain your
reasoning.
(a) Who hits the bottom first?
(b) What is the horizontal component of Wendy’s velocity on im-
pact?
(c) What is the horizontal component of Bill’s velocity on impact?
(d) Who is going faster on impact?

4 A baseball pitcher throws a pitch clocked at vx = 73.3 miles/hour.
He throws horizontally. By what amount, d, does the ball drop by
the time it reaches home plate, L = 60.0 feet away?
(a) First find a symbolic answer in terms of L, vx, and g.

√

(b) Plug in and find a numerical answer. Express your answer
in units of ft. (Note: 1 foot=12 inches, 1 mile=5280 feet, and 1
inch=2.54 cm)

√

Problem 4.

5 A cannon standing on a flat field fires a cannonball with a
muzzle velocity v, at an angle θ above horizontal. The cannonball
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