how to draw it more realistically. Since our acceleration graph consists of constant-acceleration
segments, the velocity graph must consist of line segments, and the position graph must consist
of parabolas. On the z graph, I chose zero to be the height of the center of the ball above the
floor when the ball is just lying on the floor. When the ball is touching the floor and compressed,
as in interval cd, its center is below this level, so its = is negative.

ab cd ef
Page 120, problem 22:

We have vj% = 2aAx, so the distance is proportional to the square of the velocity. To get up to
half the speed, the ball needs 1/4 the distance, i.e., L/4.

Solutions for chapter 4
Page 148, problem 7:
a = Av/At, and also a = F//m, so

Av
a
_ mAv
F
(1000 kg)(50 m/s — 20 m/s)
3000 N

At =

=10s

Page 149, problem 10:

(a) This is a measure of the box’s resistance to a change in its state of motion, so it measures
the box’s mass. The experiment would come out the same in lunar gravity.

(b) This is a measure of how much gravitational force it feels, so it’s a measure of weight. In
lunar gravity, the box would make a softer sound when it hit.

(c) As in part a, this is a measure of its resistance to a change in its state of motion: its mass.
Gravity isn’t involved at all.

Page 150, problem 15:

The partner’s hands are not touching the climber, so they don’t make any force on him. The
hands have an indirect effect through the rope, but our concept of force only includes direct
effects (section 4.4, p. 141).

The corrected table looks like this:
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force of the earth’s gravity, |
force from the rope, 1

The student is also wrong to claim that the upward and downward forces are unbalanced. The
climber is moving down at constant speed, so his acceleration is zero, and the total force acting
on him is zero. The upward and downward forces are of equal strength, and they cancel.

Solutions for chapter 5
Page 182, problem 14:

(a)
top spring’s rightward force on connector
...connector’s leftward force on top spring
bottom spring’s rightward force on connector
...connector’s leftward force on bottom spring
hand’s leftward force on connector
...connector’s rightward force on hand

Looking at the three forces on the connector, we see that the hand’s force must be double the
force of either spring. The value of x — . is the same for both springs and for the arrangement
as a whole, so the spring constant must be 2k. This corresponds to a stiffer spring (more force
to produce the same extension).

(b) Forces in which the left spring participates:

hand’s leftward force on left spring

...left spring’s rightward force on hand
right spring’s rightward force on left spring
...left spring’s leftward force on right spring

Forces in which the right spring participates:

left spring’s leftward force on right spring
...right spring’s rightward force on left spring
wall’s rightward force on right spring

...right spring’s leftward force on wall

Since the left spring isn’t accelerating, the total force on it must be zero, so the two forces acting
on it must be equal in magnitude. The same applies to the two forces acting on the right spring.
The forces between the two springs are connected by Newton’s third law, so all eight of these
forces must be equal in magnitude. Since the value of x — z, for the whole setup is double what
it is for either spring individually, the spring constant of the whole setup must be k/2, which
corresponds to a less stiff spring.

Page 182, problem 16:

(a) Spring constants in parallel add, so the spring constant has to be proportional to the cross-
sectional area. T'wo springs in series give half the spring constant, three springs in series give 1/3,
and so on, so the spring constant has to be inversely proportional to the length. Summarizing,
we have k o< A/L. (b) With the Young’s modulus, we have k = (A/L)E.The spring constant
has units of N/m, so the units of £ would have to be N/m?.

Page 183, problem 18:
(a) The swimmer’s acceleration is caused by the water’s force on the swimmer, and the swimmer



makes a backward force on the water, which accelerates the water backward. (b) The club’s
normal force on the ball accelerates the ball, and the ball makes a backward normal force on the
club, which decelerates the club. (¢) The bowstring’s normal force accelerates the arrow, and
the arrow also makes a backward normal force on the string. This force on the string causes the
string to accelerate less rapidly than it would if the bow’s force was the only one acting on it.
(d) The tracks’ backward frictional force slows the locomotive down. The locomotive’s forward
frictional force causes the whole planet earth to accelerate by a tiny amount, which is too small
to measure because the earth’s mass is so great.

Page 183, problem 20:

The person’s normal force on the box is paired with the box’s normal force on the person. The
dirt’s frictional force on the box pairs with the box’s frictional force on the dirt. The earth’s
gravitational force on the box matches the box’s gravitational force on the earth.

Page 184, problem 26:
(a) A liter of water has a mass of 1.0 kg. The mass is the same in all three locations. Mass
indicates how much an object resists a change in its motion. It has nothing to do with gravity.
(b) The term “weight” refers to the force of gravity on an object. The bottle’s weight on earth
is Fiyy = mg = 9.8 N. Its weight on the moon is about one sixth that value, and its weight in
interstellar space is zero.

Page 185, problem 29:

First, let’s account for every object that’s touching her: the floor and the roof. Any time two
solid objects are in contact, we expect a normal force, which is the force that keeps them from
passing through each other. Normal forces are repulsive, which means here that the roof’s force
on her head is down (away from itself), and the floor’s force on her feet is up (away from itself).
There could also be frictional forces, but in this problem there is symmetry between left and
right, so it wouldn’t make sense for frictional forces to exist here — if they did, there would be
no way to decide which way they should point.

In addition to these contact forces, we will have a non-contact force: the earth’s gravity.

The physical reasoning above establishes the left-hand column of the table below. Once we’ve
established the left-hand column, the right-hand column can be generated purely by manipu-
lating the words and symbols, without further recourse to physical insight. By Newton’s third
law, we interchange the two objects and reverse the arrow. The type of the force is the same.

force acting on woman force related to it by Newton’s third law
roof’s normal force on woman, | woman’s normal force on roof, 1
floor’s normal force on woman, 1 woman’s normal force on floor, |

planet earth’s gravitational force on | woman’s gravitational force on earth, T
woman, |

Solutions for chapter 6

Page 200, problem 5:

(a) The easiest strategy is to find the time spent aloft, and then find the range. The vertical
motion and the horizontal motion are independent. The vertical motion has acceleration —g,
and the cannonball spends enough time in the air to reverse its vertical velocity component
completely, so we have

Avy = vyr — vyo

= —2vusinf.
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The time spent aloft is therefore

At = Avy/ay,
= 2vsinf/g.

During this time, the horizontal distance traveled is

R = v, At
= 2% sinfcosh/g.

(b) The range becomes zero at both § = 0 and at § = 90°. The § = 0 case gives zero range
because the ball hits the ground as soon as it leaves the mouth of the cannon. A 90-degree angle
gives zero range because the cannonball has no horizontal motion.

Solutions for chapter 8

Page 234, problem 8:

We want to find out about the velocity vector vpg of the bullet relative to the ground, so we need
to add Annie’s velocity relative to the ground v4g to the bullet’s velocity vector vga relative
to her. Letting the positive x axis be east and y north, we have

vBA,z = (140 mi/hr) cos 45°

= 100 mi/hr
vBA,y = (140 mi/hr) sin 45°
= 100 mi/hr
and
VAG,x = 0

vAG,y = 30 mi/hr.
The bullet’s velocity relative to the ground therefore has components

VG, = 100 mi/hr and
vBG,y = 130 mi/hr.

Its speed on impact with the animal is the magnitude of this vector

lvpg| = /(100 mi/hr)2 + (130 mi/hr)2
= 160 mi/hr

(rounded off to 2 significant figures).

Page 234, problem 9:

Since its velocity vector is constant, it has zero acceleration, and the sum of the force vectors
acting on it must be zero. There are three forces acting on the plane: thrust, lift, and gravity.
We are given the first two, and if we can find the third we can infer its mass. The sum of the y
components of the forces is zero, so

0= Fth'rust,y + -Flift,y + FW,y
= |Fihrust| sin 0 + |Fyipe| cos 0 — mg.



The mass is

m = (|Fth7’ust| sin ¢ + ’Flift‘ coS 9)/9
= 7.0 x 10* kg

Page 234, problem 10:

(a) Since the wagon has no acceleration, the total forces in both the x and y directions must
be zero. There are three forces acting on the wagon: Fr, Fy, and the normal force from the
ground, Fy. If we pick a coordinate system with x being horizontal and y vertical, then the
angles of these forces measured counterclockwise from the x axis are 90° — ¢, 270°, and 90° 4 6,
respectively. We have

Fy total = |Fr|cos(90° — ¢) + |Fy| cos(270°) + |F x| cos(90° + 6)
Fytotal = |Fr|sin(90° — ¢) + |Fy|sin(270°) + |F x| sin(90° + 0),
which simplifies to
0= |Fr|sing — |Fy|siné
0= |Fr|cos¢ — |Fy |+ |Fn|cosé.

The normal force is a quantity that we are not given and do not wish to find, so we should
choose it to eliminate. Solving the first equation for |F x| = (sin ¢/ sin6)|Fr|, we eliminate |F |
from the second equation,

0= |Fp|cos¢ — |Fyw| + |Fr|sin¢cosd/sin b

and solve for |Fp|, finding
Fw|
cos ¢ +singcosf/sinf’

|Fr| =

Multiplying both the top and the bottom of the fraction by sin @, and using the trig identity for
sin(f + ¢) gives the desired result,

sin @

T

Fr|
(b) The case of ¢ = 0, i.e., pulling straight up on the wagon, results in |Fp| = |Fy/|: we simply
support the wagon and it glides up the slope like a chair-lift on a ski slope. In the case of
¢ = 180° — 0, |Fp| becomes infinite. Physically this is because we are pulling directly into the
ground, so no amount of force will suffice.

Page 235, problem 11:

(a) If there was no friction, the angle of repose would be zero, so the coefficient of static friction,
1s, will definitely matter. We also make up symbols €, m and g for the angle of the slope, the
mass of the object, and the acceleration of gravity. The forces form a triangle just like the one
in example 5 on p. 225, but instead of a force applied by an external object, we have static
friction, which is less than us|Fy|. As in that example, |Fy| = mgsin 6, and |F4| < ps|Fn/|, so

mgsinf < ps|Ful.
From the same triangle, we have |Fy| = mgcos#, so

mgsinf < psmgcosb.
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Rearranging,

60 < tan™t pus.

(b) Both m and g canceled out, so the angle of repose would be the same on an asteroid.

Page 238, problem 25:

(a) There is no theoretical limit on how much normal force Fiy the climber can make on the
walls with each foot, so the frictional force can be made arbitrarily large. This means that with
any p > 0, we can always get the vertical forces to cancel. The theoretical minimum value of u
will be determined by the need for the horizontal forces to cancel, so that the climber doesn’t
pop out of the corner like a watermelon seed squeezed between two fingertips. The horizontal
component of the frictional force is always less than the magnitude of the frictional force, which
is turn is less than pFn. To find the minimum value of 1, we set the static frictional force equal
to uFn.

Let the z axis be along the plane that bisects the two walls, let y be the horizontal direction
perpendicular to z, and let z be vertical. Then cancellation of the forces in the z direction
is not the limiting factor, for the reasons described above, and cancellation in y is guaranteed
by symmetry, so the only issue is the cancellation of the x forces. We have 2F;cos(6/2) —
2Fn sin(6/2) = 0. Combining this with Fs = pFy results in u = tan(0/2).

(b) For § = 0, p is very close to zero. That is, we can always theoretically stay stuck between
two parallel walls, simply by pressing hard enough, even if the walls are made of ice or polished
marble with a coating of WD-40. As 6 gets close to 180°, u blows up to infinity. We need at
least some dihedral angle to do this technique, because otherwise we're facing a flat wall, and
there is nothing to cancel the wall’s normal force on our feet.

(¢) The result is 99.0°, i.e., just a little wider than a right angle.

Solutions for chapter 9

Page 255, problem 5:

Each cyclist has a radial acceleration of v2/r = 5 m/s?. The tangential accelerations of cyclists
A and B are 375 N/75 kg = 5 m/s%.

Page 256, problem 6:
(a) The inward normal force must be sufficient to produce circular motion, so

|Fn| = mov?/r.

We are searching for the minimum speed, which is the speed at which the static friction force is
just barely able to cancel out the downward gravitational force. The maximum force of static
friction is

|Fs’ = ,Ufs’FN|7



and this cancels the gravitational force, so

|Fs| = mg.
Solving these three equations for v gives
gr
v= /.
Hes

(b) Greater by a factor of v/3.

Page 256, problem 7:
The inward force must be supplied by the inward component of the normal force,

|F | sin 6 = muv?/r.
The upward component of the normal force must cancel the downward force of gravity,
|Fn|cosf = mg.

Eliminating |F x| and solving for 0, we find
2
0 = tan" <U> .
gr

Solutions for chapter 10

Page 282, problem 10:

Newton’s law of gravity is F = GMm/r%. Both G and the astronaut’s mass m are the same in
the two situations, so F' oc Mr~2. In terms of ratios, this is

Fe _ M. (re\™
Fe_Me Te '

The result is 11 N.

Page 283, problem 11:
Newton’s law of gravity says F = Gmima/r?, and Newton’s second law says F = maa, so
Gmlmg/r2 = meoa. Since my cancels, a is independent of ms.

Page 283, problem 12:
Newton’s second law gives
F =mpap,

where F is Ida’s force on Dactyl. Using Newton’s universal law of gravity, F= Gmmp/r?and
the equation a = v?/r for circular motion, we find

Gm[mD/r2 :mDUQ/r.

Dactyl’s mass cancels out, giving

Gmy/r* =v?/r.
Dactyl’s velocity equals the circumference of its orbit divided by the time for one orbit: v =
27r/T'. Inserting this in the above equation and solving for mj, we find

4723

(AT ER
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so Ida’s density is

p=mr/V
_ 4r2p3
- GVT?

Page 283, problem 15:

Newton’s law of gravity depends on the inverse square of the distance, so if the two planets
masses had been equal, then the factor of 0.83/0.059 = 14 in distance would have caused the
force on planet ¢ to be 142 = 2.0 x 10? times weaker. However, planet c’s mass is 3.0 times
greater, so the force on it is only smaller by a factor of 2.0 x 10?/3.0 = 65.

Page 284, problem 16:
The reasoning is reminiscent of section 10.2. From Newton’s second law we have

9

F =ma = mv?/r = mQ2rr/T)?/r = 4x’mr /T2,

and Newton’s law of gravity gives F = GMm/r? where M is the mass of the earth. Setting
these expressions equal to each other, we have

Ar*mr /T? = GMm/r?,

which gives

(GMT2>1/3
’]":

472

= 4.22 x 10* km.

This is the distance from the center of the earth, so to find the altitude, we need to subtract
the radius of the earth. The altitude is 3.58 x 10* km.

Page 284, problem 17:

Any fractional change in 7 results in double that amount of fractional change in 1/7?. For
example, raising r by 1% causes 1/72 to go down by very nearly 2%. A 27-day orbit is 1/13.5
of a year, so the fractional change in 1/7? is

(4/13.5) cm 1 km

=15x 10"
3.84 x 105 km . 105 em %

Page 285, problem 19:

(a) The asteroid’s mass depends on the cube of its radius, and for a given mass the surface
gravity depends on 7~2. The result is that surface gravity is directly proportional to radius.
Half the gravity means half the radius, or one eighth the mass. (b) To agree with a, Earth’s
mass would have to be 1/8 Jupiter’s. We assumed spherical shapes and equal density. Both
planets are at least roughly spherical, so the only way out of the contradiction is if Jupiter’s

density is significantly less than Earth’s.

Solutions for chapter 11

Page 311, problem 7:

A force is an interaction between two objects, so while the bullet is in the air, there is no force.
There is only a force while the bullet is in contact with the book. There is energy the whole



time, and the total amount doesn’t change. The bullet has some kinetic energy, and transfers
some of it to the book as heat, sound, and the energy required to tear a hole through the book.

Page 311, problem 8:

(a) The energy stored in the gasoline is being changed into heat via frictional heating, and also
probably into sound and into energy of water waves. Note that the kinetic energy of the propeller
and the boat are not changing, so they are not involved in the energy transformation. (b) The
crusing speed would be greater by a factor of the cube root of 2, or about a 26% increase.

Page 311, problem 9:

We don’t have actual masses and velocities to plug in to the equation, but that’s OK. We just
have to reason in terms of ratios and proportionalities. Kinetic energy is proportional to mass
and to the square of velocity, so B’s kinetic energy equals

(13.4 J)(3.77)/(2.34)* = 9.23 J

Page 311, problem 11:
Room temperature is about 20°C. The fraction of the energy that actually goes into heating

the water is
(250 g)/(0.24 g-°C/J) x (100°C — 20°C)

(1.25 x 103 J/s) (126 s)

So roughly half of the energy is wasted. The wasted energy might be in several forms: heating
of the cup, heating of the oven itself, or leakage of microwaves from the oven.

=0.53

Solutions for chapter 12
Page 327, problem 5:

Etotal,i = Etotal,f
PE; +heat; = PEy + KEy + heaty

1
“mv? = PE; — PEy + heat; — heat

2
= —APFE — Aheat
\/ <—APE — Aheat)
v=14/2
m
=6.4m/s

Page 328, problem 7:
Let 6 be the angle by which he has progressed around the pipe. Conservation of energy gives

Etotal,i = Etotal,f
PE; = PE; + KEy
0=APE+ KEy
1
0 =mgr(cosf — 1) + §mv2.

While he is still in contact with the pipe, the radial component of his acceleration is

1)2

Qpr = —,
T
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and making use of the previous equation we find
ar = 2¢g(1 — cos¥).

There are two forces on him, a normal force from the pipe and a downward gravitational force
from the earth. At the moment when he loses contact with the pipe, the normal force is zero,
so the radial component, mg cos, of the gravitational force must equal ma,.,

mg cos @ = 2mg(1 — cosf),

which gives

cosf =

> Wl

The amount by which he has dropped is (1 — cos ), which equals r/3 at this moment.

Page 328, problem 9:
(a) Example: As one child goes up on one side of a see-saw, another child on the other side
comes down. (b) Example: A pool ball hits another pool ball, and transfers some KE.

Page 328, problem 11:

Suppose the river is 1 m deep, 100 m wide, and flows at a speed of 10 m/s, and that the falls
are 100 m tall. In 1 second, the volume of water flowing over the falls is 10% m?, with a mass of
10% kg. The potential energy released in one second is (10° kg)(g)(100 m) = 10° J, so the power
is 10° W. A typical household might have 10 hundred-watt applicances turned on at any given
time, so it consumes about 10% watts on the average. The plant could supply a about million
households with electricity.

Solutions for chapter 13

Page 357, problem 18:

No. Work describes how energy was transferred by some process. It isn’t a measurable property
of a system.

Solutions for chapter 14

Page 389, problem 8:

Let m be the mass of the little puck and M = 2.3m be the mass of the big one. All we need
to do is find the direction of the total momentum vector before the collision, because the total
momentum vector is the same after the collision. Given the two components of the momentum
vector p, = Mv and p, = muv, the direction of the vector is tanfl(py /D) = 23° counterclockwise
from the big puck’s original direction of motion.

Page 390, problem 11:

Momentum is a vector. The total momentum of the molecules is always zero, since the momenta
in different directions cancal out on the average. Cooling changes individual molecular momenta,
but not the total.

Page 390, problem 14:

By conservation of momentum, the total momenta of the pieces after the explosion is the same
as the momentum of the firework before the explosion. However, there is no law of conservation
of kinetic energy, only a law of conservation of energy. The chemical energy in the gunpowder
is converted into heat and kinetic energy when it explodes. All we can say about the kinetic
energy of the pieces is that their total is greater than the kinetic energy before the explosion.



Page 390, problem 15:
(a) Particle i had velocity v; in the center-of-mass frame, and has velocity v; + u in the new
frame. The total kinetic energy is

1
§m1(v1+u)2+...,

43 2

where indicates that the sum continues for all the particles. Rewriting this in terms of
the vector dot product, we have

1 1
iml(v1+u)-(v1—|—u)—|—...:iml(vl-V1+2u-v1—|—u-u)—|—....

When we add up all the terms like the first one, we get K.,,. Adding up all the terms like the
third one, we get M|u|?/2. The terms like the second term cancel out:

mu-vi+...=u-(mvy+...),

where the sum in brackets equals the total momentum in the center-of-mass frame, which is
zero by definition.

(b) Changing frames of reference doesn’t change the distances between the particles, so the
potential energies are all unaffected by the change of frames of reference. Suppose that in a
given frame of reference, frame 1, energy is conserved in some process: the initial and final
energies add up to be the same. First let’s transform to the center-of-mass frame. The potential
energies are unaffected by the transformation, and the total kinetic energy is simply reduced
by the quantity M|u;|?/2, where u; is the velocity of frame 1 relative to the center of mass.
Subtracting the same constant from the initial and final energies still leaves them equal. Now
we transform to frame 2. Again, the effect is simply to change the initial and final energies by
adding the same constant.

Page 391, problem 16:

A conservation law is about addition: it says that when you add up a certain thing, the total
always stays the same. Funkosity would violate the additive nature of conservation laws, because
a two-kilogram mass would have twice as much funkosity as a pair of one-kilogram masses moving
at the same speed.

Solutions for chapter 15

Page 427, problem 20:

The pliers are not moving, so their angular momentum remains constant at zero, and the total
torque on them must be zero. Not only that, but each half of the pliers must have zero total
torque on it. This tells us that the magnitude of the torque at one end must be the same as
that at the other end. The distance from the axis to the nut is about 2.5 cm, and the distance
from the axis to the centers of the palm and fingers are about 8 cm. The angles are close
enough to 90° that we can pretend they’re 90 degrees, considering the rough nature of the other
assumptions and measurements. The result is (300 N)(2.5 cm) = (F)(8 cm), or F' =90 N.

Page 428, problem 28:

The foot of the rod is moving in a circle relative to the center of the rod, with speed v = 7b/T,
and acceleration v2/(b/2) = (72/8)g. This acceleration is initially upward, and is greater in
magnitude than g, so the foot of the rod will lift off without dragging. We could also worry
about whether the foot of the rod would make contact with the floor again before the rod
finishes up flat on its back. This is a question that can be settled by graphing, or simply by
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inspection of figure o on page 405. The key here is that the two parts of the acceleration are
both independent of m and b, so the result is univeral, and it does suffice to check a graph in
a single example. In practical terms, this tells us something about how difficult the trick is to
do. Because 72/8 = 1.23 isn’t much greater than unity, a hit that is just a little too weak (by
a factor of 1.231/2 = 1.11) will cause a fairly obvious qualitative change in the results. This is
easily observed if you try it a few times with a pencil.

Solutions for chapter 16
Page 452, problem 11:
(a) We have

dP = pgdy

AP = /pgdy,

and since we'’re taking water to be incompressible, and g doesn’t change very much over 11 km
of height, we can treat p and g as constants and take them outside the integral.

AP = pgAy
= (1.0 g/cm®)(9.8 m/s?)(11.0 km)
= (1.0 x 10® kg/m?)(9.8 m/s?)(1.10 x 10* m)
=1.0 x 10® Pa
= 1.0 x 10 atm.

The precision of the result is limited to a few percent, due to the compressibility of the water,
so we have at most two significant figures. If the change in pressure were exactly a thousand
atmospheres, then the pressure at the bottom would be 1001 atmospheres; however, this dis-
tinction is not relevant at the level of approximation we’re attempting here.

(b) Since the air in the bubble is in thermal contact with the water, it’s reasonable to assume
that it keeps the same temperature the whole time. The ideal gas law is PV = nkT, and
rewriting this as a proportionality gives

Vx P!,
or .
V Pr\
S (L ~ 10°.
Vi P

Since the volume is proportional to the cube of the linear dimensions, the growth in radius is
about a factor of 10.

Page 452, problem 12:

(a) Roughly speaking, the thermal energy is ~ kT (where kp is the Boltzmann constant), and
we need this to be on the same order of magnitude as ke?/r (where k is the Coulomb constant).
For this type of rough estimate it’s not especially crucial to get all the factors of two right, but
let’s do so anyway. Each proton’s average kinetic energy due to motion along a particular axis
is (1/2)kpT. If two protons are colliding along a certain line in the center-of-mass frame, then
their average combined kinetic energy due to motion along that axis is 2(1/2)kpT = kgT. So
in fact the factors of 2 cancel. We have T = ke?/kpr.

(b) The units are K = (J-m/C?)(C?)/((J/K)-m), which does work out.



(c) The numerical result is ~ 101 K, which as suggested is much higher than the temperature
at the core of the sun.

Page 453, problem 13:

If the full-sized brick A undergoes some process, such as heating it with a blowtorch, then we
want to be able to apply the equation AS = @Q/T to either the whole brick or half of it, which
would be identical to B. When we redefine the boundary of the system to contain only half of
the brick, the quantities AS and @ are each half as big, because entropy and energy are additive
quantities. T, meanwhile, stays the same, because temperature isn’t additive — two cups of
coffee aren’t twice as hot as one. These changes to the variables leave the equation consistent,
since each side has been divided by 2.

Page 453, problem 14:

(a) If the expression 1 + by is to make sense, then by has to be unitless, so b has units of m~*.
The input to the exponential function also has to be unitless, so k also has of m~!. The only
factor with units on the right-hand side is P,, so P, must have units of pressure, or Pa.

(b)

dP = pgdy

_1dpP

P yy
= ];Oeky(—k — kby + b)

(c) The three terms inside the parentheses on the right all have units of m~!, so it makes sense

to add them, and the factor in parentheses has those units. The units of the result from b then
look like
kg Pa
™
~ N/m?
= mT/SQ
- kg-m~!.s”
- m?/s2

2

which checks out.
Answers to self-checks for volume 1

Answers to self-checks for chapter 0
Page 17, self-check A:

If only he has the special powers, then his results can never be reproduced.

Page 19, self-check B:

They would have had to weigh the rays, or check for a loss of weight in the object from which
they were have emitted. (For technical reasons, this was not a measurement they could actually
do, hence the opportunity for disagreement.)

Page 25, self-check C:

A dictionary might define “strong” as “possessing powerful muscles,” but that’s not an oper-
ational definition, because it doesn’t say how to measure strength numerically. One possible
operational definition would be the number of pounds a person can bench press.
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Page 28, self-check D:
A microsecond is 1000 times longer than a nanosecond, so it would seem like 1000 seconds, or
about 20 minutes.

Page 29, self-check E:
Exponents have to do with multiplication, not addition. The first line should be 100 times
longer than the second, not just twice as long.

Page 32, self-check F:

The various estimates differ by 5 to 10 million. The CIA’s estimate includes a ridiculous number
of gratuitous significant figures. Does the CIA understand that every day, people in are born
in, die in, immigrate to, and emigrate from Nigeria?

Page 32, self-check G:
(1) 4;(2) 2 (3) 2

Answers to self-checks for chapter 1
Page 42, self-check A:

1 yd? x (3 ft/1 yd)? = 9 ft?

1yd® x (3 ft/1 yd)? = 27 ft3

Page 48, self-check B:
Cl/CQ = (wl/w2)4

Answers to self-checks for chapter 2

Page 71, self-check A:

Coasting on a bike and coasting on skates give one-dimensional center-of-mass motion, but
running and pedaling require moving body parts up and down, which makes the center of mass
move up and down. The only example of rigid-body motion is coasting on skates. (Coasting on
a bike is not rigid-body motion, because the wheels twist.)

Page 71, self-check B:
By shifting his weight around, he can cause the center of mass not to coincide with the geometric
center of the wheel.

Page 72, self-check C:
(1) a point in time; (2) time in the abstract sense; (3) a time interval

Page 73, self-check D:
Zero, because the “after” and “before” values of z are the same.

Page 81, self-check E:

(1) The effect only occurs during blastoff, when their velocity is changing. Once the rocket
engines stop firing, their velocity stops changing, and they no longer feel any effect. (2) It is
only an observable effect of your motion relative to the air.

Answers to self-checks for chapter 3
Page 97, self-check A:
Its speed increases at a steady rate, so in the next second it will travel 19 cm.

Answers to self-checks for chapter 4
Page 139, self-check A:
(1) The case of p = 0 represents an object falling in a vacuum, i.e., there is no density of air.



The terminal velocity would be infinite. Physically, we know that an object falling in a vacuum
would never stop speeding up, since there would be no force of air friction to cancel the force of
gravity. (2) The 4-cm ball would have a mass that was greater by a factor of 4 x 4 x 4, but its
cross-sectional area would be greater by a factor of 4 x 4. Its terminal velocity would be greater
by a factor of \/43/4%2 = 2. (3) It isn’t of any general importance. It’s just an example of one
physical situation. You should not memorize it.

Page 142, self-check B:
(1) This is motion, not force. (2) This is a description of how the sub is able to get the water
to produce a forward force on it. (3) The sub runs out of energy, not force.

Answers to self-checks for chapter 5

Page 155, self-check A:

The sprinter pushes backward against the ground, and by Newton’s third law, the ground pushes
forward on her. (Later in the race, she is no longer accelerating, but the ground’s forward force
is needed in order to cancel out the backward forces, such as air friction.)

Page 163, self-check B:

(1) It’s kinetic friction, because her uniform is sliding over the dirt. (2) It’s static friction,
because even though the two surfaces are moving relative to the landscape, they’re not slipping
over each other. (3) Only kinetic friction creates heat, as when you rub your hands together. If
you move your hands up and down together without sliding them across each other, no heat is
produced by the static friction.

Page 163, self-check C:

By the POFOSTITO mnemonic, we know that each of the bird’s forces on the trunk will be of
the same type as the corresponding force of the tree on the bird, but in the opposite direction.
The bird’s feet make a normal force on the tree that is to the right and a static frictional force
that is downward.

Page 164, self-check D:

Frictionless ice can certainly make a normal force, since otherwise a hockey puck would sink
into the ice. Friction is not possible without a normal force, however: we can see this from the
equation, or from common sense, e.g., while sliding down a rope you do not get any friction
unless you grip the rope.

Page 165, self-check E:

(1) Normal forces are always perpendicular to the surface of contact, which means right or left
in this figure. Normal forces are repulsive, so the cliff’s force on the feet is to the right, i.e., away
from the cliff. (2) Frictional forces are always parallel to the surface of contact, which means
right or left in this figure. Static frictional forces are in the direction that would tend to keep
the surfaces from slipping over each other. If the wheel was going to slip, its surface would be
moving to the left, so the static frictional force on the wheel must be in the direction that would
prevent this, i.e., to the right. This makes sense, because it is the static frictional force that
accelerates the dragster. (3) Normal forces are always perpendicular to the surface of contact.
In this diagram, that means either up and to the left or down and to the right. Normal forces
are repulsive, so the ball is pushing the bat away from itself. Therefore the ball’s force is down
and to the right on this diagram.

Answers to self-checks for chapter 6
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Page 193, self-check A:

The wind increases the ball’s overall speed. If you think about it in terms of overall speed,
it’s not so obvious that the increased speed is exactly sufficient to compensate for the greater
distance. However, it becomes much simpler if you think about the forward motion and the
sideways motion as two separate things. Suppose the ball is initially moving at one meter per
second. Even if it picks up some sideways motion from the wind, it’s still getting closer to the
wall by one meter every second.

Answers to self-checks for chapter 7
Page 205, self-check A:
v =Ar/At

Page 206, self-check B:

Q\‘X}‘\

Page 211, self-check C:
A — B is equivalent to A + (—B), which can be calculated graphically by reversing B to form
—B, and then adding it to A.

Answers to self-checks for chapter 8

Page 221, self-check A:

(1) It is speeding up, because the final velocity vector has the greater magnitude. (2) The result
would be zero, which would make sense. (3) Speeding up produced a Av vector in the same
direction as the motion. Slowing down would have given a Av that pointed backward.

Page 222, self-check B:
As we have already seen, the projectile has a, = 0 and a, = —g, so the acceleration vector is
pointing straight down.

Answers to self-checks for chapter 9

Page 245, self-check A:

(1) Uniform. They have the same motion as the drum itself, which is rotating as one solid piece.
No part of the drum can be rotating at a different speed from any other part. (2) Nonuniform.
Gravity speeds it up on the way down and slows it down on the way up.

Answers to self-checks for chapter 10

Page 264, self-check A:

It would just stay where it was. Plugging v = 0 into eq. [1] would give F' = 0, so it would not
accelerate from rest, and would never fall into the sun. No astronomer had ever observed an
object that did that!

Page 265, self-check B:

F ocmr/T? oc mr [ (13/%)2 oc mr /13 = m /72

Page 268, self-check C:
The equal-area law makes equally good sense in the case of a hyperbolic orbit (and observations
verify it). The elliptical orbit law had to be generalized by Newton to include hyperbolas. The



law of periods doesn’t make sense in the case of a hyperbolic orbit, because a hyperbola never
closes back on itself, so the motion never repeats.

Page 273, self-check D:

Above you there is a small part of the shell, comprising only a tiny fraction of the earth’s mass.
This part pulls you up, while the whole remainder of the shell pulls you down. However, the
part above you is extremely close, so it makes sense that its force on you would be far out of
proportion to its small mass.

Answers to self-checks for chapter 11

Page 302, self-check A:

(1) A spring-loaded toy gun can cause a bullet to move, so the spring is capable of storing energy
and then converting it into kinetic energy. (2) The amount of energy stored in the spring relates
to the amount of compression, which can be measured with a ruler.

Answers to self-checks for chapter 12

Page 322, self-check A:

Both balls start from the same height and end at the same height, so they have the same Ay.
This implies that their losses in potential energy are the same, so they must both have gained
the same amount of kinetic energy.

Answers to self-checks for chapter 13
Page 332, self-check A:
Work is defined as the transfer of energy, so like energy it is a scalar with units of joules.

Page 336, self-check B:

Whenever energy is transferred out of the spring, the same amount has to be transferred into
the ball, and vice versa. As the spring compresses, the ball is doing positive work on the spring
(giving up its KE and transferring energy into the spring as PE), and as it decompresses the
ball is doing negative work (extracting energy).

Page 339, self-check C:

(a) No. The pack is moving at constant velocity, so its kinetic energy is staying the same. It
is only moving horizontally, so its gravitational potential energy is also staying the same. No
energy transfer is occurring. (b) No. The horse’s upward force on the pack forms a 90-degree
angle with the direction of motion, so cosf = 0, and no work is done.

Page 341, self-check D:
Only in (a) can we use F'd to calculate work. In (b) and (c), the force is changing as the distance
changes.

Answers to self-checks for chapter 15

Page 409, self-check A:

1, 2, and 4 all have the same sign, because they are trying to twist the wrench clockwise. The
sign of torque 3 is opposite to the signs of the others. The magnitude of torque 3 is the greatest,
since it has a large r, and the force is nearly all perpendicular to the wrench. Torques 1 and 2
are the same because they have the same values of r and F'|. Torque 4 is the smallest, due to
its small 7.

Answers to self-checks for chapter 16
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Page 435, self-check A:
Solids can exert shear forces. A solid could be in an equilibrium in which the shear forces were
canceling the forces due to unequal pressures on the sides of the cube.

Answers to self-checks for chapter 18

Page 474, self-check A:

The horizontal axis is a time axis, and the period of the vibrations is independent of amplitude.
Shrinking the amplitude does not make the cycles any faster.

Page 475, self-check B:
Energy is proportional to the square of the amplitude, so its energy is four times smaller after
every cycle. It loses three quarters of its energy with each cycle.

Page 481, self-check C:

She should tap the wine glasses she finds in the store and look for one with a high @, i.e., one
whose vibrations die out very slowly. The one with the highest () will have the highest-amplitude
response to her driving force, making it more likely to break.

Answers to self-checks for chapter 19

Page 497, self-check A:

The leading edge is moving up, the trailing edge is moving down, and the top of the hump is
motionless for one instant.

Page 504, self-check B:

(a) It doesn’t have w or h in it. (b) Inertia is measured by pu, tightness by 7T'. (c) Inertia would
be measured by the density of the metal, tightness by its resistance to compression. Lead is
more dense than aluminum, and this would tend to make the speed of the waves lower in lead.
Lead is also softer, so it probably has less resistance to compression, and we would expect this
to provide an additional effect in the same direction. Compressional waves will definitely be
slower in lead than in aluminum.

Answers to self-checks for chapter 20

Page 523, self-check A:

The energy of a wave is usually proportional to the square of its amplitude. Squaring a negative
number gives a positive result, so the energy is the same.

Page 523, self-check B:
A substance is invisible to sonar if the speed of sound waves in it is the same as in water.
Reflections only occur at boundaries between media in which the wave speed is different.

Page 525, self-check C:

No. A material object that loses kinetic energy slows down, but a wave is not a material object.
The velocity of a wave ordinarily only depends on the medium, not the amplitude. The speed
of a soft sound, for example, is the same as the speed of a loud sound.

Page 533, self-check D:

1. No. To get the best possible interference, the thickness of the coating must be such that the
second reflected wave train lags behind the first by an integer number of wavelengths. Optimal
performance can therefore only be produced for one specific color of light. The typical greenish
color of the coatings shows that they do the worst job for green light.

2. Light can be reflected either from the outer surface of the film or from the inner surface, and



there can be either constructive or destructive interference between the two reflections. We see
a pattern that varies across the surface because its thickness isn’t constant. We see rainbow
colors because the condition for destructive or constructive interference depends on wavelength.
White light is a mixture of all the colors of the rainbow, and at a particular place on the soap
bubble, part of that mixture, say red, may be reflected strongly, while another part, blue for
example, is almost entirely transmitted.

Page 534, self-check E:
The period is the time required to travel a distance 2L at speed v, T = 2L/v. The frequency is
f=1/T =v/2L.

Page 539, self-check F:

The wave pattern will look like this: @< Three quarters of a wavelength fit in the tube, so the
wavelength is three times shorter than that of the lowest-frequency mode, in which one quarter
of a wave fits. Since the wavelength is smaller by a factor of three, the frequency is three times
higher. Instead of f,,2f,,3f0,4fs,- .., the pattern of wave frequencies of this air column goes

fos3f0sDfo0s Tfoy -

Answers for volume 1

Answers for chapter 1

Page 61, problem 23:

Check: The actual number of species of lupine occurring in the San Gabriels is 22. You should
find that your answer comes out in the same ballpark as this figure, but not exactly the same,
of course, because the scaling rule is only a generalization.

Answers for chapter 16

Page 452, problem 10:

(a) ~2—10% (b) 5% (c) The high end for the body’s actual efficiency is higher than the limit
imposed by the laws of thermodynamics. However, the high end of the 1-5 watt range quoted in
the problem probably includes large people who aren’t just lying around. Still, it’s impressive
that the human body comes so close to the thermodynamic limit.

Answers for chapter 20
Page 543, problem 3:
Check: The actual length of a flute is about 66 cm.

569



570

Photo Credits for Volume 1

Except as specifically noted below or in a parenthetical credit in the caption of a figure, all the illustrations in
this book are under my own copyright, and are copyleft licensed under the same license as the rest of the book.

In some cases it’s clear from the date that the figure is public domain, but I don’t know the name of the artist
or photographer; I would be grateful to anyone who could help me to give proper credit. I have assumed that
images that come from U.S. government web pages are copyright-free, since products of federal agencies fall into
the public domain. I've included some public-domain paintings; photographic reproductions of them are not
copyrightable in the U.S. (Bridgeman Art Library, Ltd. v. Corel Corp., 36 F. Supp. 2d 191, S.D.N.Y. 1999).

When “PSSC Physics” is given as a credit, it indicates that the figure is from the first edition of the textbook
entitled Physics, by the Physical Science Study Committee. The early editions of these books never had their
copyrights renewed, and are now therefore in the public domain. There is also a blanket permission given in
the later PSSC College Physics edition, which states on the copyright page that “The materials taken from the
original and second editions and the Advanced Topics of PSSC PHYSICS included in this text will be available
to all publishers for use in English after December 31, 1970, and in translations after December 31, 1975.”

Credits to Millikan and Gale refer to the textbooks Practical Physics (1920) and Elements of Physics (1927).
Both are public domain. (The 1927 version did not have its copyright renewed.) Since it is possible that some of
the illustrations in the 1927 version had their copyrights renewed and are still under copyright, I have only used
them when it was clear that they were originally taken from public domain sources.

In a few cases, I have made use of images under the fair use doctrine. However, I am not a lawyer, and the laws
on fair use are vague, so you should not assume that it’s legal for you to use these images. In particular, fair use
law may give you less leeway than it gives me, because I’'m using the images for educational purposes, and giving
the book away for free. Likewise, if the photo credit says “courtesy of ...,” that means the copyright owner gave
me permission to use it, but that doesn’t mean you have permission to use it.

Cover Spider: Wikimedia Commons user Opoterser, CC-BY-SA.
Contents See photo credits below, referring to the places where the images appear in the main text.

15 Mars Climate Orbiter: NASA/JPL/CIT. 25 Standard kilogram: Bo Bengtsen, GFDL licensed. Further
retouching by Wikipedia user Greg L and by B. Crowell. 41 Bee: Wikipedia user Fir0002, CC-BY-SA licensed.
56 Jar of jellybeans: Flickr user cbgrfx123, CC-BY-SA licensed. 57 Amphicoelias: Wikimedia commons users
Dinoguy?2, Niczar, ArthurWeasley, Steveoc 86, Dropzink, and Piotr Jaworski, CC-BY-SA licensed. 61 E. Coli
bacteria: Eric Erbe, digital colorization by Christopher Pooley, both of USDA, ARS, EMU. A public-domain
product of the Agricultural Research Service.. 62 Stacked oranges: Wikimedia Commons user J.J. Harrison,
CC-BY-SA license. 62 Galazy: ESO, CC-BY license. 68 Trapeze: Calvert Litho. Co., Detroit, ca. 1890.
71 Gymnastics wheel: Copyright Hans Genten, Aachen, Germany. “The copyright holder of this file allows anyone
to use it for any purpose, provided that this remark is referenced or copied.”. 71 High jumper: Dunia Young.
79 Aristotle: Francesco Hayez, 1811. 79 Shanghai: Agnieszka Bojczuk, CC-BY-SA. 79 Angel Stadium: U.S.
Marine Corps, Staff Sgt. Chad McMeen, public domain work of the U.S. Government. 79 Jets over New York:
U.S. Air Force, Tech. Sgt. Sean Mateo White, public domain work of the U.S. Government. = 80 Rocket sled:
U.S. Air Force, public domain work of the U.S. Government. 91 Tuna’s migration: Modified from a figure in
Block et al. 92 Runners: Line art by the author, based on a photo by Pierre-Yves Beaudouin, CC-BY-SA.
95 Galileo’s trial: Cristiano Banti (1857). 101 Gravity map: US Navy, European Space Agency, D. Sandwell,
and W. Smith. 122 Flea jumping: Burrows and Sutton, “Biomechanics of jumping in the flea,” J. Exp.
Biology 214 (2011) 836. Used under the U.S. fair use exception to copyright. 122 Astronaut jumping: NASA.
123 Dinosaur: Redrawn from art by Wikimedia Commons user Dinoguy2, CC-BY-SA license. 123 Sprinter:
Drawn from a photo provided by the German Federal Archives under a CC-BY-SA license. 127 Newton:
Godfrey Kneller, 1702. 136 space launch: NASA, public domain. 149 Langley catapult launch: Public
domain (1903). 150 Climber being lowered: Art by the author, based on photos by Wikimedia Commons
users Alexander Stohr and Absinthologue, CC-BY-SA. 154 Space shuttle launch: NASA. 155 Swimmer:
Karen Blaha, CC-BY-SA licensed. 163 Partridge: Redrawn from K.P. Dial, “Wing-Assisted Incline Running
and the Evolution of Flight,” Science 299 (2003) 402. 165 Locomotive: Locomotive Cyclopedia of American
Practice, 1922, public domain. 166 Wind tunnel: Jeff Caplan/NASA Langley, public domain. 166 Crop
duster: NASA Langley Research Center, public domain. 166 Series of vortices: Wikimedia Commons user
Onera, CC-BY license. 166 Turbulence: C. Fukushima and J. Westerweel, Technical University of Delft, The
Netherlands, CC-BY license. 167 Golf ball: Wikimedia Commons user Paolo Neo, CC-BY-SA license. 167



Shark: Wikimedia Commons user Pterantula, CC-BY-SA license. 167 Hummer: Wikimedia commons user
Bull-Doser, public domain. 167 Prius: Wikimedia commons user IFCAR, public domain. 168 Dog: From a
photo by Wikimedia Commons user Ron Armstrong, CC-BY licensed. 173 Golden Gate Bridge: Wikipedia user
Dschwen, CC-BY-SA licensed. 180 Farmer and cow: Michael Han, CC-BY-SA license. 180 Football player
and old lady: Hazel Abaya. 181 Biplane: Open Clip Art Library, public domain. 185 Man pushing car:
Line art by the author, based on a photo by Wikimedia Commons user Auregann, CC-BY-SA. 185 Caryatid:
Art by the author, based on a photo by Wikimedia Commons user Thermos, CC-BY-SA. 186 Rappelling:
Redrawn from a photo by Jarek Tuszymski, CC-BY-SA. 191 Ring toss: Clarence White, 1899. 201 Diver:
Redrawn from a photo provided by the Deutsches Bundesarchiv cooperation project, CC-BY-SA. 203 Aerial
photo of Mondavi vineyards: NASA. 206 playing card: German wiktionary.org user Ranostaj, CC-BY-SA
license. 219 Galloping horse: Eadweard Muybridge, 1878. 220 Greyhound: Line art by the author, based
on a photo by Alex Lapuerta, CC-BY licensed. 224 Sled: Modified from Millikan and Gale, 1920. 226 Man
pushing broom: Line art by the author, based on a public-domain photo by a U.S. National Park Service employee,
CC-BY licensed. 226 Rock climber: Line art by B. Crowell, CC-BY-SA licensed. Based on a photo by Richard
Peter/Deutsche Fotothek, CC-BY-SA licensed.. 235 Hanging boy: Millikan and Gale, 1927. 236 Hurricane
track: Public domain, NASA and Wikipedia user Nilfanion. 237 Skee ball: Photo by Wikipedia user Joyous!,
CC-BY-SA. 244 Crane fly: Wikipedia user Pinzo, public domain. 245 Grinding wheel: Wikimedia commons
user Bukk, public domain. 247 Motorcyclist: Wikipedia user Fir0002, CC-BY-SA licensed. 253 Space colony:
NASA. 258 Runner: Line art by B. Crowell, CC-BY-SA licensed. Based on a photo by Wikimedia Commons
user Fengalon, public domain. 259 Gemini capsule: NASA, public domain. 259 Heart: Based on line art by
Wikimedia Commons user Wapcaplet, CC-BY-SA. 261 Saturn: Voyager 2 team, NASA. 262 Tycho Brahe:
public domain. 267 Pluto and Charon: Hubble Space Telescope, STSCi. 272 Toutatis: Chang’e-2. 272
Galazy and star: Hubble Space Telescope. Hubble material is copyright-free and may be freely used as in the
public domain without fee, on the condition that NASA and ESA is credited as the source of the material. The
material was created for NASA by STScl under Contract NAS5-26555 and for ESA by the Hubble European
Space Agency Information Centre. 272 Saturn: Public domain, NASA. 272 Human figures: Line art by
B. Crowell, CC-BY-SA licensed. Based on a photo by Richard Peter/Deutsche Fotothek, CC-BY-SA licensed..
274 Simplified Cavendish experiment: Wikimedia commons user Chris Burks, public domain.. 276 WMAP:
NASA. 285 Uranus: Voyager 2 team, NASA. 285 FEarth: Apollo 11, NASA. 286 New Horizons spacecraft
1mage: Wikipedia user NFRANGA, CC-BY-SA. 286 New Horizons trajectory: Wikimedia commons user
Martinw89, CC-BY-SA. 288 ISS: NASA/Crew of STS-132, public domain. 293 Jupiter: Images from the
Hubble Space Telescope, NASA, not copyrighted. 298 Hoover Dam: U.S. Department of the Interior, Bureau
of Reclamation, Lower Colorado Region, not copyrighted. 313 Hydraulic ram: Millikan and Gale, 1920. 315
Bonfire, grapes: CC-BY-SA licensed, by Wikipedia user Fir0002. 318 Skater in pool: Courtesy of J.D. Rogge.
323 Plutonium pellet: U.S. Department of Energy, public domain.. 324 Infrared photographs: Courtesy of
M. Vollmer and K.P. M”ollmann, Univ. Appl. Sciences, Brandenburg, Germany. 325 Global warming graph:
Robert A. Rohde, GFDL licensed. 328 Skateboarder on top of pipe: Oula Lehtinen, Wikimedia Commons, CC-
BY-SA. 330 Rock climber: Redrawn from a photo by Joseff Thomas, CC-BY. 333 Baseball pitch: Wikipedia
user Rick Dikeman, CC-BY-SA. 334 Rock climber: Line art by B. Crowell, CC-BY-SA licensed. Based on
a photo by Jason McConnell-Leech, CC-BY-SA licensed.. 337 Male gymnast: Wikipedia user Gonzo-wiki,
public domain. 337 Woman doing pull-ups: Sergio Savarese, CC-BY. 3839 Breaking Trail: Art by Walter E.
Bohl. Image courtesy of the University of Michigan Museum of Art/School of Information and Library Studies.
354 Bull: Photo by Wikimedia Commons user Bart Hiddink, CC-BY. 365 Deep Space 1 engine: NASA.
366 Nucleus of Halley’s comet: NASA, not copyrighted. 367 top: Randen Pederson, CC-BY. 367 tuning
fork: Wikimedia Commons, CC-BY-SA, user Wollschaf. 372 Chadwick’s apparatus: Redrawn from the public-
domain figure in Chadwick’s original paper. 373 Wrench: PSSC Physics. 375 Jupiter: Uncopyrighted image
from the Voyager probe. Line art by the author. 877 Air bag: DaimlerChrysler AG, CC-BY-SA licensed..
393 Tornado: NOAA Photo Library, NOAA Central Library; OAR/ERL/National Severe Storms Laboratory
(NSSL); public-domain product of the U.S. government. 394 Longjump: Thomas Eakins, public domain.
399 Cyclist: Unknown artist, 1868. 400 Wooden board: Achim Raschka, CC-BY-SA. 400 Can: Wikimedia
Commons user Sun Ladder, CC-BY-SA. 402 Pendulum: PSSC Physics. 403 Diver: PSSC Physics. 408
Tetherball: Line art by the author, based on a photo by The Chewonki Foundation (Flickr), CC-BY-SA 2.0
licensed. 411 Cow: Drawn by the author, from a CC-BY-SA-licensed photo on commons.wikimedia.org by
user B.navez.. 414 Old-fashioned windmill: Photo by the author. 414 Modern windmill farm, Tehachaps,
CA: U.S. Department of Energy, not copyrighted. 417 Ballerina: Alexander Kenney, CC-BY license. 425
White dwarf: Image of NGC 2440 from the Hubble Space Telescope, H. Bond and R. Ciardullo. 437 Otters:
Dmitry Azovtsev, Creative Commons Attribution License, wikipedia.org. 437 Hot air balloon: Randy Oostdyk,
CC-BY-SA licensed. 442 Space suit: Jawed Karim, CC-BY-SA license. 452 Magdeburg spheres: Millikan
and Gale, Elements of Physics, 1927, reproduced from the cover of Magdeburg’s book. 457 FElectric bass:

Problems

571



572

Brynjar Vik, CC-BY license. 464 Jupiter: Uncopyrighted image from the Voyager probe. Line art by the
author. 471 Tacoma Narrows Bridge: Public domain, from Stillman Fires Collection: Tacoma Fire Dept,
www.archive.org. 479 Nimitz Freeway: Unknown photographer, courtesy of the UC Berkeley Earth Sciences
and Map Library. 483 Two-dimensional MRI: Image of the author’s wife. 483 Three-dimensional brain:
R. Malladi, LBNL. 491 Spider oscillations: Emile, Le Floch, and Vollrath, Nature 440 (2006) 621. 493
Painting of waves: Katsushika Hokusai (1760-1849), public domain. 496 Superposition of pulses: Photo from
PSSC Physics. 497 Marker on spring as pulse passes by: PSSC Physics. 498 Surfing (hand drag): Stan
Shebs, CC-BY-SA licensed (Wikimedia Commons). 498 Breaking wave: Ole Kils, olekils at web.de, CC-BY-SA
licensed (Wikipedia). 508 Wavelengths of circular and linear waves: PSSC Physics. 509 Fetus: Image of
the author’s daughter. 509 Changing wavelength: PSSC Physics. 511 Doppler effect for water waves: PSSC
Physics. 512 Doppler radar: Public domain image by NOAA, an agency of the U.S. federal government. 513
M51 galazy: public domain Hubble Space Telescope image, courtesy of NASA, ESA, S. Beckwith (STScl), and
The Hubble Heritage Team (STScI/AURA). 514 Mount Wilson: Andrew Dunn, cc-by-sa licensed. 516 X15:
NASA, public domain. 516 Jet breaking the sound barrier: Public domain product of the U.S. government, U.S.
Navy photo by Ensign John Gay. 521 Human cross-section: Courtesy of the Visible Human Project, National
Library of Medicine, US NIH. 522 Reflection of fish: Jan Derk, Wikipedia user janderk, public domain. 523
Reflection of circular waves: PSSC Physics. 523 Reflection of pulses: PSSC Physics. 524 Reflection of
pulses: Photo from PSSC Physics. 527 Tympanometry: Perception The Final Frontier, A PLoS Biology Vol.
3, No. 4, el37; modified by Wikipedia user Inductiveload and by B. Crowell; CC-BY license. 534 Photo
of guitar: Wikimedia Commons, dedicated to the public domain by user Tsca. 537 Standing waves: PSSC
Physics. 539 Pan pipes: Wikipedia user Andrew Dunn, CC-BY-SA licensed. 539 Flute: Wikipedia user
Grendelkhan, CC-BY-SA licensed. 540 Traffic: Wikipedia user Diliff, CC-BY licensed.



Relativity and
Electromagnetism

573






Chapter 21
Electricity and Circuits

Where the telescope ends, the microscope begins. Which of the two
has the grander view? Victor Hugo

His father died during his mother’s pregnancy. Rejected by her as
a boy, he was packed off to boarding school when she remarried.
He himself never married, but in middle age he formed an intense
relationship with a much younger man, a relationship that he ter-
minated when he underwent a psychotic break. Following his early
scientific successes, he spent the rest of his professional life mostly
in frustration over his inability to unlock the secrets of alchemy.

The man being described is Isaac Newton, but not the triumphant
Newton of the standard textbook hagiography. Why dwell on the
sad side of his life? To the modern science educator, Newton’s life-
long obsession with alchemy may seem an embarrassment, a distrac-
tion from his main achievement, the creation of the modern science
of mechanics. To Newton, however, his alchemical researches were
naturally related to his investigations of force and motion. What
was radical about Newton’s analysis of motion was its universal-
ity: it succeeded in describing both the heavens and the earth with
the same equations, whereas previously it had been assumed that
the sun, moon, stars, and planets were fundamentally different from
earthly objects. But Newton realized that if science was to describe
all of nature in a unified way, it was not enough to unite the human
scale with the scale of the universe: he would not be satisfied until
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he fit the microscopic universe into the picture as well.

It should not surprise us that Newton failed. Although he was a firm
believer in the existence of atoms, there was no more experimental
evidence for their existence than there had been when the ancient
Greeks first posited them on purely philosophical grounds. Alchemy
labored under a tradition of secrecy and mysticism. Newton had
already almost single-handedly transformed the fuzzyheaded field
of “natural philosophy” into something we would recognize as the
modern science of physics, and it would be unjust to criticize him
for failing to change alchemy into modern chemistry as well. The
time was not ripe. The microscope was a new invention, and it was
cutting-edge science when Newton’s contemporary Hooke discovered
that living things were made out of cells.

21.1 The quest for the atomic force

Newton was not the first of the age of reason. He was the last of
the magicians. John Maynard Keynes

Nevertheless it will be instructive to pick up Newton’s train of
thought and see where it leads us with the benefit of modern hind-
sight. In uniting the human and cosmic scales of existence, he had
reimagined both as stages on which the actors were objects (trees
and houses, planets and stars) that interacted through attractions
and repulsions. He was already convinced that the objects inhab-
iting the microworld were atoms, so it remained only to determine
what kinds of forces they exerted on each other.

His next insight was no less brilliant for his inability to bring it to
fruition. He realized that the many human-scale forces — friction,
sticky forces, the normal forces that keep objects from occupying
the same space, and so on — must all simply be expressions of a
more fundamental force acting between atoms. Tape sticks to paper
because the atoms in the tape attract the atoms in the paper. My
house doesn’t fall to the center of the earth because its atoms repel
the atoms of the dirt under it.

Here he got stuck. It was tempting to think that the atomic force
was a form of gravity, which he knew to be universal, fundamental,
and mathematically simple. Gravity, however, is always attractive,
so how could he use it to explain the existence of both attractive
and repulsive atomic forces? The gravitational force between ob-
jects of ordinary size is also extremely small, which is why we never
notice cars and houses attracting us gravitationally. It would be
hard to understand how gravity could be responsible for anything
as vigorous as the beating of a heart or the explosion of gunpowder.
Newton went on to write a million words of alchemical notes filled
with speculation about some other force, perhaps a “divine force” or
“vegetative force” that would for example be carried by the sperm
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to the egg.

Luckily, we now know enough to investigate a different suspect as a
candidate for the atomic force: electricity. Electric forces are often
observed between objects that have been prepared by rubbing (or
other surface interactions), for instance when clothes rub against
each other in the dryer. A useful example is shown in figure a/1:
stick two pieces of tape on a tabletop, and then put two more pieces
on top of them. Lift each pair from the table, and then separate
them. The two top pieces will then repel each other, a/2, as will
the two bottom pieces. A bottom piece will attract a top piece,
however, a/3. Electrical forces like these are similar in certain ways
to gravity, the other force that we already know to be fundamental:

e Electrical forces are universal. Although some substances,
such as fur, rubber, and plastic, respond more strongly to
electrical preparation than others, all matter participates in
electrical forces to some degree. There is no such thing as a
“nonelectric” substance. Matter is both inherently gravita-
tional and inherently electrical.

e Experiments show that the electrical force, like the gravita-
tional force, is an inverse square force. That is, the electrical
force between two spheres is proportional to 1/r2, where r is
the center-to-center distance between them.

Furthermore, electrical forces make more sense than gravity as can-
didates for the fundamental force between atoms, because we have
observed that they can be either attractive or repulsive.

21.2 Electrical forces
Charge

“Charge” is the technical term used to indicate that an object has
been prepared so as to participate in electrical forces. This is to
be distinguished from the common usage, in which the term is used
indiscriminately for anything electrical. For example, although we
speak colloquially of “charging” a battery, you may easily verify
that a battery has no charge in the technical sense, e.g., it does not
exert any electrical force on a piece of tape that has been prepared
as described in the previous section.

Two types of charge

We can easily collect reams of data on electrical forces between
different substances that have been charged in different ways. We
find for example that cat fur prepared by rubbing against rabbit
fur will attract glass that has been rubbed on silk. How can we
make any sense of all this information? A vast simplification is

a/Four pieces of tape are
prepared, 1, as described in the
text. Depending on which com-
bination is tested, the interaction
can be either repulsive, 2, or
attractive, 3.
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achieved by noting that there are really only two types of charge.
Suppose we pick cat fur rubbed on rabbit fur as a representative of
type A, and glass rubbed on silk for type B. We will now find that
there is no “type C.” Any object electrified by any method is either
A-like, attracting things A attracts and repelling those it repels, or
B-like, displaying the same attractions and repulsions as B. The two
types, A and B, always display opposite interactions. If A displays
an attraction with some charged object, then B is guaranteed to
undergo repulsion with it, and vice-versa.

The coulomb

Although there are only two types of charge, each type can come in
different amounts. The metric unit of charge is the coulomb (rhymes
with “drool on”), defined as follows:

One Coulomb (C) is the amount of charge such that a force of
9.0 x 10° N occurs between two pointlike objects with charges
of 1 C separated by a distance of 1 m.

The notation for an amount of charge is q. The numerical factor
in the definition is historical in origin, and is not worth memoriz-
ing. The definition is stated for pointlike, i.e., very small, objects,
because otherwise different parts of them would be at different dis-
tances from each other.

A model of two types of charged particles

Experiments show that all the methods of rubbing or otherwise
charging objects involve two objects, and both of them end up get-
ting charged. If one object acquires a certain amount of one type of
charge, then the other ends up with an equal amount of the other
type. Various interpretations of this are possible, but the simplest
is that the basic building blocks of matter come in two flavors, one
with each type of charge. Rubbing objects together results in the
transfer of some of these particles from one object to the other. In
this model, an object that has not been electrically prepared may ac-
tually possesses a great deal of both types of charge, but the amounts
are equal and they are distributed in the same way throughout it.
Since type A repels anything that type B attracts, and vice versa,
the object will make a total force of zero on any other object. The
rest of this chapter fleshes out this model and discusses how these
mysterious particles can be understood as being internal parts of
atoms.

Use of positive and negative signs for charge

Because the two types of charge tend to cancel out each other’s
forces, it makes sense to label them using positive and negative signs,
and to discuss the total charge of an object. It is entirely arbitrary
which type of charge to call negative and which to call positive.
Benjamin Franklin decided to describe the one we’ve been calling
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“A” as negative, but it really doesn’t matter as long as everyone is
consistent with everyone else. An object with a total charge of zero
(equal amounts of both types) is referred to as electrically neutral.

self-check A

Criticize the following statement: “There are two types of charge, attrac-
tive and repulsive.” > Answer, p.
1043

Coulomb’s law

A large body of experimental observations can be summarized as
follows:

Coulomb’s law: The magnitude of the force acting between point-
like charged objects at a center-to-center distance r is given by the
equation

|q1]lg2

r2

where the constant k equals 9.0 x 10° N-m?/C2. The force is attrac-
tive if the charges are of different signs, and repulsive if they have
the same sign.

IF| =&

)

Clever modern techniques have allowed the 1/r? form of Coulomb’s
law to be tested to incredible accuracy, showing that the exponent
is in the range from 1.9999999999999998 to 2.0000000000000002.

Note that Coulomb’s law is closely analogous to Newton’s law of
gravity, where the magnitude of the force is Gmims/r?, except that
there is only one type of mass, not two, and gravitational forces
are never repulsive. Because of this close analogy between the two
types of forces, we can recycle a great deal of our knowledge of
gravitational forces. For instance, there is an electrical equivalent
of the shell theorem: the electrical forces exerted externally by a
uniformly charged spherical shell are the same as if all the charge
was concentrated at its center, and the forces exerted internally are
ZEro.

Conservation of charge

An even more fundamental reason for using positive and negative
signs for electrical charge is that experiments show that charge is
conserved according to this definition: in any closed system, the
total amount of charge is a constant. This is why we observe that
rubbing initially uncharged substances together always has the re-
sult that one gains a certain amount of one type of charge, while
the other acquires an equal amount of the other type. Conservation
of charge seems natural in our model in which matter is made of
positive and negative particles. If the charge on each particle is a
fixed property of that type of particle, and if the particles themselves

Section 21.2  Electrical forces
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b/A charged piece of tape
attracts uncharged pieces of
paper from a distance, and they
leap up to it.

c/The paper has zero total
charge, but it does have charged
particles in it that can move.
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can be neither created nor destroyed, then conservation of charge is
inevitable.

Electrical forces involving neutral objects

As shown in figure b, an electrically charged object can attract ob-
jects that are uncharged. How is this possible? The key is that
even though each piece of paper has a total charge of zero, it has at
least some charged particles in it that have some freedom to move.
Suppose that the tape is positively charged, c. Mobile particles in
the paper will respond to the tape’s forces, causing one end of the
paper to become negatively charged and the other to become posi-
tive. The attraction between the paper and the tape is now stronger
than the repulsion, because the negatively charged end is closer to
the tape.

self-check B
What would have happened if the tape was negatively charged? >
Answer, p. 1043

Discussion questions

A If the electrical attraction between two pointlike objects at a distance
of 1 mis 9x 10° N, why can’t we infer that their charges are +1 and —1 C?
What further observations would we need to do in order to prove this?

B  An electrically charged piece of tape will be attracted to your hand.
Does that allow us to tell whether the mobile charged particles in your
hand are positive or negative, or both?

21.3 Current
Unity of all types of electricity

We are surrounded by things we have been told are “electrical,”
but it’s far from obvious what they have in common to justify being
grouped together. What relationship is there between the way socks
cling together and the way a battery lights a lightbulb? We have
been told that both an electric eel and our own brains are somehow
electrical in nature, but what do they have in common?

British physicist Michael Faraday (1791-1867) set out to address
this problem. He investigated electricity from a variety of sources
— including electric eels! — to see whether they could all produce
the same effects, such as shocks and sparks, attraction and repul-
sion. “Heating” refers, for example, to the way a lightbulb filament
gets hot enough to glow and emit light. Magnetic induction is an
effect discovered by Faraday himself that connects electricity and
magnetism. We will not study this effect, which is the basis for the
electric generator, in detail until later in the book.

Electricity and Circuits



source effect
attraction and
shocks  sparks  repulsion heating

rubbing vV Vv Vv Vv
battery Vv Vv Vv v
animal V() v
magnetically / Vv Vv V

induced

The table shows a summary of some of Faraday’s results. Check
marks indicate that Faraday or his close contemporaries were able to
verify that a particular source of electricity was capable of producing
a certain effect. (They evidently failed to demonstrate attraction
and repulsion between objects charged by electric eels, although
modern workers have studied these species in detail and been able
to understand all their electrical characteristics on the same footing
as other forms of electricity.)

Faraday’s results indicate that there is nothing fundamentally dif-
ferent about the types of electricity supplied by the various sources.
They are all able to produce a wide variety of identical effects. Wrote
Faraday, “The general conclusion which must be drawn from this
collection of facts is that electricity, whatever may be its source, is
identical in its nature.”

If the types of electricity are the same thing, what thing is that?
The answer is provided by the fact that all the sources of electricity
can cause objects to repel or attract each other. We use the word
“charge” to describe the property of an object that allows it to
participate in such electrical forces, and we have learned that charge
is present in matter in the form of nuclei and electrons. Evidently
all these electrical phenomena boil down to the motion of charged
particles in matter.

Electric current

If the fundamental phenomenon is the motion of charged particles,
then how can we define a useful numerical measurement of it? We
might describe the flow of a river simply by the velocity of the
water, but velocity will not be appropriate for electrical purposes
because we need to take into account how much charge the moving
particles have, and in any case there are no practical devices sold
at Radio Shack that can tell us the velocity of charged particles.
Experiments show that the intensity of various electrical effects is
related to a different quantity: the number of coulombs of charge
that pass by a certain point per second. By analogy with the flow
of water, this quantity is called the electric current, I. Its units

d/Michael Faraday (1791-
1867) was the son of a poor
blacksmith.

e / Gymnotus carapo, a knifefish,
uses electrical signals to sense
its environment and to commu-
nicate with others of its species.

Section 21.3 Current 581



of coulombs/second are more conveniently abbreviated as amperes,
1 A=1 C/s. (In informal speech, one usually says “amps.”)

The main subtlety involved in this definition is how to account for
the two types of charge. The stream of water coming from a hose
is made of atoms containing charged particles, but it produces none
of the effects we associate with electric currents. For example, you
do not get an electrical shock when you are sprayed by a hose. This
type of experiment shows that the effect created by the motion of
one type of charged particle can be canceled out by the motion of
the opposite type of charge in the same direction. In water, every
oxygen atom with a charge of +8e is surrounded by eight electrons
with charges of —e, and likewise for the hydrogen atoms.

We therefore refine our definition of current as follows:

definition of electric current
When charged particles are exchanged between regions of space

f/André Marie Ampere (1775-
1836). P ( A and B, the electric current flowing from A to B is
Aq
I=—
At’

where Agq is the change in region B’s total charge occurring
over a period of time At.

In the garden hose example, your body picks up equal amounts of
positive and negative charge, resulting in no change in your total
charge, so the electrical current flowing into you is zero.

Interpretation of Aq/At example 1
> How should the expression Aq/At be interpreted when the cur-
rent isn’t constant?

> You've seen lots of equations of this form before: v = Ax/At,
F = Ap/At, etc. These are all descriptions of rates of change,
and they all require that the rate of change be constant. If the
rate of change isn’t constant, you instead have to use the slope
of the tangent line on a graph. The slope of a tangent line is
equivalent to a derivative in calculus; applications of calculus are
discussed in section 21.7.

lons moving across a cell membrane example 2
> Figure g shows ions, labeled with their charges, moving in or
out through the membranes of four cells. If the ions all cross
the membranes during the same interval of time, how would the
currents into the cells compare with each other?

> Cell A has positive current going into it because its charge is
increased, i.e., has a positive value of Aq.

Cell B has the same current as cell A, because by losing one unit
of negative charge it also ends up increasing its own total charge
by one unit.
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Cell C’s total charge is reduced by three units, so it has a large
negative current going into it.

Cell D loses one unit of charge, so it has a small negative current
into it.

Na * 4 cl-
Cl—
Ccat2 a

A B C D
It may seem strange to say that a negatively charged particle going
one way creates a current going the other way, but this is quite
ordinary. As we will see, currents flow through metal wires via the
motion of electrons, which are negatively charged, so the direction
of motion of the electrons in a circuit is always opposite to the
direction of the current. Of course it would have been convenient
of Benjamin Franklin had defined the positive and negative signs of

charge the opposite way, since so many electrical devices are based
on metal wires.

g / Example 2

Number of electrons flowing through a lightbulb example 3
> If a lightbulb has 1.0 A flowing through it, how many electrons
will pass through the filament in 1.0 s?

> We are only calculating the number of electrons that flow, so we
can ignore the positive and negative signs. Solving for Aq = IAt
gives a charge of 1.0 C flowing in this time interval. The number
of electrons is

electrons

coulomb
coulombs

electron

number of electrons = coulombs x

= coulombs/
=1.0C/e
=6.2x 10"

21.4 Circuits

How can we put electric currents to work? The only method of
controlling electric charge we have studied so far is to charge differ-
ent substances, e.g., rubber and fur, by rubbing them against each
other. Figure h/1 shows an attempt to use this technique to light
a lightbulb. This method is unsatisfactory. True, current will flow
through the bulb, since electrons can move through metal wires, and

Section 21.4  Circuits 583



h/1.

ammeter
[© 9

B

Static electricity runs

out quickly. 2. A practical circuit.
3. An open circuit. 4. How an
ammeter works. 5. Measuring
the current with an ammeter.
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the excess electrons on the rubber rod will therefore come through
the wires and bulb due to the attraction of the positively charged
fur and the repulsion of the other electrons. The problem is that
after a zillionth of a second of current, the rod and fur will both have
run out of charge. No more current will flow, and the lightbulb will
go out.

Figure h/2 shows a setup that works. The battery pushes charge
through the circuit, and recycles it over and over again. (We will
have more to say later in this chapter about how batteries work.)
This is called a complete circuit. Today, the electrical use of the
word “circuit” is the only one that springs to mind for most people,
but the original meaning was to travel around and make a round
trip, as when a circuit court judge would ride around the boondocks,
dispensing justice in each town on a certain date.

Note that an example like h/3 does not work. The wire will quickly
begin acquiring a net charge, because it has no way to get rid of the
charge flowing into it. The repulsion of this charge will make it more
and more difficult to send any more charge in, and soon the electrical
forces exerted by the battery will be canceled out completely. The
whole process would be over so quickly that the filament would not
even have enough time to get hot and glow. This is known as an
open circuit. Exactly the same thing would happen if the complete
circuit of figure h/2 was cut somewhere with a pair of scissors, and
in fact that is essentially how an ordinary light switch works: by
opening up a gap in the circuit.

The definition of electric current we have developed has the great
virtue that it is easy to measure. In practical electrical work, one
almost always measures current, not charge. The instrument used to
measure current is called an ammeter. A simplified ammeter, h/4,
simply consists of a coiled-wire magnet whose force twists an iron
needle against the resistance of a spring. The greater the current,
the greater the force. Although the construction of ammeters may
differ, their use is always the same. We break into the path of the
electric current and interpose the meter like a tollbooth on a road,
h/5. There is still a complete circuit, and as far as the battery and
bulb are concerned, the ammeter is just another segment of wire.

Does it matter where in the circuit we place the ammeter? Could
we, for instance, have put it in the left side of the circuit instead
of the right? Conservation of charge tells us that this can make no
difference. Charge is not destroyed or “used up” by the lightbulb,
so we will get the same current reading on either side of it. What is
“used up” is energy stored in the battery, which is being converted
into heat and light energy.

Electricity and Circuits



21.5 Voltage

The volt unit

Electrical circuits can be used for sending signals, storing informa-
tion, or doing calculations, but their most common purpose by far is
to manipulate energy, as in the battery-and-bulb example of the pre-
vious section. We know that lightbulbs are rated in units of watts,
i.e., how many joules per second of energy they can convert into
heat and light, but how would this relate to the flow of charge as
measured in amperes? By way of analogy, suppose your friend, who
didn’t take physics, can’t find any job better than pitching bales of
hay. The number of calories he burns per hour will certainly depend
on how many bales he pitches per minute, but it will also be pro-
portional to how much mechanical work he has to do on each bale.
If his job is to toss them up into a hayloft, he will get tired a lot
more quickly than someone who merely tips bales off a loading dock
into trucks. In metric units,

joules  haybales joules

second  second haybale’

Similarly, the rate of energy transformation by a battery will not
just depend on how many coulombs per second it pushes through a
circuit but also on how much mechanical work it has to do on each
coulomb of charge:

joules  coulombs joules

second second coulomb

or
power = current X work per unit charge.

Units of joules per coulomb are abbreviated as wvolts, 1 V=1 J/C,
named after the Italian physicist Alessandro Volta. Everyone knows
that batteries are rated in units of volts, but the voltage concept is
more general than that; it turns out that voltage is a property of
every point in space. To gain more insight, let’s think more carefully
about what goes on in the battery and bulb circuit.

The concept of voltage (electrical potential) in general

To do work on a charged particle, the battery apparently must be
exerting forces on it. How does it do this? Well, the only thing that
can exert an electrical force on a charged particle is another charged
particle. It’s as though the haybales were pushing and pulling each
other into the hayloft! This is potentially a horribly complicated
situation. Even if we knew how much excess positive or negative
charge there was at every point in the circuit (which realistically we
don’t) we would have to calculate zillions of forces using Coulomb’s
law, perform all the vector additions, and finally calculate how much
work was being done on the charges as they moved along. To make

i / Alessandro Volta (1745-1827).
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things even more scary, there is more than one type of charged
particle that moves: electrons are what move in the wires and the
bulb’s filament, but ions are the moving charge carriers inside the
battery. Luckily, there are two ways in which we can simplify things:

The situation is unchanging. Unlike the imaginary setup
in which we attempted to light a bulb using a rubber rod and a
piece of fur, this circuit maintains itself in a steady state (after
perhaps a microsecond-long period of settling down after the
circuit is first assembled). The current is steady, and as charge
flows out of any area of the circuit it is replaced by the same
amount of charge flowing in. The amount of excess positive
or negative charge in any part of the circuit therefore stays
constant. Similarly, when we watch a river flowing, the water
goes by but the river doesn’t disappear.

Force depends only on position. Since the charge distri-
bution is not changing, the total electrical force on a charged
particle depends only on its own charge and on its location.
If another charged particle of the same type visits the same
location later on, it will feel exactly the same force.

The second observation tells us that there is nothing all that dif-
ferent about the experience of one charged particle as compared to
another’s. If we single out one particle to pay attention to, and fig-
ure out the amount of work done on it by electrical forces as it goes
from point A to point B along a certain path, then this is the same
amount of work that will be done on any other charged particles
of the same type as it follows the same path. For the sake of visu-
alization, let’s think about the path that starts at one terminal of
the battery, goes through the light bulb’s filament, and ends at the
other terminal. When an object experiences a force that depends
only on its position (and when certain other, technical conditions
are satisfied), we can define an electrical energy associated with the
position of that object. The amount of work done on the particle by
electrical forces as it moves from A to B equals the drop in electri-
cal energy between A and B. This electrical energy is what is being
converted into other forms of energy such as heat and light. We
therefore define AV in general as electrical energy per unit charge:

definition of potential difference
The AV between two points in space is defined as

AV = APEelec/Qa

where APFE.. is the change in the electrical energy of a par-
ticle with charge ¢ as it moves from the initial point to the
final point.

In this context, where we think of the voltage as being a scalar
function that is defined everywhere in space, it is more common in
formal writing to refer to it as the electrical potential.
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The amount of power dissipated (i.e., rate at which energy is trans- &j‘“"
formed by the flow of electricity) is then given by the equation ' TBOOmAh

Nickel Meta] g, dride Ross.
P=1AV. Te—

Energy stored in a battery example 4 j/ Example 4.
> The 1.2 V rechargeable battery in figure j is labeled 1800 milliamp-

hours. What is the maximum amount of energy the battery can

store?

> An ampere-hour is a unit of current multiplied by a unit of time.
Current is charge per unit time, so an ampere-hour is in fact a
funny unit of charge:

(1 A)(1 hour) = (1 C/s)(3600 s)
= 3600 C
1800 milliamp-hours is therefore 1800 x 10~2 x 3600 C = 6.5 x
10% C. That's a huge number of charged particles, but the total

loss of electrical energy will just be their total charge multiplied by
the voltage difference across which they move:

APEgjec = qAV
= (6.5 x 10 C)(1.2 V)
=7.8kJ
Units of volt-amps example 5

> Doorbells are often rated in volt-amps. What does this combi-
nation of units mean?

> Current times voltage gives units of power, P = IAV, so volt-
amps are really just a nonstandard way of writing watts. They are
telling you how much power the doorbell requires.

Power dissipated by a battery and bulb example 6
> If a 9.0-volt battery causes 1.0 A to flow through a lightbulb, how
much power is dissipated?

> The voltage rating of a battery tells us what voltage difference
AV it is designed to maintain between its terminals.

P=1AV
=9.0A-V

_90%.Y
S

C
=9.0J/s
=9.0W

The only nontrivial thing in this problem was dealing with the units.
One quickly gets used to translating common combinations like
A - Vinto simpler terms.
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Here are a few questions and answers about the voltage concept.

Question: OK, so what s voltage, really?

Answer: A device like a battery has positive and negative charges
inside it that push other charges around the outside circuit. A
higher-voltage battery has denser charges in it, which will do more
work on each charged particle that moves through the outside cir-
cuit.

To use a gravitational analogy, we can put a paddlewheel at the
bottom of either a tall waterfall or a short one, but a kg of water
that falls through the greater gravitational energy difference will
have more energy to give up to the paddlewheel at the bottom.

Question: Why do we define voltage as electrical energy divided by
charge, instead of just defining it as electrical energy?

Answer: One answer is that it’s the only definition that makes the
equation P = IAV work. A more general answer is that we want
to be able to define a voltage difference between any two points
in space without having to know in advance how much charge the
particles moving between them will have. If you put a nine-volt
battery on your tongue, then the charged particles that move across
your tongue and give you that tingly sensation are not electrons but
ions, which may have charges of +e, —2e, or practically anything.
The manufacturer probably expected the battery to be used mostly
in circuits with metal wires, where the charged particles that flowed
would be electrons with charges of —e. If the ones flowing across
your tongue happen to have charges of —2e, the electrical energy
difference for them will be twice as much, but dividing by their
charge of —2e in the definition of voltage will still give a result of 9
V.

Question: Are there two separate roles for the charged particles in
the circuit, a type that sits still and exerts the forces, and another
that moves under the influence of those forces?

Answer: No. Every charged particle simultaneously plays both
roles. Newton’s third law says that any particle that has an electri-
cal force acting on it must also be exerting an electrical force back on
the other particle. There are no “designated movers” or “designated
force-makers.”

Question: Why does the definition of voltage only refer to voltage
differences?

Answer: It’s perfectly OK to define voltage as V' = PFEg./q. But
recall that it is only differences in interaction energy, U, that have
direct physical meaning in physics. Similarly, voltage differences are
really more useful than absolute voltages. A voltmeter measures
voltage differences, not absolute voltages.
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Discussion questions

A Avroller coaster is sort of like an electric circuit, but it uses gravitational
forces on the cars instead of electric ones. What would a high-voltage
roller coaster be like? What would a high-current roller coaster be like?

B Criticize the following statements:

“He touched the wire, and 10000 volts went through him.”

“That battery has a charge of 9 volts.”

“You used up the charge of the battery.”
C  When you touch a 9-volt battery to your tongue, both positive and
negative ions move through your saliva. Which ions go which way?

D | once touched a piece of physics apparatus that had been wired
incorrectly, and got a several-thousand-volt voltage difference across my
hand. | was not injured. For what possible reason would the shock have
had insufficient power to hurt me?

Section 21.5 Voltage
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21.6 Resistance

Resistance

So far we have simply presented it as an observed fact that a battery-
and-bulb circuit quickly settles down to a steady flow, but why
should it? Newton’s second law, a = F/m, would seem to predict
that the steady forces on the charged particles should make them
whip around the circuit faster and faster. The answer is that as
charged particles move through matter, there are always forces, anal-
ogous to frictional forces, that resist the motion. These forces need
to be included in Newton’s second law, which is really a = Fyq1/m,
not a = F/m. If, by analogy, you push a crate across the floor at
constant speed, i.e., with zero acceleration, the total force on it must
be zero. After you get the crate going, the floor’s frictional force is
exactly canceling out your force. The chemical energy stored in your
body is being transformed into heat in the crate and the floor, and
no longer into an increase in the crate’s kinetic energy. Similarly, the
battery’s internal chemical energy is converted into heat, not into
perpetually increasing the charged particles’ kinetic energy. Chang-
ing energy into heat may be a nuisance in some circuits, such as a
computer chip, but it is vital in an incandescent lightbulb, which
must get hot enough to glow. Whether we like it or not, this kind
of heating effect is going to occur any time charged particles move
through matter.

What determines the amount of heating? One flashlight bulb de-
signed to work with a 9-volt battery might be labeled 1.0 watts,
another 5.0. How does this work? Even without knowing the de-
tails of this type of friction at the atomic level, we can relate the
heat dissipation to the amount of current that flows via the equa-
tion P = IAV. If the two flashlight bulbs can have two different
values of P when used with a battery that maintains the same AV,
it must be that the 5.0-watt bulb allows five times more current to
flow through it.

For many substances, including the tungsten from which lightbulb
filaments are made, experiments show that the amount of current
that will low through it is directly proportional to the voltage dif-
ference placed across it. For an object made of such a substance,
we define its electrical resistance as follows:

definition of resistance

If an object inserted in a circuit displays a current flow pro-
portional to the voltage difference across it, then we define its
resistance as the constant ratio

R=AV/I

k/Georg Simon Ohm (1787-
1854). The units of resistance are volts/ampere, usually abbreviated as
ohms, symbolized with the capital Greek letter omega, €.
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Resistance of a lightbulb example 7
> A flashlight bulb powered by a 9-volt battery has a resistance of
10 Q. How much current will it draw?

> Solving the definition of resistance for /, we find

I=AV/R
-0.9V/Q
= 0.9 V/(V/A)
=0.9A

Ohm’s law states that many substances, including many solids and
some liquids, display this kind of behavior, at least for voltages
that are not too large. The fact that Ohm’s law is called a “law”
should not be taken to mean that all materials obey it, or that it has
the same fundamental importance as Newton’s laws, for example.
Materials are called ohmic or nonohmic, depending on whether they
obey Ohm’s law. Although we will concentrate on ohmic materials
in this book, it’s important to keep in mind that a great many
materials are nonohmic, and devices made from them are often very
important. For instance, a transistor is a nonohmic device that can
be used to amplify a signal (as in a guitar amplifier) or to store and
manipulate the ones and zeroes in a computer chip.

If objects of the same size and shape made from two different ohmic
materials have different resistances, we can say that one material is
more resistive than the other, or equivalently that it is less conduc-
tive. Materials, such as metals, that are very conductive are said
to be good conductors. Those that are extremely poor conductors,
for example wood or rubber, are classified as insulators. There is
no sharp distinction between the two classes of materials. Some,
such as silicon, lie midway between the two extremes, and are called
semiconductors.

On an intuitive level, we can understand the idea of resistance by
making the sounds “hhhhhh” and “ffffff.” To make air flow out of 1 / 2 /
your mouth, you use your diaphragm to compress the air in your
chest. The pressure difference between your chest and the air outside
your mouth is analogous to a voltage difference. When you make the
“h” sound, you form your mouth and throat in a way that allows air
to flow easily. The large flow of air is like a large current. Dividing 3 / 4 /
by a large current in the definition of resistance means that we get
a small resistance. We say that the small resistance of your mouth

and throat allows a large current to flow. When you make the “f” / /
sound, you increase the resistance and cause a smaller current to
flow. .

W |/ Four objects made of the
Note that although the resistance of an object depends on the sub- same substance have different
stance it is made of, we cannot speak simply of the “resistance of resistances.

gold” or the “resistance of wood.” Figure I shows four examples of
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objects that have had wires attached at the ends as electrical con-
nections. If they were made of the same substance, they would all
nevertheless have different resistances because of their different sizes
and shapes. A more detailed discussion will be more natural in the
context of the following chapter, but it should not be too surprising
that the resistance of 1/2 will be greater than that of 1/1 — the
image of water flowing through a pipe, however incorrect, gives us
the right intuition. Object 1/3 will have a smaller resistance than
1/1 because the charged particles have less of it to get through.

Superconductors

All materials display some variation in resistance according to tem-
perature (a fact that is used in thermostats to make a thermometer
that can be easily interfaced to an electric circuit). More spectac-
ularly, most metals have been found to exhibit a sudden change to
zero resistance when cooled to a certain critical temperature. They
are then said to be superconductors. Currently, the most impor-
tant practical application of superconductivity is in medical MRI
(magnetic resonance imaging) scanners. The mechanism of MRI is
explained on p. 483, but the important point for now is that when
your body is inserted into one of these devices, you are being im-
mersed in an extremely strong magnetic field produced by electric
m/A medical MRI scanner, currents flowing through the coiled wires of an electromagnet. If
which uses superconductors. these wires were not superconducting, they would instantly burn up
because of the heat generated by their resistance.

There are many other potential applications for superconductors,
but most of these, such as power transmission, are not currently
economically feasible because of the extremely low temperatures
required for superconductivity to occur.

However, it was discovered in 1986 that certain ceramics are super-
conductors at less extreme temperatures. The technological barrier
is now in finding practical methods for making wire out of these
brittle materials. Wall Street is currently investing billions of dol-
lars in developing superconducting devices for cellular phone relay
stations based on these materials.

There is currently no satisfactory theory of superconductivity in
general, although superconductivity in metals is understood fairly
well. Unfortunately I have yet to find a fundamental explanation of
superconductivity in metals that works at the introductory level.

Constant voltage throughout a conductor

The idea of a superconductor leads us to the question of how we
should expect an object to behave if it is made of a very good con-
ductor. Superconductors are an extreme case, but often a metal
wire can be thought of as a perfect conductor, for example if the
parts of the circuit other than the wire are made of much less con-
ductive materials. What happens if R equals zero in the equation
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R = AV/I? The result of dividing two numbers can only be zero if
the number on top equals zero. This tells us that if we pick any two
points in a perfect conductor, the voltage difference between them
must be zero. In other words, the entire conductor must be at the
same voltage.

Constant voltage means that no work would be done on a charge as
it moved from one point in the conductor to another. If zero work
was done only along a certain path between two specific points, it
might mean that positive work was done along part of the path and
negative work along the rest, resulting in a cancellation. But there is
no way that the work could come out to be zero for all possible paths
unless the electrical force on a charge was in fact zero at every point.
Suppose, for example, that you build up a static charge by scuffing
your feet on a carpet, and then you deposit some of that charge onto
a doorknob, which is a good conductor. How can all that charge be
in the doorknob without creating any electrical force at any point
inside it? The only possible answer is that the charge moves around
until it has spread itself into just the right configuration so that the
forces exerted by all the little bits of excess surface charge on any
charged particle within the doorknob exactly cancel out.

We can explain this behavior if we assume that the charge placed
on the doorknob eventually settles down into a stable equilibrium.
Since the doorknob is a conductor, the charge is free to move through
it. If it was free to move and any part of it did experience a nonzero
total force from the rest of the charge, then it would move, and we
would not have an equilibrium.

Excess charge placed on a conductor, once it reaches its equilibrium
configuration, is entirely on the surface, not on the interior. This
should be intuitively reasonable in figure n, for example, since the
charges are all repelling each other. A proof is given in example 16
on p. 657.

Since wires are good conductors, constancy of voltage throughout a
conductor provides a convenient freedom in hooking up a voltmeter
to a circuit. In figure o, points B and C are on the same piece of
conducting wire, so Vg = Vz. Measuring Vg — V4 gives the same
result as measuring Vo — V4.

n /1. The finger deposits charges
on the solid, spherical, metal
doorknob and is then withdrawn.
2. Almost instantaneously, the
charges’ mutual repulsion makes
them redistribute themselves uni-
formly on the surface of the
sphere. The only excess charge
is on the surface; charges do ex-
ist in the atoms that form the in-
terior of the sphere, but they are
balanced. Charges on the interior
feel zero total electrical force from
the ones at the surface. Charges
at the surface experience a net
outward repulsion, but this is can-
celed out by the force that keeps
them from escaping into the air.
3. A voltmeter shows zero dif-
ference in voltage between any
two points on the interior or sur-
face of the sphere. If the volt-
age difference wasn’t zero, then
energy could be released by the
flow of charge from one point to
the other; this only happens be-
fore equilibrium is reached.

voltmeter voltmeter

P ] y2 ]

o/ The voltmeter doesn’t care
which of these setups you use.
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p / Example 8.

In 1 and 2,

charges that are visible on the
front surface of the conductor are
shown as solid dots; the others
would have to be seen through
the conductor, which we imagine

is semi-transparent.

g/ Short-circuiting a  battery.
Warning: you can burn yourself
this way or start a fire! If you
want to try this, try making the
connection only very briefly, use
a low-voltage battery, and avoid
touching the battery or the wire,
both of which will get hot.
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The lightning rod example 8
Suppose you have a pear-shaped conductor like the one in figure
p/1. Since the pear is a conductor, there are free charges every-
where inside it. Panels 1 and 2 of the figure show a computer sim-
ulation with 100 identical electric charges. In 1, the charges are
released at random positions inside the pear. Repulsion causes
them all to fly outward onto the surface and then settle down into
an orderly but nonuniform pattern.

We might not have been able to guess the pattern in advance, but
we can verify that some of its features make sense. For example,
charge A has more neighbors on the right than on the left, which
would tend to make it accelerate off to the left. But when we
look at the picture as a whole, it appears reasonable that this is
prevented by the larger number of more distant charges on its left
than on its right.

There also seems to be a pattern to the nonuniformity: the charges
collect more densely in areas like B, where the surface is strongly
curved, and less densely in flatter areas like C.

To understand the reason for this pattern, consider p/3. Two con-
ducting spheres are connected by a conducting wire. Since the
whole apparatus is conducting, it must all be at one voltage. As
shown in problem 43 on p. 624, the density of charge is greater
on the smaller sphere. This is an example of a more general fact
observed in p/2, which is that the charge on a conductor packs
itself more densely in areas that are more sharply curved.

Similar reasoning shows why Benjamin Franklin used a sharp tip
when he invented the lightning rod. The charged stormclouds in-
duce positive and negative charges to move to opposite ends of
the rod. At the pointed upper end of the rod, the charge tends
to concentrate at the point, and this charge attracts the light-
ning. The same effect can sometimes be seen when a scrap
of aluminum foil is inadvertently put in a microwave oven. Mod-
ern experiments (Moore et al., Journal of Applied Meteorology 39
(1999) 593) show that although a sharp tip is best at starting a
spark, a more moderate curve, like the right-hand tip of the pear
in this example, is better at successfully sustaining the spark for
long enough to connect a discharge to the clouds.

Short circuits

So far we have been assuming a perfect conductor. What if it is
a good conductor, but not a perfect one? Then we can solve for
AV = IR. An ordinary-sized current will make a very small result
when we multiply it by the resistance of a good conductor such as
a metal wire. The voltage throughout the wire will then be nearly
constant. If, on the other hand, the current is extremely large, we
can have a significant voltage difference. This is what happens in a
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short-circuit: a circuit in which a low-resistance pathway connects
the two sides of a voltage source. Note that this is much more
specific than the popular use of the term to indicate any electrical
malfunction at all. If, for example, you short-circuit a 9-volt battery
as shown in figure q, you will produce perhaps a thousand amperes
of current, leading to a very large value of P = IAV. The wire gets
hot!

self-check C
What would happen to the battery in this kind of short circuit? >
Answer, p. 1043

Resistors

Inside any electronic gadget you will see quite a few little circuit
elements like the one shown in the photo. These resistors are simply
a cylinder of ohmic material with wires attached to the end.

At this stage, most students have a hard time understanding why
resistors would be used inside a radio or a computer. We obviously
want a lightbulb or an electric stove to have a circuit element that
resists the flow of electricity and heats up, but heating is undesirable
in radios and computers. Without going too far afield, let’s use a
mechanical analogy to get a general idea of why a resistor would be
used in a radio.

The main parts of a radio receiver are an antenna, a tuner for se-
lecting the frequency, and an amplifier to strengthen the signal suf-
ficiently to drive a speaker. The tuner resonates at the selected fre-
quency, just as in the examples of mechanical resonance discussed
in chapter 18. The behavior of a mechanical resonator depends on
three things: its inertia, its stiffness, and the amount of friction or
damping. The first two parameters locate the peak of the resonance
curve, while the damping determines the width of the resonance.
In the radio tuner we have an electrically vibrating system that res-
onates at a particular frequency. Instead of a physical object moving
back and forth, these vibrations consist of electrical currents that
flow first in one direction and then in the other. In a mechanical sys-
tem, damping means taking energy out of the vibration in the form
of heat, and exactly the same idea applies to an electrical system:
the resistor supplies the damping, and therefore controls the width
of the resonance. If we set out to eliminate all resistance in the tuner
circuit, by not building in a resistor and by somehow getting rid of
all the inherent electrical resistance of the wires, we would have a
useless radio. The tuner’s resonance would be so narrow that we
could never get close enough to the right frequency to bring in the
station. The roles of inertia and stiffness are played by other circuit
elements we have not discusses (a capacitor and a coil).

Many electrical devices are based on electrical resistance and Ohm’s
law, even if they do not have little components in them that look

Resistors.

4/\/\/\/\_

r/ The symbol used in schemat-
ics to represent a resistor.

silver

I blue

[
- I brown
»

I red —l
| A

21x10 6 Q +10%

1 6 +10%

s/An example of a resistor
with a color code.

black
brown
red
orange
yellow
green
blue
violet
gray
white
silver

gold

© 00 O Ui W N+~ O

Ty
S5
N

t / Color codes used on resistors.
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like the usual resistor. The following are some examples.

Lightbulb

There is nothing special about a lightbulb filament — you can easily
make a lightbulb by cutting a narrow waist into a metallic gum
wrapper and connecting the wrapper across the terminals of a 9-volt
battery. The trouble is that it will instantly burn out. Edison solved
this technical challenge by encasing the filament in an evacuated
bulb, which prevented burning, since burning requires oxygen.

Polygraph

The polygraph, or “lie detector,” is really just a set of meters for
recording physical measures of the subject’s psychological stress,
such as sweating and quickened heartbeat. The real-time sweat
measurement works on the principle that dry skin is a good insula-
tor, but sweaty skin is a conductor. Of course a truthful subject may
become nervous simply because of the situation, and a practiced liar
may not even break a sweat. The method’s practitioners claim that
they can tell the difference, but you should think twice before al-
lowing yourself to be polygraph tested. Most U.S. courts exclude
all polygraph evidence, but some employers attempt to screen out
dishonest employees by polygraph testing job applicants, an abuse
that ranks with such pseudoscience as handwriting analysis.

Fuse

A fuse is a device inserted in a circuit tollbooth-style in the same
manner as an ammeter. It is simply a piece of wire made of metals
having a relatively low melting point. If too much current passes
through the fuse, it melts, opening the circuit. The purpose is to
make sure that the building’s wires do not carry so much current
that they themselves will get hot enough to start a fire. Most modern
houses use circuit breakers instead of fuses, although fuses are still
common in cars and small devices. A circuit breaker is a switch
operated by a coiled-wire magnet, which opens the circuit when
enough current flows. The advantage is that once you turn off some
of the appliances that were sucking up too much current, you can
immediately flip the switch closed. In the days of fuses, one might
get caught without a replacement fuse, or even be tempted to stuff
aluminum foil in as a replacement, defeating the safety feature.

Voltmeter

A voltmeter is nothing more than an ammeter with an additional
high-value resistor through which the current is also forced to flow.
Ohm’s law states that the current through the resistor is related
directly to the voltage difference across it, so the meter can be cali-
brated in units of volts based on the known value of the resistor. The
voltmeter’s two probes are touched to the two locations in a circuit
between which we wish to measure the voltage difference, u/2. Note
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how cumbersome this type of drawing is, and how difficult it can
be to tell what is connected to what. This is why electrical draw-
ing are usually shown in schematic form. Figure u/3 is a schematic
representation of figure u/2.

The setups for measuring current and voltage are different. When
we are measuring current, we are finding “how much stuff goes
through,” so we place the ammeter where all the current is forced
to go through it. Voltage, however, is not “stuff that goes through,”
it is a measure of electrical energy. If an ammeter is like the meter
that measures your water use, a voltmeter is like a measuring stick
that tells you how high a waterfall is, so that you can determine how
much energy will be released by each kilogram of falling water. We
do not want to force the water to go through the measuring stick!
The arrangement in figure u/3 is a parallel circuit: one in there are
“forks in the road” where some of the current will flow one way and
some will flow the other. Figure u/4 is said to be wired in series:
all the current will visit all the circuit elements one after the other.
We will deal with series and parallel circuits in more detail in the
following chapter.

If you inserted a voltmeter incorrectly, in series with the bulb and
battery, its large internal resistance would cut the current down so
low that the bulb would go out. You would have severely disturbed
the behavior of the circuit by trying to measure something about it.

Incorrectly placing an ammeter in parallel is likely to be even more
disconcerting. The ammeter has nothing but wire inside it to pro-
vide resistance, so given the choice, most of the current will flow
through it rather than through the bulb. So much current will flow
through the ammeter, in fact, that there is a danger of burning out
the battery or the meter or both! For this reason, most ammeters
have fuses or circuit breakers inside. Some models will trip their
circuit breakers and make an audible alarm in this situation, while
others will simply blow a fuse and stop working until you replace it.

Discussion questions

A In figure u/1, would it make any difference in the voltage measure-
ment if we touched the voltmeter’s probes to different points along the
same segments of wire?

B  Explain why it would be incorrect to define resistance as the amount
of charge the resistor allows to flow.

21.7 [ Applications of calculus

As discussed in example 1 on page 582, the definition of current as
the rate of change of charge with respect to time must be reexpressed

u/1. A simplified diagram of
how a voltmeter works. 2. Mea-
suring the voltage difference
across a lightbulb. 3. The same
setup drawn in schematic form. 4.
The setup for measuring current
is different.
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v/ 1. Wrong: The shapes of the
wires are irrelevant. 2. Wrong:
Right angles should be used. 3.
Wrong: A simple pattern is made
to look unfamiliar and compli-
cated. 4. Right.
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as a derivative in the case where the rate of change is not constant,

dg
I= T
Finding current given charge example 9
> A charged balloon falls to the ground, and its charge begins
leaking off to the Earth. Suppose that the charge on the balloon
is given by g = ae~?L. Find the current as a function of time, and
interpret the answer.

> Taking the derivative, we have

dg
=5t

= —abe P!

An exponential function approaches zero as the exponent gets
more and more negative. This means that both the charge and
the current are decreasing in magnitude with time. It makes sense
that the charge approaches zero, since the balloon is losing its
charge. It also makes sense that the current is decreasing in
magnitude, since charge cannot flow at the same rate forever
without overshooting zero.

Series and parallel circuits

Schematics

I see a chess position; Kasparov sees an interesting Ruy Lopez vari-
ation. To the uninitiated a schematic may look as unintelligible as
Mayan hieroglyphs, but even a little bit of eye training can go a long
way toward making its meaning leap off the page. A schematic is a
stylized and simplified drawing of a circuit. The purpose is to elim-
inate as many irrelevant features as possible, so that the relevant
ones are easier to pick out.

1 % 2 % 3 i 4 ;%
An example of an irrelevant feature is the physical shape, length, and
diameter of a wire. In nearly all circuits, it is a good approximation
to assume that the wires are perfect conductors, so that any piece

of wire uninterrupted by other components has constant voltage
throughout it. Changing the length of the wire, for instance, does
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not change this fact. (Of course if we used miles and miles of wire,
as in a telephone line, the wire’s resistance would start to add up,
and its length would start to matter.) The shapes of the wires
are likewise irrelevant, so we draw them with standardized, stylized
shapes made only of vertical and horizontal lines with right-angle
bends in them. This has the effect of making similar circuits look
more alike and helping us to recognize familiar patterns, just as
words in a newspaper are easier to recognize than handwritten ones.
Figure v shows some examples of these concepts.

The most important first step in learning to read schematics is to
learn to recognize contiguous pieces of wire which must have con-
stant voltage throughout. In figure w, for example, the two shaded
E-shaped pieces of wire must each have constant voltage. This fo-
cuses our attention on two of the main unknowns we’d like to be
able to predict: the voltage of the left-hand E and the voltage of
the one on the right.

Parallel resistances and the junction rule

One of the simplest examples to analyze is the parallel resistance
circuit, of which figure w was an example. In general we may have
unequal resistances R; and Ry, as in x/1. Since there are only two
constant-voltage areas in the circuit, x/2, all three components have
the same voltage difference across them. A battery normally suc-
ceeds in maintaining the voltage differences across itself for which it
was designed, so the voltage drops AV and AV, across the resistors
must both equal the voltage of the battery:

AVy = AVy = AVbattery-

Each resistance thus feels the same voltage difference as if it was
the only one in the circuit, and Ohm’s law tells us that the amount
of current flowing through each one is also the same as it would
have been in a one-resistor circuit. This is why household electrical
circuits are wired in parallel. We want every appliance to work
the same, regardless of whether other appliances are plugged in or
unplugged, turned on or switched off. (The electric company doesn’t
use batteries of course, but our analysis would be the same for any
device that maintains a constant voltage.)

Of course the electric company can tell when we turn on every light
in the house. How do they know? The answer is that we draw more
current. Each resistance draws a certain amount of current, and
the amount that has to be supplied is the sum of the two individual
currents. The current is like a river that splits in half, x/3, and then
reunites. The total current is

Itotal = Il + IQ-

e}

w/The two shaded

areas

shaped like the letter “E” are both

regions of constant voltage.
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x/1. Two resistors in parallel.
2. There are two constant-voltage
areas. 3. The current that comes
out of the battery splits between

1 R, 2 3 4

the two resistors, and later re- R,
unites. 4. The two resistors in m

parallel can be treated as a single
resistor with a smaller resistance

value. |

This is an example of a general fact called the junction rule:

the junction rule

In any circuit that is not storing or releasing charge, conser-
vation of charge implies that the total current flowing out of
any junction must be the same as the total flowing in.

Coming back to the analysis of our circuit, we apply Ohm’s law to
each resistance, resulting in

Ligtal = AV/Ry + AV/ Ry
1 1
AV [+ ).
(Rl " R2>

As far as the electric company is concerned, your whole house is just
one resistor with some resistance R, called the equivalent resistance.
They would write Ohm’s law as

Itotal = AV/Ra

from which we can determine the equivalent resistance by compari-
son with the previous expression:

1 1
1/R=— + —
/ R1+R2

11\
R=|—5++
(7 7)
[equivalent resistance of two resistors in parallel]

Two resistors in parallel, x/4, are equivalent to a single resistor with
a value given by the above equation.

Two lamps on the same household circuit example 10
> You turn on two lamps that are on the same household circuit.
Each one has a resistance of 1 ohm. What is the equivalent re-
sistance, and how does the power dissipation compare with the
case of a single lamp?
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