
ar / Top: A PET scanner. Middle:
Each positron annihilates with an
electron, producing two gamma-
rays that fly off back-to-back.
When two gamma rays are ob-
served simultaneously in the ring
of detectors, they are assumed to
come from the same annihilation
event, and the point at which they
were emitted must lie on the line
connecting the two detectors.
Bottom: A scan of a person’s
torso. The body has concentrated
the radioactive tracer around the
stomach, indicating an abnormal
medical condition.

meters per second, so converting to mass units, we have

m =
E
c2

=
0.5× 106 J(

3× 108 m/s
)2

= 6× 10−12 kilograms.

The change in mass is too small to measure with any practical
technique. This is because the square of the speed of light is
such a large number.

Electron-positron annihilation example 11
Natural radioactivity in the earth produces positrons, which are
like electrons but have the opposite charge. A form of antimat-
ter, positrons annihilate with electrons to produce gamma rays, a
form of high-frequency light. Such a process would have been
considered impossible before Einstein, because conservation of
mass and energy were believed to be separate principles, and
this process eliminates 100% of the original mass. The amount
of energy produced by annihilating 1 kg of matter with 1 kg of
antimatter is

E = mc2

= (2 kg)
(

3.0× 108 m/s
)2

= 2× 1017 J,

which is on the same order of magnitude as a day’s energy con-
sumption for the entire world’s population!

Positron annihilation forms the basis for the medical imaging tech-
nique called a PET (positron emission tomography) scan, in which
a positron-emitting chemical is injected into the patient and map-
ped by the emission of gamma rays from the parts of the body
where it accumulates.

One commonly hears some misinterpretations of E = mc2, one being
that the equation tells us how much kinetic energy an object would
have if it was moving at the speed of light. This wouldn’t make
much sense, both because the equation for kinetic energy has 1/2 in
it, KE = (1/2)mv2, and because a material object can’t be made
to move at the speed of light. However, this naturally leads to the
question of just how much mass-energy a moving object has. We
know that when the object is at rest, it has no kinetic energy, so
its mass-energy is simply equal to the energy-equivalent of its mass,
mc2,

E = mc2 when v = 0,

where the symbol E (cursive “E”) stands for mass-energy. The point
of using the new symbol is simply to remind ourselves that we’re
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talking about relativity, so an object at rest has E = mc2, not E = 0
as we’d assume in classical physics.

Suppose we start accelerating the object with a constant force. A
constant force means a constant rate of transfer of momentum, but
p = mGv approaches infinity as v approaches c, so the object will
only get closer and closer to the speed of light, but never reach it.
Now what about the work being done by the force? The force keeps
doing work and doing work, which means that we keep on using
up energy. Mass-energy is conserved, so the energy being expended
must equal the increase in the object’s mass-energy. We can continue
this process for as long as we like, and the amount of mass-energy
will increase without limit. We therefore conclude that an object’s
mass-energy approaches infinity as its speed approaches the speed
of light,

E → ∞ when v → c.

Now that we have some idea what to expect, what is the actual
equation for the mass-energy? As proved in my book Simple Nature,
it is

E = mGc2.

self-check E
Verify that this equation has the two properties we wanted. .

Answer, p. 1044

KE compared to mc2 at low speeds example 12
. An object is moving at ordinary nonrelativistic speeds. Compare
its kinetic energy to the energy mc2 it has purely because of its
mass.

. The speed of light is a very big number, so mc2 is a huge num-
ber of joules. The object has a gigantic amount of energy be-
cause of its mass, and only a relatively small amount of additional
kinetic energy because of its motion.

Another way of seeing this is that at low speeds, G is only a tiny
bit greater than 1, so E is only a tiny bit greater than mc2.

The correspondence principle for mass-energy example 13
. Show that the equation E = mGc2 obeys the correspondence

principle.

. As we accelerate an object from rest, its mass-energy becomes
greater than its resting value. We interpret this excess mass-
energy as the object’s kinetic energy,

K E = E(v )− E(v = 0)

= mGc2 −mc2

= m(G− 1)c2.
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In example 4 on page 683, we found G ≈ 1 + v2/2c2, so

K E ≈ m(1 +
v2

2c2 − 1)c2

=
1
2

mv2,

which is the nonrelativistic expression. As demanded by the cor-
respondence principle, relativity agrees with nonrelativistic physics
at speeds that are small compared to the speed of light.

26.6 ? Proofs
In section 26.5 I gave physical arguments to the effect that relativis-
tic momentum should be greater than mv and that an energy E
should be equivalent relativistically to some amount of mass m. In
this section I’ll prove that the relativistic equations are as claimed:
p = mGv and E = mc2. The structure of the proofs is essentially
the same as in two famous 1905 papers by Einstein, “On the elec-
trodynamics of moving bodies” and “Does the inertia of a body
depend upon its energy content?” If you’re interested in reading
these arguments as Einstein originally wrote them, you can find En-
glish translations at www.fourmilab.ch. We start off by proving
two preliminary results relating to Doppler shifts.

Transformation of the fields in a light wave

On p. 716 I showed that when a light wave is observed in two dif-
ferent frames in different states of motion parallel to the wave’s
direction of motion, the frequency is observed to be Doppler-shifted
by a factor D(v) =

√
(1− v)/(1 + v), where c = 1 and v is the

relative velocity of the two frames. But a change in frequency is
not the only change we expect. We also expect the intensity of the
wave to change, since a combination of electric and magnetic fields
observed in one frame of reference becomes some other set of fields
in a different frame (p. 689). There are equations that express this
transformation from E and B to E′ and B′, but they’re a little com-
plicated, so instead we’ll just determine what happens in the special
case of an electromagnetic wave.

Since the transformation of E and B to E′ and B′ is a universal
thing, we’re free to imagine that the wave was created in any way
we wish. Suppose that it was created by a uniform sheet of charge
in the x-y plane, oscillating in the y direction with amplitude A and
frequency f . This will clearly produce electromagnetic waves prop-
agating in the +z and −z directions, and by an argument similar
to that of problem 7 on p. 662, we know that these waves’ intensity
will not fall off at all with distance from the sheet. Since magnetic
fields are produced by currents, and the currents produced by the
motion of the sheet are proportional to Af , the amplitude of the
magnetic field in the wave is proportional to Af . The oscillating
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magnetic field induces an electric field, and since electromagnetic
waves always have E = Bc, the oscillating part of the electric field
is also proportional of Af .

An observer moving away from the sheet sees a sheet that is both
oscillating more slowly (f is Doppler-shifted to fD) and receding.
But the recession has no effect, because the fields don’t fall off with
distance. Also, A stays the same, because the Lorentz transforma-
tion has no effect on lengths perpendicular to the relative motion of
the two frames. Since the fields are proportional to Af , the fields
seen by the receding observer are attenuated by a factor of D.

Transformation of the volume of a light wave

Since the fields in an electromagnetic wave are changed by a factor of
D when we change frames, we might expect that the wave’s energy
would change by a factor of D2. But the square of the field only
gives the energy per unit volume, and the volume changes as well.
The following argument shows that the volume increases by a factor
of 1/D.

If an electromagnetic wave-train has duration ∆t, we already know
that its duration changes by a factor of 1/D when we change to a
different frame of reference. But the speed of light is the same for
all observers, so if the length of the wave-train is ∆z, all observers
must agree on the value of ∆z/∆t, and 1/D must also be the factor
by which ∆z scales up.10 Since the Lorentz transformation doesn’t
change ∆x or ∆y, the volume of the wave-train is also increased by
a factor of 1/D.

Transformation of the energy of a light wave

Combining the two preceding results, we find that when we change
frames of reference, the energy density (per unit volume) of a light
wave changes by a factor of D2, but the volume changes by 1/D, so
the result is that the wave’s energy changes by a factor of D. In Ein-
stein’s words, “It is remarkable that the energy and the frequency of
a [wave-train] vary with the state of motion of the observer in accor-
dance with the same law,” i.e., that both scale by the same factor
D. Einstein had a reason to be especially interested in this fact. In
the same “miracle year” of 1905, he also published a paper in which
he hypothesized that light had both particle and wave properties,
with the energy E of a light-particle related to the frequency f of
the corresponding light-wave by E = hf , where h was a constant.

10At first glance, one might think that this length-scaling factor would simply
be G, and that the volume would be reduced rather than increased. But G is
only the scale-down factor for the length of a thing compared to that thing’s
length in a frame where it is at rest. Light waves don’t have a frame in which
they’re at rest. One can also see this from the geometry of figure x on p. 717.
The diagram is completely symmetric with respect to its treatment of time and
space, so if we flip it across its diagonal, interchanging the roles of z and t, we
obtain the same result for the wave-train’s spatial extent ∆z.

804 Chapter 26 The Atom and E=mc2



(More about this in ch. 34.) If E and f had not both scaled by the
same factor, then the relation E = hf could not have held in all
frames of reference.

E = mc2

Suppose that a material object O, initially at rest, emits two light
rays, each with energy E, in the +z and −z directions. O could be
a lantern with windows on opposite sides, or it could be an electron
and an antielectron annihilating each other to produce a pair of
gamma rays. In this frame, O loses energy 2E and the light rays
gain 2E, so energy is conserved.

We now switch to a new frame of reference moving at a certain
velocity v in the z direction relative to the original frame. We assume
that O’s energy is different in this frame, but that the change in its
energy amounts to multiplication by some unitless factor x, which
depends only on v, since there is nothing else it could depend on that
could allow us to form a unitless quantity. In this frame the light
rays have energies ED(v) and ED(−v). If conservation of energy is
to hold in the new frame as it did in the old, we must have 2xE =
ED(v) + ED(−v). After some algebra, we find x = 1/

√
1− v2. In

other words, an object with energy E in its rest frame has energy
GE in a frame moving at velocity v relative to the first one. Since G
is never zero, it follows that even an object at rest has some nonzero
energy. We define this energy-at-rest as its mass, i.e., E = m in
units where c = 1.

P = mGv

Defining an object’s energy-at-rest as its mass only works if this
same mass is also a valid measure of inertia. More specifically, we
should be able to use this mass to construct a self-consistent logical
system in which (1) momentum is conserved, (2) conservation of
momentum holds in all frames of reference, and (3) p ≈ mv for
v << c, satisfying the correspondence principle.

Let a material object P, at rest and having mass 2E, be completely
annihilated, creating two beams of light, each with energy E, flying
off in opposite directions. A real-world example would be if P con-
sisted of an electron and an antielectron. As shown on p. 715, light
has momentum. Because beams of light can be split up or recom-
bined without violating conservation of momentum, a light wave’s
momentum must be proportional to its energy, |p| = yE, where the
constant of proportionality y is found in problem 12 on p. 813 but
not needed here. Let the momentum of a material object be mvx,
where our goal is to prove x = G. In this frame of reference, v = 0,
and conservation of momentum follows by symmetry.

We now change to a new frame of reference, moving at some speed
v along the line of emission of the two light rays. In this frame,
conservation of momentum requires 2Evx = yE/D − yED. We

Section 26.6 ? Proofs 805



as / 1. A balance that mea-
sures the gravitational attraction
between masses M and m. (See
section 10.5 for a more detailed
description.) When the two
masses M are inserted, the fiber
twists. 2. A simplified diagram
of Kreuzer’s modification. The
moving teflon mass is submerged
in a liquid with nearly the same
density. 3. Kreuzer’s actual
apparatus.

therefore have vx/y = (1/D − D)/2, which can be shown with a
little algebra to equal vG. Since only x can depend on v, not y, and
the correspondence principle requires x ≈ 1 for v << c, we find that
x = G, as claimed.

Problem 15 on p. 814 checks that this result also works correctly for
a system consisting of material particles.

26.7 ? Two tests of Newton’s third law
E = mc2 states that a certain amount of energy E is equivalent to a
certain amount of mass m. But mass pops up in physics in several
different guises: the mass measured by an object’s inertia, the “ac-
tive” gravitational mass ma that determines the gravitational forces
it makes on other objects, and the “passive” gravitational mass mp

that measures how strongly it feels gravity. Einstein’s reason for
predicting the same behavior for ma and mp was that anything else
would have violated Newton’s third law for gravitational forces.

Suppose instead that an object’s energy content contributes only to
mp, not to ma. Atomic nuclei get something like 1% of their mass
from the energy of the electric fields inside their nuclei, but this
percentage varies with the number of protons, so if we have objects
m and M with different chemical compositions, it follows that in
this theory mp/ma will not be the same as Mp/Ma, and in this
non-Einsteinian version of relativity, Newton’s third law is violated.

This was tested in a Princeton PhD-thesis experiment by Kreuzer11

in 1966. Kreuzer carried out an experiment, figure as, using masses
made of two different substances. The first substance was teflon.
The second substance was a mixture of the liquids trichloroethy-
lene and dibromoethane, with the proportions chosen so as to give
a passive-mass density as close as possible to that of teflon, as de-
termined by the neutral buoyancy of the teflon masses suspended
inside the liquid. If the active-mass densities of these substances are
not strictly proportional to their passive-mass densities, then mov-
ing the chunk of teflon back and forth in figure as/2 would change
the gravitational force acting on the nearby small sphere. No such
change was observed, and the results verified mp/ma = Mp/Ma to
within one part in 106, in agreement with Einstein and Newton. If
electrical energy had not contributed at all to active mass, then a
violation of the third law would have been detected at the level of
about one part in 102.

The Kreuzer result was improved in 1986 by Bartlett and van Bu-
ren12 using data gathered by bouncing laser beams off of a mirror
left behind on the moon by the Apollo astronauts, as described
p. 277. Since the moon has an asymmetrical distribution of iron

11Kreuzer, Phys. Rev. 169 (1968) 1007
12Phys. Rev. Lett. 57 (1986) 21
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and aluminum, a theory with mp/ma 6= Mp/Ma would cause it to
have an anomalous acceleration along a certain line. The lack of
any such observed acceleration limits violations of Newton’s third
law to about one part in 1010.
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Summary
Selected vocabulary
alpha particle . . a form of radioactivity consisting of helium nu-

clei
beta particle . . . a form of radioactivity consisting of electrons
gamma ray . . . . a form of radioactivity consisting of a very

high-frequency form of light
proton . . . . . . a positively charged particle, one of the types

that nuclei are made of
neutron . . . . . . an uncharged particle, the other types that nu-

clei are made of
isotope . . . . . . one of the possible varieties of atoms of a given

element, having a certain number of neutrons
atomic number . the number of protons in an atom’s nucleus;

determines what element it is
atomic mass . . . the mass of an atom
mass number . . the number of protons plus the number of neu-

trons in a nucleus; approximately proportional
to its atomic mass

strong nuclear
force . . . . . . . .

the force that holds nuclei together against
electrical repulsion

weak nuclear
force . . . . . . . .

the force responsible for beta decay

beta decay . . . . the radioactive decay of a nucleus via the re-
action n → p + e− + ν̄ or p → n + e+ + ν;
so called because an electron or antielectron is
also known as a beta particle

alpha decay . . . the radioactive decay of a nucleus via emission
of an alpha particle

fission . . . . . . . the radioactive decay of a nucleus by splitting
into two parts

fusion . . . . . . . a nuclear reaction in which two nuclei stick
together to form one bigger nucleus

µSv . . . . . . . . a unit for measuring a person’s exposure to
radioactivity

Notation
e− . . . . . . . . . an electron
e+ . . . . . . . . . an antielectron; just like an electron, but with

positive charge
n . . . . . . . . . . a neutron
p . . . . . . . . . . a proton
ν . . . . . . . . . . a neutrino
ν̄ . . . . . . . . . . an antineutrino
E . . . . . . . . . . mass-energy

808 Chapter 26 The Atom and E=mc2



Other terminology and notation
Z . . . . . . . . . atomic number (number of protons in a nu-

cleus)
N . . . . . . . . . number of neutrons in a nucleus
A . . . . . . . . . mass number (N + Z)

Summary

Quantization of charge: Millikan’s oil drop experiment showed that
the total charge of an object could only be an integer multiple of
a basic unit of charge (e). This supported the idea the the “flow”
of electrical charge was the motion of tiny particles rather than the
motion of some sort of mysterious electrical fluid.

Einstein’s analysis of Brownian motion was the first definitive proof
of the existence of atoms. Thomson’s experiments with vacuum
tubes demonstrated the existence of a new type of microscopic par-
ticle with a very small ratio of mass to charge. Thomson correctly
interpreted these as building blocks of matter even smaller than
atoms: the first discovery of subatomic particles. These particles
are called electrons.

The above experimental evidence led to the first useful model of
the interior structure of atoms, called the raisin cookie model. In
the raisin cookie model, an atom consists of a relatively large, mas-
sive, positively charged sphere with a certain number of negatively
charged electrons embedded in it.

Rutherford and Marsden observed that some alpha particles from a
beam striking a thin gold foil came back at angles up to 180 degrees.
This could not be explained in the then-favored raisin-cookie model
of the atom, and led to the adoption of the planetary model of the
atom, in which the electrons orbit a tiny, positively-charged nucleus.
Further experiments showed that the nucleus itself was a cluster of
positively-charged protons and uncharged neutrons.

Radioactive nuclei are those that can release energy. The most com-
mon types of radioactivity are alpha decay (the emission of a he-
lium nucleus), beta decay (the transformation of a neutron into a
proton or vice-versa), and gamma decay (the emission of a type of
very-high-frequency light). Stars are powered by nuclear fusion re-
actions, in which two light nuclei collide and form a bigger nucleus,
with the release of energy.

Human exposure to ionizing radiation is measured in units of mi-
crosieverts (µSv). The typical person is exposed to about 2000 µSv
worth of natural background radiation per year.

Exploring further

The First Three Minutes, Steven Weinberg. This book de-
scribes the first three minutes of the universe’s existence.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Use the nutritional information on some packaged food to
make an order-of-magnitude estimate of the amount of chemical
energy stored in one atom of food, in units of joules. Assume that
a typical atom has a mass of 10−26 kg. This constitutes a rough
estimate of the amounts of energy there are on the atomic scale.
[See chapter 1 for help on how to do order-of-magnitude estimates.
Note that a nutritional “calorie” is really a kilocalorie.]

√

2 The nuclear process of beta decay by electron capture is de-
scribed parenthetically on p. 783. The reaction is p + e− → n + ν.
(a) Show that charge is conserved in this reaction.
(b) Explain why electron capture doesn’t occur in hydrogen atoms.
(If it did, matter wouldn’t exist!) . Solution, p. 1035

3 241Pu decays either by electron decay or by alpha decay. (A
given 241Pu nucleus may do either one; it’s random.) What are the
isotopes created as products of these two modes of decay?

4 (a) Recall that the gravitational energy of two gravitationally
interacting spheres is given by PEg = −Gm1m2/r, where r is the
center-to-center distance. What would be the analogous equation
for two electrically interacting spheres? Justify your choice of a
plus or minus sign on physical grounds, considering attraction and
repulsion.

√

(b) Use this expression to estimate the energy required to pull apart
a raisin-cookie atom of the one-electron type, assuming a radius of
10−10 m.

√

(c) Compare this with the result of problem 1.

5 A neon light consists of a long glass tube full of neon, with
metal caps on the ends. Positive charge is placed on one end of
the tube, negative on the other. The electric forces generated can
be strong enough to strip electrons off of a certain number of neon
atoms. Assume for simplicity that only one electron is ever stripped
off of any neon atom. When an electron is stripped off of an atom,
both the electron and the neon atom (now an ion) have electric
charge, and they are accelerated by the forces exerted by the charged
ends of the tube. (They do not feel any significant forces from
the other ions and electrons within the tube, because only a tiny
minority of neon atoms ever gets ionized.) Light is finally produced
when ions are reunited with electrons. Give a numerical comparison
of the magnitudes and directions of the accelerations of the electrons
and ions. [You may need some data from page 1062.]

√

6 If you put two hydrogen atoms near each other, they will feel
an attractive force, and they will pull together to form a molecule.
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Problem 7.

Problem 8.

(Molecules consisting of two hydrogen atoms are the normal form of
hydrogen gas.) How is this possible, since each is electrically neu-
tral? Shouldn’t the attractive and repulsive forces all cancel out
exactly? Use the raisin cookie model. (Students who have taken
chemistry often try to use fancier models to explain this, but if you
can’t explain it using a simple model, you probably don’t understand
the fancy model as well as you thought you did!) It’s not so easy
to prove that the force should actually be attractive rather than re-
pulsive, so just concentrate on explaining why it doesn’t necessarily
have to vanish completely.

7 The figure shows a simplified diagram of an electron gun such
as the one used in an old-fashioned TV tube. Electrons that spon-
taneously emerge from the negative electrode (cathode) are then
accelerated to the positive electrode, which has a hole in it. (Once
they emerge through the hole, they will slow down. However, if the
two electrodes are fairly close together, this slowing down is a small
effect, because the attractive and repulsive forces experienced by the
electron tend to cancel.) (a) If the voltage difference between the
electrodes is ∆V, what is the velocity of an electron as it emerges
at B? (Assume its initial velocity, at A, is negiligible.) (b) Evaluate
your expression numerically for the case where ∆V = 10 kV, and
compare to the speed of light. . Solution, p. 1035

8 The figure shows a simplified diagram of a device called a tan-
dem accelerator, used for accelerating beams of ions up to speeds
on the order of 1-10% of the speed of light. (Since these velocities
are not too big compared to c, you can use nonrelativistic physics
throughout this problem.) The nuclei of these ions collide with
the nuclei of atoms in a target, producing nuclear reactions for ex-
periments studying the structure of nuclei. The outer shell of the
accelerator is a conductor at zero voltage (i.e., the same voltage as
the Earth). The electrode at the center, known as the “terminal,” is
at a high positive voltage, perhaps millions of volts. Negative ions
with a charge of −1 unit (i.e., atoms with one extra electron) are
produced offstage on the right, typically by chemical reactions with
cesium, which is a chemical element that has a strong tendency to
give away electrons. Relatively weak electric and magnetic forces
are used to transport these −1 ions into the accelerator, where they
are attracted to the terminal. Although the center of the terminal
has a hole in it to let the ions pass through, there is a very thin car-
bon foil there that they must physically penetrate. Passing through
the foil strips off some number of electrons, changing the atom into
a positive ion, with a charge of +n times the fundamental charge.
Now that the atom is positive, it is repelled by the terminal, and
accelerates some more on its way out of the accelerator.

(a) Find the velocity, v, of the emerging beam of positive ions, in
terms of n, their mass m, the terminal voltage V , and fundamental
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constants. Neglect the small change in mass caused by the loss of
electrons in the stripper foil.

√

(b) To fuse protons with protons, a minimum beam velocity of about
11% of the speed of light is required. What terminal voltage would
be needed in this case?

√

(c) In the setup described in part b, we need a target containing
atoms whose nuclei are single protons, i.e., a target made of hydro-
gen. Since hydrogen is a gas, and we want a foil for our target, we
have to use a hydrogen compound, such as a plastic. Discuss what
effect this would have on the experiment.

9 In example 6 on page 683, I remarked that accelerating a
macroscopic (i.e., not microscopic) object to close to the speed of
light would require an unreasonable amount of energy. Suppose that
the starship Enterprise from Star Trek has a mass of 8.0 × 107 kg,
about the same as the Queen Elizabeth 2. Compute the kinetic
energy it would have to have if it was moving at half the speed of
light. Compare with the total energy content of the world’s nuclear
arsenals, which is about 1021 J.

√

10 (a) A free neutron (as opposed to a neutron bound into an
atomic nucleus) is unstable, and undergoes beta decay (which you
may want to review). The masses of the particles involved are as
follows:

neutron 1.67495× 10−27 kg
proton 1.67265× 10−27 kg
electron 0.00091× 10−27 kg
antineutrino < 10−35 kg

Find the energy released in the decay of a free neutron.
√

(b) Neutrons and protons make up essentially all of the mass of the
ordinary matter around us. We observe that the universe around us
has no free neutrons, but lots of free protons (the nuclei of hydrogen,
which is the element that 90% of the universe is made of). We find
neutrons only inside nuclei along with other neutrons and protons,
not on their own.

If there are processes that can convert neutrons into protons, we
might imagine that there could also be proton-to-neutron conver-
sions, and indeed such a process does occur sometimes in nuclei
that contain both neutrons and protons: a proton can decay into a
neutron, a positron, and a neutrino. A positron is a particle with
the same properties as an electron, except that its electrical charge
is positive. A neutrino, like an antineutrino, has negligible mass.

Although such a process can occur within a nucleus, explain why
it cannot happen to a free proton. (If it could, hydrogen would be
radioactive, and you wouldn’t exist!)
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11 (a) Find a relativistic equation for the velocity of an object
in terms of its mass and momentum (eliminating G). Use natural
units (i.e., discard factors of c) throughout.

√

(b) Show that your result is approximately the same as the nonrel-
ativistic value, p/m, at low velocities.
(c) Show that very large momenta result in speeds close to the speed
of light.
(d) Insert factors of c to make your result from part a usable in SI
units.

√

?

12 An object moving at a speed very close to the speed of light
is referred to as ultrarelativistic. Ordinarily (luckily) the only ul-
trarelativistic objects in our universe are subatomic particles, such
as cosmic rays or particles that have been accelerated in a particle
accelerator.
(a) What kind of number is G for an ultrarelativistic particle?
(b) Repeat example 12 on page 802, but instead of very low, non-
relativistic speeds, consider ultrarelativistic speeds.
(c) Find an equation for the ratio E/p. The speed may be relativis-
tic, but don’t assume that it’s ultrarelativistic.

√

(d) Simplify your answer to part c for the case where the speed is
ultrarelativistic.

√

(e) We can think of a beam of light as an ultrarelativistic object —
it certainly moves at a speed that’s sufficiently close to the speed
of light! Suppose you turn on a one-watt flashlight, leave it on for
one second, and then turn it off. Compute the momentum of the
recoiling flashlight, in units of kg·m/s. (Cf. p. 715.)

√

(f) Discuss how your answer in part e relates to the correspondence
principle.

13 As discussed in section 19.2, the speed at which a disturbance
travels along a string under tension is given by v =

√
T/µ, where µ

is the mass per unit length, and T is the tension.
(a) Suppose a string has a density ρ, and a cross-sectional area A.
Find an expression for the maximum tension that could possibly
exist in the string without producing v > c, which is impossible
according to relativity. Express your answer in terms of ρ, A, and
c. The interpretation is that relativity puts a limit on how strong
any material can be.

√

(b) Every substance has a tensile strength, defined as the force
per unit area required to break it by pulling it apart. The ten-
sile strength is measured in units of N/m2, which is the same as the
pascal (Pa), the mks unit of pressure. Make a numerical estimate
of the maximum tensile strength allowed by relativity in the case
where the rope is made out of ordinary matter, with a density on
the same order of magnitude as that of water. (For comparison,
kevlar has a tensile strength of about 4× 109 Pa, and there is spec-
ulation that fibers made from carbon nanotubes could have values
as high as 6× 1010 Pa.)

√
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(c) A black hole is a star that has collapsed and become very dense,
so that its gravity is too strong for anything ever to escape from it.
For instance, the escape velocity from a black hole is greater than
c, so a projectile can’t be shot out of it. Many people, when they
hear this description of a black hole in terms of an escape velocity,
wonder why it still wouldn’t be possible to extract an object from
a black hole by other means. For example, suppose we lower an
astronaut into a black hole on a rope, and then pull him back out
again. Why might this not work?

14 (a) A charged particle is surrounded by a uniform electric
field. Starting from rest, it is accelerated by the field to speed v after
traveling a distance d. Now it is allowed to continue for a further
distance 3d, for a total displacement from the start of 4d. What
speed will it reach, assuming newtonian physics?
(b) Find the relativistic result for the case of v = c/2.

15 Problem 15 on p. 390 (with the solution given in the back of
the book) demonstrates that in Newtonian mechanics, conservation
of momentum is the necessary and sufficient condition if conserva-
tion of energy is to hold in all frames of reference. The purpose of
this problem is to generalize that idea to relativity (in one dimen-
sion).

Let a system contain two interacting particles, each with unit mass.
Then if energy is conserved in a particular frame, we must have
G1 + G2 = G′1 + G′2, where the primes indicate the quantities after
interaction. Suppose that we now change to a new frame, in motion
relative to the first one at a velocity ε that is much less than 1 (in
units where c = 1). The velocities all change according to the result
of problem 21 on p. 727. Show that energy is conserved in the new
frame if and only if momentum is conserved.

Hints: (1) Since ε is small, you can take 1/(1+ε) ≈ 1−ε. (2) Rather
than directly using the result of problem 21, it is easier to eliminate
the velocities in favor of the corresponding Doppler-shift factors D,
which simply multiply when the velocities are combined. (3) The
identity vG = (1/D −D)/2 is handy here. ?

16 (a) Let L be the diameter of our galaxy. Suppose that a
person in a spaceship of mass m wants to travel across the galaxy
at constant speed, taking proper time τ . Find the kinetic energy of
the spaceship. (b) Your friend is impatient, and wants to make the
voyage in an hour. For L = 105 light years, estimate the energy in
units of megatons of TNT (1 megaton=4× 109 J).
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Exercise 26A: Sports in Slowlightland
In Slowlightland, the speed of light is 20 mi/hr = 32 km/hr = 9 m/s. Think of an example of
how relativistic effects would work in sports. Things can get very complex very quickly, so try
to think of a simple example that focuses on just one of the following effects:

• relativistic momentum

• relativistic kinetic energy

• relativistic addition of velocities (See problem 21, with the answer given on p. 1034.)

• time dilation and length contraction

• Doppler shifts of light (See section 24.7.)

• equivalence of mass and energy

• time it takes for light to get to an athlete’s eye

• deflection of light rays by gravity
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Exercise 26B: Nuclear decay
1. Consulting a periodic table, find the N , Z, and A of the following:

N Z A
4He
244Pu

2. Consider the following five decay processes:

• α decay

• γ decay

• p→ n + e+ + ν (β+ decay)

• n→ p + e− + ν̄ (β− decay)

• p + e− → n + ν (electron capture)

What would be the action of each of these on the chart of the nuclei? The * represents the
original nucleus.

3. (a) Suppose that 244Pu undergoes perfectly symmetric fission, and also emits two neutrons.
Find the daughter isotope.

(b) Is the daughter stable, or is it neutron-rich or -poor relative to the line of stability? (To
estimate what’s stable, you can use a large chart of the nuclei, or, if you don’t have one handy,
consult a periodic table and use the average atomic mass as an approximation to the stable
value of A.)

(c) Consulting the chart of the nuclei (fig. ac on p. 788), explain why it turns out this way.

(d) If the daughter is unstable, which process from question #2 would you expect it to decay
by?

816 Chapter 26 The Atom and E=mc2



Exercise 26C: Misconceptions about relativity
The following is a list of common misconceptions about relativity. The class will be split
up into random groups, and each group will cooperate on developing an explanation of the
misconception, and then the groups will present their explanations to the class. There may
be multiple rounds, with students assigned to different randomly chosen groups in successive
rounds.

1. How can light have momentum if it has zero mass?

2. What does the world look like in a frame of reference moving at c?

3. Alice observes Betty coming toward her from the left at c/2, and Carol from the right at
c/2. Therefore Betty is moving at the speed of light relative to Carol.

4. Are relativistic effects such as length contraction and time dilation real, or do they just
seem to be that way?

5. Special relativity only matters if you’re moving close to the speed of light.

6. Special relativity says that everything is relative.

7. There is a common misconception that relativistic length contraction is what we would
actually see. Refute this by drawing a spacetime diagram for an object approaching an
observer, and tracing rays of light emitted from the object’s front and back that both
reach the observer’s eye at the same time.

8. When you travel close to the speed of light, your time slows down.

9. Is a light wave’s wavelength relativistically length contracted by a factor of gamma?

10. Accelerate a baseball to ultrarelativistic speeds. Does it become a black hole?

11. Where did the Big Bang happen?

12. The universe can’t be infinite in size, because it’s only had a finite amount of time to
expand from the point where the Big Bang happened.
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Postulates of Euclidean geome-
try:
1. Two points determine a line.
2. Line segments can be ex-
tended.
3. A unique circle can be con-
structed given any point as its
center and any line segment as
its radius.
4. All right angles are equal to
one another.
5. Given a line and a point not
on the line, no more than one
line can be drawn through the
point and parallel to the given
line.

a / Noneuclidean effects, such as
the discrepancy from 180◦ in the
sum of the angles of a triangle,
are expected to be proportional
to area. Here, a noneuclidean
equilateral triangle is cut up into
four smaller equilateral triangles,
each with 1/4 the area. As proved
in problem 1, the discrepancy
is quadrupled when the area is
quadrupled.

Chapter 27

General relativity

What you’ve learned so far about relativity is known as the special
theory of relativity, which is compatible with three of the four known
forces of nature: electromagnetism, the strong nuclear force, and
the weak nuclear force. Gravity, however, can’t be shoehorned into
the special theory. In order to make gravity work, Einstein had to
generalize relativity. The resulting theory is known as the general
theory of relativity.1

27.1 Our universe isn’t Euclidean
Euclid proved thousands of years ago that the angles in a triangle
add up to 180◦. But what does it really mean to “prove” this?
Euclid proved it based on certain assumptions (his five postulates),
listed in the margin of this page. But how do we know that the
postulates are true?

Only by observation can we tell whether any of Euclid’s statements
are correct characterizations of how space actually behaves in our
universe. If we draw a triangle on paper with a ruler and measure
its angles with a protractor, we will quickly verify to pretty good
precision that the sum is close to 180◦. But of course we already
knew that space was at least approximately Euclidean. If there
had been any gross error in Euclidean geometry, it would have been
detected in Euclid’s own lifetime. The correspondence principle tells
us that if there is going to be any deviation from Euclidean geometry,
it must be small under ordinary conditions.

To improve the precision of the experiment, we need to make sure
that our ruler is very straight. One way to check would be to sight
along it by eye, which amounts to comparing its straightness to that
of a ray of light. For that matter, we might as well throw the physical
ruler in the trash and construct our triangle out of three laser beams.
To avoid effects from the air we should do the experiment in outer
space. Doing it in space also has the advantage of allowing us to
make the triangle very large; as shown in figure a, the discrepancy

1Einstein originally described the distinction between the two theories by
saying that the special theory applied to nonaccelerating frames of reference,
while the general one allowed any frame at all. The modern consensus is that
Einstein was misinterpreting his own theory, and that special relativity actually
handles accelerating frames just fine.
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b / An Einstein’s ring. The
distant object is a quasar,
MG1131+0456, and the one
in the middle is an unknown
object, possibly a supermassive
black hole. The intermediate
object’s gravity focuses the rays
of light from the distant one.
Because the entire arrangement
lacks perfect axial symmetry, the
ring is nonuniform; most of its
brightness is concentrated in two
lumps on opposite sides.

from 180◦ is expected to be proportional to the area of the triangle.

But we already know that light rays are bent by gravity. We expect
it based on E = mc2, which tells us that the energy of a light
ray is equivalent to a certain amount of mass, and furthermore it
has been verified experimentally by the deflection of starlight by
the sun (example 8, p. 799). We therefore know that our universe
is noneuclidean, and we gain the further insight that the level of
deviation from Euclidean behavior depends on gravity.

Since the noneuclidean effects are bigger when the system being
studied is larger, we expect them to be especially important in the
study of cosmology, where the distance scales are very large.

Einstein’s ring example 1
An Einstein’s ring, figure b, is formed when there is a chance
alignment of a distant source with a closer gravitating body. This
type of gravitational lensing is direct evidence for the noneuclidean
nature of space. The two light rays are lines, and they violate Eu-
clid’s first postulate, that two points determine a line.

One could protest that effects like these are just an imperfection
of the light rays as physical models of straight lines. Maybe the
noneuclidean effects would go away if we used something better and
straighter than a light ray. But we don’t know of anything straighter
than a light ray. Furthermore, we observe that all measuring devices,
not just optical ones, report the same noneuclidean behavior.

Curvature

An example of such a non-optical measurement is the Gravity Probe
B satellite, figure d, which was launched into a polar orbit in 2004
and operated until 2010. The probe carried four gyroscopes made
of quartz, which were the most perfect spheres ever manufactured,
varying from sphericity by no more than about 40 atoms. Each
gyroscope floated weightlessly in a vacuum, so that its rotation was
perfectly steady. After 5000 orbits, the gyroscopes had reoriented
themselves by about 2 × 10−3◦ relative to the distant stars. This
effect cannot be explained by Newtonian physics, since no torques
acted on them. It was, however, exactly as predicted by Einstein’s
theory of general relativity. It becomes easier to see why such an
effect would be expected due to the noneuclidean nature of space if
we characterize euclidean geometry as the geometry of a flat plane
as opposed to a curved one. On a curved surface like a sphere,
figure c, Euclid’s fifth postulate fails, and it’s not hard to see that
we can get triangles for which the sum of the angles is not 180◦.
By transporting a gyroscope all the way around the edges of such a
triangle and back to its starting point, we change its orientation.

The triangle in figure c has angles that add up to more than 180◦.
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d / Gravity Probe B was in a
polar orbit around the earth. As
in the right panel of figure c,
the orientation of the gyroscope
changes when it is carried around
a curve and back to its starting
point. Because the effect was
small, it was necessary to let it
accumulate over the course of
5000 orbits in order to make it
detectable.

e / A triangle in a space with
negative curvature has angles
that add to less than 180◦.

c / Left : A 90-90-90 triangle. Its angles add up to more than 180◦.
Middle: The triangle “pops” off the page visually. We intuitively want
to visualize it as lying on a curved surface such as the earth’s. Right :
A gyroscope carried smoothly around its perimeter ends up having
changed its orientation when it gets back to its starting point.

This type of curvature is referred to as positive. It is also possible
to have negative curvature, as in figure e.

In general relativity, curvature isn’t just something caused by grav-
ity. Gravity is curvature, and the curvature involves both space
and time, as may become clearer once you get to figure k. Thus
the distinction between special and general relativity is that gen-
eral relativity handles curved spacetime, while special relativity is
restricted to the case where spacetime is flat.

Curvature doesn’t require higher dimensions

Although we often visualize curvature by imagining embedding a
two-dimensional surface in a three-dimensional space, that’s just
an aid in visualization. There is no evidence for any additional
dimensions, nor is it necessary to hypothesize them in order to let
spacetime be curved as described in general relativity.

f / Only measurements from within the plane define whether the
plane is curved. It could look curved when drawn embedded in three
dimensions, but nevertheless still be intrinsically flat.

Put yourself in the shoes of a two-dimensional being living in a two-
dimensional space. Euclid’s postulates all refer to constructions that
can be performed using a compass and an unmarked straightedge.
If this being can physically verify them all as descriptions of the
space she inhabits, then she knows that her space is Euclidean, and
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that propositions such as the Pythagorean theorem are physically
valid in her universe. But the diagram in f/1 illustrating the proof
of the Pythagorean theorem in Euclid’s Elements (proposition I.47)
is equally valid if the page is rolled onto a cylinder, 2, or formed into
a wavy corrugated shape, 3. These types of curvature, which can be
achieved without tearing or crumpling the surface, are not real to
her. They are simply side-effects of visualizing her two-dimensional
universe as if it were embedded in a hypothetical third dimension
— which doesn’t exist in any sense that is empirically verifiable
to her. Of the curved surfaces in figure f, only the sphere, 4, has
curvature that she can measure; the diagram can’t be plastered onto
the sphere without folding or cutting and pasting.

So the observation of curvature doesn’t imply the existence of extra
dimensions, nor does embedding a space in a higher-dimensional one
so that it looks curvy always mean that there will be any curvature
detectable from within the lower-dimensional space.

27.2 The equivalence principle
Universality of free-fall

Although light rays and gyroscopes seem to agree that space is
curved in a gravitational field, it’s always conceivable that we could
find something else that would disagree. For example, suppose that
there is a new and improved ray called the StraightRayTM. The
StraightRay is like a light ray, but when we construct a triangle out
of StraightRays, we always get the Euclidean result for the sum of
the angles. We would then have to throw away general relativity’s
whole idea of describing gravity in terms of curvature. One good
way of making a StraightRay would be if we had a supply of some
kind of exotic matter — call it FloatyStuffTM — that had the or-
dinary amount of inertia, but was completely unaffected by gravity.
We could then shoot a stream of FloatyStuff particles out of a nozzle
at nearly the speed of light and make a StraightRay.

Normally when we release a material object in a gravitational field, it
experiences a force mg, and then by Newton’s second law its acceler-
ation is a = F/m = mg/m = g. The m’s cancel, which is the reason
that everything falls with the same acceleration (in the absence of
other forces such as air resistance). The universality of this behavior
is what allows us to interpret the gravity geometrically in general
relativity. For example, the Gravity Probe B gyroscopes were made
out of quartz, but if they had been made out of something else, it
wouldn’t have mattered. But if we had access to some FloatyStuff,
the geometrical picture of gravity would fail, because the “m” that
described its susceptibility to gravity would be a different “m” than
the one describing its inertia.

The question of the existence or nonexistence of such forms of matter
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g / An artificial horizon.

turns out to be related to the question of what kinds of motion
are relative. Let’s say that alien gangsters land in a flying saucer,
kidnap you out of your back yard, konk you on the head, and take
you away. When you regain consciousness, you’re locked up in a
sealed cabin in their spaceship. You pull your keychain out of your
pocket and release it, and you observe that it accelerates toward the
floor with an acceleration that seems quite a bit slower than what
you’re used to on earth, perhaps a third of a gee. There are two
possible explanations for this. One is that the aliens have taken you
to some other planet, maybe Mars, where the strength of gravity is
a third of what we have on earth. The other is that your keychain
didn’t really accelerate at all: you’re still inside the flying saucer,
which is accelerating at a third of a gee, so that it was really the
deck that accelerated up and hit the keys.

There is absolutely no way to tell which of these two scenarios is
actually the case — unless you happen to have a chunk of FloatyStuff
in your other pocket. If you release the FloatyStuff and it hovers
above the deck, then you’re on another planet and experiencing
genuine gravity; your keychain responded to the gravity, but the
FloatyStuff didn’t. But if you release the FloatyStuff and see it hit
the deck, then the flying saucer is accelerating through outer space.

The nonexistence of FloatyStuff in our universe is called the equiv-
alence principle. If the equivalence principle holds, then an acceler-
ation (such as the acceleration of the flying saucer) is always equiv-
alent to a gravitational field, and no observation can ever tell the
difference without reference to something external. (And suppose
you did have some external reference point — how would you know
whether it was accelerating?)

The artificial horizon example 2
The pilot of an airplane cannot always easily tell which way is up.
The horizon may not be level simply because the ground has an
actual slope, and in any case the horizon may not be visible if the
weather is foggy. One might imagine that the problem could be
solved simply by hanging a pendulum and observing which way
it pointed, but by the equivalence principle the pendulum cannot
tell the difference between a gravitational field and an acceler-
ation of the aircraft relative to the ground — nor can any other
accelerometer, such as the pilot’s inner ear. For example, when
the plane is turning to the right, accelerometers will be tricked into
believing that “down” is down and to the left. To get around this
problem, airplanes use a device called an artificial horizon, which
is essentially a gyroscope. The gyroscope has to be initialized
when the plane is known to be oriented in a horizontal plane. No
gyroscope is perfect, so over time it will drift. For this reason the
instrument also contains an accelerometer, and the gyroscope is
always forced into agreement with the accelerometer’s average
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h / 1. A ray of light is emit-
ted upward from the floor of the
elevator. The elevator acceler-
ates upward. 2. By the time the
light is detected at the ceiling, the
elevator has changed its velocity,
so the light is detected with a
Doppler shift.

i / Pound and Rebka at the
top and bottom of the tower.

output over the preceding several minutes. If the plane is flown in
circles for several minutes, the artificial horizon will be fooled into
indicating that the wrong direction is vertical.

Gravitational Doppler shifts and time dilation

An interesting application of the equivalence principle is the ex-
planation of gravitational time dilation. As described on p. 672,
experiments show that a clock at the top of a mountain runs faster
than one down at its foot.

To calculate this effect, we make use of the fact that the gravi-
tational field in the area around the mountain is equivalent to an
acceleration. Suppose we’re in an elevator accelerating upward with
acceleration a, and we shoot a ray of light from the floor up toward
the ceiling, at height h. The time ∆t it takes the light ray to get
to the ceiling is about h/c, and by the time the light ray reaches
the ceiling, the elevator has sped up by v = a∆t = ah/c, so we’ll
see a red-shift in the ray’s frequency. Since v is small compared
to c, we don’t need to use the fancy Doppler shift equation from
section 24.7; we can just approximate the Doppler shift factor as
1− v/c ≈ 1−ah/c2. By the equivalence principle, we should expect
that if a ray of light starts out low down and then rises up through
a gravitational field g, its frequency will be Doppler shifted by a fac-
tor of 1 − gh/c2. This effect was observed in a famous experiment
carried out by Pound and Rebka in 1959. Gamma-rays were emit-
ted at the bottom of a 22.5-meter tower at Harvard and detected at
the top with the Doppler shift predicted by general relativity. (See
problem 4.)

In the mountain-valley experiment, the frequency of the clock in
the valley therefore appears to be running too slowly by a factor of
1 − gh/c2 when it is compared via radio with the clock at the top
of the mountain. We conclude that time runs more slowly when
one is lower down in a gravitational field, and the slow-down factor
between two points is given by 1− gh/c2, where h is the difference
in height.

We have built up a picture of light rays interacting with gravity. To
confirm that this make sense, recall that we have already observed
on p. 715 and in problem 12 on p. 813 that light has momentum.
The equivalence principle says that whatever has inertia must also
participate in gravitational interactions. Therefore light waves must
have weight, and must lose energy when they rise through a gravi-
tational field(cf. p. 804).

Local flatness

The noneuclidean nature of spacetime produces effects that grow in
proportion to the area of the region being considered. Interpret-
ing such effects as evidence of curvature, we see that this connects
naturally to the idea that curvature is undetectable from close up.

824 Chapter 27 General relativity



j / The earth is flat — locally.

k / Spacetime is locally flat.

For example, the curvature of the earth’s surface is not normally
noticeable to us in everyday life. Locally, the earth’s surface is flat,
and the same is true for spacetime.

Local flatness turns out to be another way of stating the equivalence
principle. In a variation on the alien-abduction story, suppose that
you regain consciousness aboard the flying saucer and find yourself
weightless. If the equivalence principle holds, then you have no way
of determining from local observations, inside the saucer, whether
you are actually weightless in deep space, or simply free-falling in ap-
parent weightlessness, like the astronauts aboard the International
Space Station. That means that locally, we can always adopt a free-
falling frame of reference in which there is no gravitational field at
all. If there is no gravity, then special relativity is valid, and we can
treat our local region of spacetime as being approximately flat.

In figure k, an apple falls out of a tree. Its path is a “straight” line
in spacetime, in the same sense that the equator is a “straight” line
on the earth’s surface.

Inertial frames

In Newtonian mechanics, we have a distinction between inertial and
noninertial frames of reference. An inertial frame according to New-
ton is one that has a constant velocity vector relative to the stars.
But what if the stars themselves are accelerating due to a gravita-
tional force from the rest of the galaxy? We could then take the
galaxy’s center of mass as defining an inertial frame, but what if
something else is acting on the galaxy?

l / Wouldn’t it be nice if we could define the meaning of a Newto-
nian inertial frame of reference? Newton makes it sound easy: to define
an inertial frame, just find some object that is not accelerating because
it is not being acted on by any external forces. But what object would
we use? The earth? The “fixed stars?” Our galaxy? Our supercluster of
galaxies? All of these are accelerating — relative to something.

If we had some FloatyStuff, we could resolve the whole question.
FloatyStuff isn’t affected by gravity, so if we release a sample of it
in mid-air, it will continue on a trajectory that defines a perfect
Newtonian inertial frame. (We’d better have it on a tether, because
otherwise the earth’s rotation will carry the earth out from under
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m / Matter is lifted out of a
Newtonian black hole with a
bucket. The dashed line rep-
resents the point at which the
escape velocity equals the speed
of light. For a real, relativistic
black hole, this is impossible.

it.) But if the equivalence principle holds, then Newton’s definition
of an inertial frame is fundamentally flawed.

There is a different definition of an inertial frame that works better
in relativity. A Newtonian inertial frame was defined by an object
that isn’t subject to any forces, gravitational or otherwise. In gen-
eral relativity, we instead define an inertial frame using an object
that that isn’t influenced by anything other than gravity. By this
definition, a free-falling rock defines an inertial frame, but this book
sitting on your desk does not.

27.3 Black holes
The observations described so far showed only small effects from
curvature. To get a big effect, we should look at regions of space in
which there are strong gravitational fields. The prime example is a
black hole. The best studied examples are two objects in our own
galaxy: Cygnus X-1, which is believed to be a black hole with about
ten times the mass of our sun, and Sagittarius A*, an object near
the center of our galaxy with about four million solar masses. (See
problem 14, p. 283 for how we know Sagittarius A*’s mass.)

Although a black hole is a relativistic object, we can gain some
insight into how it works by applying Newtonian physics. As shown
in problem 21 on p. 358, a spherical body of mass M has an escape
velocity v =

√
2GM/r, which is the minimum velocity that we

would need to give to a projectile shot from a distance r so that it
would never fall back down. If r is small enough, the escape velocity
will be greater than c, so that even a ray of light can never escape.

We can now make an educated guess as to what this means without
having to study all the mathematics of general relativity. In rela-
tivity, c isn’t really the speed of light, it’s really to be thought of
as a restriction on how fast cause and effect can propagate through
space. This suggests the correct interpretation, which is that for an
object compact enough to be a black hole, there is no way for an
event at a distance closer than r to have an effect on an event far
away. There is an invisible, spherical boundary with radius r, called
the event horizon, and the region within that boundary is cut off
from the rest of the universe in terms of cause and effect. If you
wanted to explore that region, you could drop into it while wearing
a space-suit — but it would be a one-way trip, because you could
never get back out to report on what you had seen.

In the Newtonian description of a black hole, matter could be lifted
out of a black hole, m. Would this be possible with a real-world
black hole, which is relativistic rather than Newtonian? No, because
the bucket is causally separated from the outside universe. No rope
would be strong enough for this job (problem 13, p. 813).
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n / The equivalence principle tells
us that spacetime locally has the
same structure as in special rel-
ativity, so we can draw the famil-
iar parallelogram of x − t coordi-
nates at each point near the black
hole. Superimposed on each lit-
tle grid is a pair of lines repre-
senting motion at the speed of
light in both directions, inward and
outward. Because spacetime is
curved, these lines do not ap-
pear to be at 45-degree angles,
but to an observer in that region,
they would appear to be. When
light rays are emitted inward and
outward from a point outside the
event horizon, one escapes and
one plunges into the black hole.
On this diagram, they look like
they are decelerating and accel-
erating, but local observers com-
paring them to their own coordi-
nate grids would always see them
as moving at exactly c. When
rays are emitted from a point in-
side the event horizon, neither es-
capes; the distortion is so severe
that “outward” is really inward.

One misleading aspect of the Newtonian analysis is that it encour-
ages us to imagine that a light ray trying to escape from a black
hole will slow down, stop, and then fall back in. This can’t be right,
because we know that any observer who sees a light ray flying by
always measures its speed to be c. This was true in special relativity,
and by the equivalence principle we can be assured that the same is
true locally in general relativity. Figure n shows what would really
happen.

Although the light rays in figure n don’t speed up or slow down, they
do experience gravitational Doppler shifts. If a light ray is emitted
from just above the event horizon, then it will escape to an infinite
distance, but it will suffer an extreme Doppler shift toward low
frequencies. A distant observer also has the option of interpreting
this as a gravitational time dilation that greatly lowers the frequency
of the oscillating electric charges that produced the ray. If the point
of emission is made closer and closer to the horizon, the frequency
and energy (see p. 804) measured by a distant observer approach
zero, making the ray impossible to observe.

Information paradox

Black holes have some disturbing implications for the kind of uni-
verse that in the Age of the Enlightenment was imagined to have
been set in motion initially and then left to run forever like clock-
work.

Newton’s laws have built into them the implicit assumption that
omniscience is possible, at least in principle. For example, New-
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o / In Newtonian contexts,
physicists and astronomers had
a correct intuition that it’s hard
for things to collapse gravita-
tionally. This star cluster has
been around for about 15 billion
years, but it hasn’t collapsed into
a black hole. If any individual
star happens to head toward the
center, conservation of angular
momentum tends to cause it to
swing past and fly back out. The
Penrose singularity theorem tells
us that this Newtonian intuition is
wrong when applied to an object
that has collapsed past a certain
point.

ton’s definition of an inertial frame of reference leads to an infinite
regress, as described on p. 825. For Newton this isn’t a problem, be-
cause in principle an omnisicient observer can know the location of
every mass in the universe. In this conception of the cosmos, there
are no theoretical limits on human knowledge, only practical ones;
if we could gather sufficiently precise data about the state of the
universe at one time, and if we could carry out all the calculations
to extrapolate into the future, then we could know everything that
would ever happen. (See the famous quote by Laplace on p. 18.)

But the existence of event horizons surrounding black holes makes it
impossible for any observer to be omniscient; only an observer inside
a particular horizon can see what’s going on inside that horizon.

Furthermore, a black hole has at its center an infinitely dense point,
called a singularity, containing all its mass, and this implies that
information can be destroyed and made inaccessible to any observer
at all. For example, suppose that astronaut Alice goes on a suicide
mission to explore a black hole, free-falling in through the event
horizon. She has a certain amount of time to collect data and satisfy
her intellectual curiosity, but then she impacts the singularity and is
compacted into a mathematical point. Now astronaut Betty decides
that she will never be satisfied unless the secrets revealed to Alice
are known to her as well — and besides, she was Alice’s best friend,
and she wants to know whether Alice had any last words. Betty
can jump through the horizon, but she can never know Alice’s last
words, nor can any other observer who jumps in after Alice does.

This destruction of information is known as the black hole infor-
mation paradox, and it’s referred to as a paradox because quantum
physics (ch. 33-36) has built into its DNA the requirement that in-
formation is never lost in this sense.

Formation

Around 1960, as black holes and their strange properties began to
be better understood and more widely discussed, many physicists
who found these issues distressing comforted themselves with the
belief that black holes would never really form from realistic initial
conditions, such as the collapse of a massive star. Their skepticism
was not entirely unreasonable, since it is usually very hard in astron-
omy to hit a gravitating target, the reason being that conservation
of angular momentum tends to make the projectile swing past. (See
problem 13 on p. 426 for a quantitative analysis.) For example, if
we wanted to drop a space probe into the sun, we would have to ex-
tremely precisely stop its sideways orbital motion so that it would
drop almost exactly straight in. Once a star started to collapse,
the theory went, and became relatively compact, it would be such a
small target that further infalling material would be unlikely to hit
it, and the process of collapse would halt. According to this point
of view, theorists who had calculated the collapse of a star into a
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black hole had been oversimplifying by assuming a star that was
initially perfectly spherical and nonrotating. Remove the unrealis-
tically perfect symmetry of the initial conditions, and a black hole
would never actually form.

But Roger Penrose proved in 1964 that this was wrong. In fact,
once an object collapses to a certain density, the Penrose singularity
theorem guarantees mathematically that it will collapse further until
a singularity is formed, and this singularity is surrounded by an
event horizon. Since the brightness of an object like Sagittarius A*
is far too low to be explained unless it has an event horizon (the
interstellar gas flowing into it would glow due to frictional heating),
we can be certain that there really is a singularity at its core.

27.4 Cosmology
The Big Bang

Section 19.5 presented the evidence, discovered by Hubble, that the
universe is expanding in the aftermath of the Big Bang: when we
observe the light from distant galaxies, it is always Doppler-shifted
toward the red end of the spectrum, indicating that no matter what
direction we look in the sky, everything is rushing away from us.
This seems to go against the modern attitude, originated by Coper-
nicus, that we and our planet do not occupy a special place in the
universe. Why is everything rushing away from our planet in par-
ticular? But general relativity shows that this anti-Copernican con-
clusion is wrong. General relativity describes space not as a rigidly
defined background but as something that can curve and stretch,
like a sheet of rubber. We imagine all the galaxies as existing on the
surface of such a sheet, which then expands uniformly. The space
between the galaxies (but not the galaxies themselves) grows at a
steady rate, so that any observer, inhabiting any galaxy, will see
every other galaxy as receding. There is therefore no privileged or
special location in the universe.

We might think that there would be another kind of special place,
which would be the one at which the Big Bang happened. Maybe
someone has put a brass plaque there? But general relativity doesn’t
describe the Big Bang as an explosion that suddenly occurred in a
preexisting background of time and space. According to general
relativity, space itself came into existence at the Big Bang, and the
hot, dense matter of the early universe was uniformly distributed
everywhere. The Big Bang happened everywhere at once.

Observations show that the universe is very uniform on large scales,
and for ease of calculation, the first physical models of the expanding
universe were constructed with perfect uniformity. In these models,
the Big Bang was a singularity. This singularity can’t even be in-
cluded as an event in spacetime, so that time itself only exists after
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the Big Bang. A Big Bang singularity also creates an even more
acute version of the black hole information paradox. Whereas mat-
ter and information disappear into a black hole singularity, stuff
pops out of a Big Bang singularity, and there is no physical princi-
ple that could predict what it would be.

As with black holes, there was considerable skepticism about whether
the existence of an initial singularity in these models was an ari-
fact of the unrealistically perfect uniformity assumed in the models.
Perhaps in the real universe, extrapolation of all the paths of the
galaxies backward in time would show them missing each other by
millions of light-years. But in 1972 Stephen Hawking proved a vari-
ant on the Penrose singularity theorem that applied to Big Bang
singularities. By the Hawking singularity theorem, the level of uni-
formity we see in the present-day universe is more than sufficient to
prove that a Big Bang singularity must have existed.

The cosmic censorship hypothesis

It might not be too much of a philosophical jolt to imagine that
information was spontaneously created in the Big Bang. Setting
up the initial conditions of the entire universe is traditionally the
prerogative of God, not the laws of physics. But there is nothing
fundamental in general relativity that forbids the existence of other
singularities that act like the Big Bang, being information produc-
ers rather than information consumers. As John Earman of the
University of Pittsburgh puts it, anything could pop out of such
a singularity, including green slime or your lost socks. This would
eliminate any hope of finding a universal set of laws of physics that
would be able to make a prediction given any initial situation.

That would be such a devastating defeat for the enterprise of physics
that in 1969 Penrose proposed an alternative, humorously named the
“cosmic censorship hypothesis,” which states that every singularity
in our universe, other than the Big Bang, is hidden behind an event
horizon. Therefore if green slime spontaneously pops out of one,
there is limited impact on the predictive ability of physics, since
the slime can never have any causal effect on the outside world. A
singularity that is not modestly cloaked behind an event horizon
is referred to as a naked singularity. Nobody has yet been able to
prove the cosmic censorship hypothesis.

The advent of high-precision cosmology

We expect that if there is matter in the universe, it should have
gravitational fields, and in the rubber-sheet analogy this should be
represented as a curvature of the sheet. Instead of a flat sheet, we
can have a spherical balloon, so that cosmological expansion is like
inflating it with more and more air. It is also possible to have nega-
tive curvature, as in figure e on p. 821. All three of these are valid,
possible cosmologies according to relativity. The positive-curvature
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p / An expanding universe
with positive spatial curvature
can be imagined as a balloon
being blown up. Every galaxy’s
distance from every other galaxy
increases, but no galaxy is the
center of the expansion.

q / The angular scale of fluc-
tuations in the cosmic microwave
background can be used to infer
the curvature of the universe.

type happens if the average density of matter in the universe is above
a certain critical level, the negative-curvature one if the density is
below that value.

To find out which type of universe we inhabit, we could try to take
a survey of the matter in the universe and determine its average
density. Historically, it has been very difficult to do this, even to
within an order of magnitude. Most of the matter in the universe
probably doesn’t emit light, making it difficult to detect. Astronom-
ical distance scales are also very poorly calibrated against absolute
units such as the SI.

Instead, we measure the universe’s curvature, and infer the density
of matter from that. It turns out that we can do this by observ-
ing the cosmic microwave background (CMB) radiation, which is
the light left over from the brightly glowing early universe, which
was dense and hot. As the universe has expanded, light waves that
were in flight have expanded their wavelengths along with it. This
afterglow of the big bang was originally visible light, but after bil-
lions of years of expansion it has shifted into the microwave radio
part of the electromagnetic spectrum. The CMB is not perfectly
uniform, and this turns out to give us a way to measure the uni-
verse’s curvature. Since the CMB was emitted when the universe
was only about 400,000 years old, any vibrations or disturbances in
the hot hydrogen and helium gas that filled space in that era would
only have had time to travel a certain distance, limited by the speed
of sound. We therefore expect that no feature in the CMB should
be bigger than a certain known size. In a universe with negative
spatial curvature, the sum of the interior angles of a triangle is less
than the Euclidean value of 180 degrees. Therefore if we observe
a variation in the CMB over some angle, the distance between two
points on the sky is actually greater than would have been inferred
from Euclidean geometry. The opposite happens if the curvature is
positive.

This observation was done by the 1989-1993 COBE probe, and its
2001-2009 successor, the Wilkinson Microwave Anisotropy Probe.
The result is that the angular sizes are almost exactly equal to what
they should be according to Euclidean geometry. We therefore infer
that the universe is very close to having zero average spatial cur-
vature on the cosmological scale, and this tells us that its average
density must be within about 0.5% of the critical value. The years
since COBE and WMAP mark the advent of an era in which cos-
mology has gone from being a field of estimates and rough guesses
to a high-precision science.

If one is inclined to be skeptical about the seemingly precise an-
swers to the mysteries of the cosmos, there are consistency checks
that can be carried out. In the bad old days of low-precision cos-
mology, estimates of the age of the universe ranged from 10 billion
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to 20 billion years, and the low end was inconsistent with the age
of the oldest star clusters. This was believed to be a problem either
for observational cosmology or for the astrophysical models used to
estimate the ages of the clusters: “You can’t be older than your
ma.” Current data have shown that the low estimates of the age
were incorrect, so consistency is restored. (The best figure for the
age of the universe is currently 13.8± 0.1 billion years.)

Dark energy and dark matter

Not everything works out so smoothly, however. One surprise, dis-
cussed in section 10.6, is that the universe’s expansion is not cur-
rently slowing down, as had been expected due to the gravitational
attraction of all the matter in it. Instead, it is currently speeding up.
This is attributed to a variable in Einstein’s equations, long assumed
to be zero, which represents a universal gravitational repulsion of
space itself, occurring even when there is no matter present. The
current name for this is “dark energy,” although the fancy name is
just a label for our ignorance about what causes it.

Another surprise comes from attempts to model the formation of
the elements during the era shortly after the Big Bang, before the
formation of the first stars (section 26.4.10). The observed rela-
tive abundances of hydrogen, helium, and deuterium (2H) cannot
be reconciled with the density of low-velocity matter inferred from
the observational data. If the inferred mass density were entirely
due to normal matter (i.e., matter whose mass consisted mostly of
protons and neutrons), then nuclear reactions in the dense early uni-
verse should have proceeded relatively efficiently, leading to a much
higher ratio of helium to hydrogen, and a much lower abundance of
deuterium. The conclusion is that most of the matter in the universe
must be made of an unknown type of exotic matter, known as “dark
matter.” We are in the ironic position of knowing that precisely 96%
of the universe is something other than atoms, but knowing nothing
about what that something is. As of 2013, there have been several
experiments that have been carried out to attempt the direct detec-
tion of dark matter particles. These are carried out at the bottom of
mineshafts to eliminate background radiation. Early claims of suc-
cess appear to have been statistical flukes, and the most sensitive
experiments have not detected anything.2

2arxiv.org/abs/1310.8214
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Problem 4b. Redrawn from
Van Baak, Physics Today 60
(2007) 16.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Prove, as claimed in the caption of figure a on p. 819, that
S−180◦ = 4(s−180◦), where S is the sum of the angles of the large
equilateral triangle and s is the corresponding sum for one of the
four small ones. . Solution, p. 1035

2 If a two-dimensional being lived on the surface of a cone,
would it say that its space was curved, or not?

3 (a) Verify that the equation 1 − gh/c2 for the gravitational
Doppler shift and gravitational time dilation has units that make
sense. (b) Does this equation satisfy the correspondence principle?

4 (a) Calculate the Doppler shift to be expected in the Pound-
Rebka experiment described on p. 824. (b) In the 1978 Iijima
mountain-valley experiment (p. 672), analysis was complicated by
the clock’s sensitivity to pressure, humidity, and temperature. A
cleaner version of the experiment was done in 2005 by hobbyist
Tom Van Baak. He put his kids and three of his atomic clocks in a
minivan and drove from Bellevue, Washington to a lodge on Mount
Rainier, 1340 meters higher in elevation. They spent the weekend
there. Back at home, he compared the clocks to others that had
stayed at his house. Verify that the effect shown in the graph is as
predicted by general relativity.

5 The International Space Station orbits at an altitude of about
350 km and a speed of about 8000 m/s relative to the ground. Com-
pare the gravitational and kinematic time dilations. Over all, does
time run faster on the ISS than on the ground, or more slowly?

6 Section 27.3 presented a Newtonian estimate of how compact
an object would have to be in order to be a black hole. Although
this estimate is not really right, it turns out to give the right answer
to within about a factor of 2. To roughly what size would the earth
have to be compressed in order to become a black hole?

7 Clock A sits on a desk. Clock B is tossed up in the air from
the same height as the desk and then comes back down. Compare
the elapsed times. . Hint, p. 1032 . Solution, p. 1035

8 The angular defect d of a triangle (measured in radians)
is defined as s − π, where s is the sum of the interior angles. The
angular defect is proportional to the area A of the triangle. Consider
the geometry measured by a two-dimensional being who lives on the
surface of a sphere of radius R. First find some triangle on the sphere
whose area and angular defect are easy to calculate. Then determine
the general equation for d in terms of A and R.

√
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Exercise 27: Misconceptions about relativity
The following is a list of common misconceptions about relativity. The class will be split
up into random groups, and each group will cooperate on developing an explanation of the
misconception, and then the groups will present their explanations to the class. There may
be multiple rounds, with students assigned to different randomly chosen groups in successive
rounds.

1. How can light have momentum if it has zero mass?

2. What does the world look like in a frame of reference moving at c?

3. Alice observes Betty coming toward her from the left at c/2, and Carol from the right at
c/2. Therefore Betty is moving at the speed of light relative to Carol.

4. Are relativistic effects such as length contraction and time dilation real, or do they just
seem to be that way?

5. Special relativity only matters if you’re moving close to the speed of light.

6. Special relativity says that everything is relative.

7. There is a common misconception that relativistic length contraction is what we would
actually see. Refute this by drawing a spacetime diagram for an object approaching an
observer, and tracing rays of light emitted from the object’s front and back that both
reach the observer’s eye at the same time.

8. When you travel close to the speed of light, your time slows down.

9. Is a light wave’s wavelength relativistically length contracted by a factor of gamma?

10. Accelerate a baseball to ultrarelativistic speeds. Does it become a black hole?

11. Where did the Big Bang happen?

12. The universe can’t be infinite in size, because it’s only had a finite amount of time to
expand from the point where the Big Bang happened.
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Chapter 28

The Ray Model of Light

Ads for one Macintosh computer bragged that it could do an arith-
metic calculation in less time than it took for the light to get from the
screen to your eye. We find this impressive because of the contrast
between the speed of light and the speeds at which we interact with
physical objects in our environment. Perhaps it shouldn’t surprise
us, then, that Newton succeeded so well in explaining the motion of
objects, but was far less successful with the study of light.

The climax of our study of electricity and magnetism was discovery
that light is an electromagnetic wave. Knowing this, however, is not
the same as knowing everything about eyes and telescopes. In fact,
the full description of light as a wave can be rather cumbersome.
We will instead spend most of our treatment of optics making use
of a simpler model of light, the ray model, which does a fine job in
most practical situations. Not only that, but we will even backtrack
a little and start with a discussion of basic ideas about light and
vision that predated the discovery of electromagnetic waves.

837



28.1 The nature of light
The cause and effect relationship in vision

Despite its title, this chapter is far from your first look at light.
That familiarity might seem like an advantage, but most people have
never thought carefully about light and vision. Even smart people
who have thought hard about vision have come up with incorrect
ideas. The ancient Greeks, Arabs and Chinese had theories of light
and vision, all of which were mostly wrong, and all of which were
accepted for thousands of years.

One thing the ancients did get right is that there is a distinction
between objects that emit light and objects that don’t. When you
see a leaf in the forest, it’s because three different objects are doing
their jobs: the leaf, the eye, and the sun. But luminous objects
like the sun, a flame, or the filament of a light bulb can be seen by
the eye without the presence of a third object. Emission of light
is often, but not always, associated with heat. In modern times,
we are familiar with a variety of objects that glow without being
heated, including fluorescent lights and glow-in-the-dark toys.

How do we see luminous objects? The Greek philosophers Pythago-
ras (b. ca. 560 BC) and Empedocles of Acragas (b. ca. 492
BC), who unfortunately were very influential, claimed that when
you looked at a candle flame, the flame and your eye were both
sending out some kind of mysterious stuff, and when your eye’s stuff
collided with the candle’s stuff, the candle would become evident to
your sense of sight.

Bizarre as the Greek “collision of stuff theory” might seem, it had a
couple of good features. It explained why both the candle and your
eye had to be present for your sense of sight to function. The theory
could also easily be expanded to explain how we see nonluminous
objects. If a leaf, for instance, happened to be present at the site
of the collision between your eye’s stuff and the candle’s stuff, then
the leaf would be stimulated to express its green nature, allowing
you to perceive it as green.

Modern people might feel uneasy about this theory, since it suggests
that greenness exists only for our seeing convenience, implying a hu-
man precedence over natural phenomena. Nowadays, people would
expect the cause and effect relationship in vision to be the other way
around, with the leaf doing something to our eye rather than our eye
doing something to the leaf. But how can you tell? The most com-
mon way of distinguishing cause from effect is to determine which
happened first, but the process of seeing seems to occur too quickly
to determine the order in which things happened. Certainly there is
no obvious time lag between the moment when you move your head
and the moment when your reflection in the mirror moves.

Today, photography provides the simplest experimental evidence
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a / Light from a candle is bumped
off course by a piece of glass.
Inserting the glass causes the
apparent location of the candle
to shift. The same effect can
be produced by taking off your
eyeglasses and looking at which
you see near the edge of the
lens, but a flat piece of glass
works just as well as a lens for
this purpose.

that nothing has to be emitted from your eye and hit the leaf in
order to make it “greenify.” A camera can take a picture of a leaf
even if there are no eyes anywhere nearby. Since the leaf appears
green regardless of whether it is being sensed by a camera, your eye,
or an insect’s eye, it seems to make more sense to say that the leaf’s
greenness is the cause, and something happening in the camera or
eye is the effect.

Light is a thing, and it travels from one point to another.

Another issue that few people have considered is whether a candle’s
flame simply affects your eye directly, or whether it sends out light
which then gets into your eye. Again, the rapidity of the effect makes
it difficult to tell what’s happening. If someone throws a rock at you,
you can see the rock on its way to your body, and you can tell that
the person affected you by sending a material substance your way,
rather than just harming you directly with an arm motion, which
would be known as “action at a distance.” It is not easy to do a
similar observation to see whether there is some “stuff” that travels
from the candle to your eye, or whether it is a case of action at a
distance.

Newtonian physics includes both action at a distance (e.g., the
earth’s gravitational force on a falling object) and contact forces
such as the normal force, which only allow distant objects to exert
forces on each other by shooting some substance across the space
between them (e.g., a garden hose spraying out water that exerts a
force on a bush).

One piece of evidence that the candle sends out stuff that travels to
your eye is that as in figure a, intervening transparent substances
can make the candle appear to be in the wrong location, suggesting
that light is a thing that can be bumped off course. Many peo-
ple would dismiss this kind of observation as an optical illusion,
however. (Some optical illusions are purely neurological or psycho-
logical effects, although some others, including this one, turn out to
be caused by the behavior of light itself.)

A more convincing way to decide in which category light belongs is
to find out if it takes time to get from the candle to your eye; in
Newtonian physics, action at a distance is supposed to be instan-
taneous. The fact that we speak casually today of “the speed of
light” implies that at some point in history, somebody succeeded in
showing that light did not travel infinitely fast. Galileo tried, and
failed, to detect a finite speed for light, by arranging with a person
in a distant tower to signal back and forth with lanterns. Galileo
uncovered his lantern, and when the other person saw the light, he
uncovered his lantern. Galileo was unable to measure any time lag
that was significant compared to the limitations of human reflexes.

The first person to prove that light’s speed was finite, and to deter-
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b / An image of Jupiter and
its moon Io (left) from the Cassini
probe.

c / The earth is moving to-
ward Jupiter and Io. Since the
distance is shrinking, it is taking
less and less time for the light to
get to us from Io, and Io appears
to circle Jupiter more quickly than
normal. Six months later, the
earth will be on the opposite side
of the sun, and receding from
Jupiter and Io, so Io will appear
to revolve around Jupiter more
slowly.

mine it numerically, was Ole Roemer, in a series of measurements
around the year 1675. Roemer observed Io, one of Jupiter’s moons,
over a period of several years. Since Io presumably took the same
amount of time to complete each orbit of Jupiter, it could be thought
of as a very distant, very accurate clock. A practical and accurate
pendulum clock had recently been invented, so Roemer could check
whether the ratio of the two clocks’ cycles, about 42.5 hours to 1
orbit, stayed exactly constant or changed a little. If the process of
seeing the distant moon was instantaneous, there would be no rea-
son for the two to get out of step. Even if the speed of light was
finite, you might expect that the result would be only to offset one
cycle relative to the other. The earth does not, however, stay at a
constant distance from Jupiter and its moons. Since the distance is
changing gradually due to the two planets’ orbital motions, a finite
speed of light would make the “Io clock” appear to run faster as the
planets drew near each other, and more slowly as their separation
increased. Roemer did find a variation in the apparent speed of Io’s
orbits, which caused Io’s eclipses by Jupiter (the moments when Io
passed in front of or behind Jupiter) to occur about 7 minutes early
when the earth was closest to Jupiter, and 7 minutes late when it
was farthest. Based on these measurements, Roemer estimated the
speed of light to be approximately 2×108 m/s, which is in the right
ballpark compared to modern measurements of 3×108 m/s. (I’m not
sure whether the fairly large experimental error was mainly due to
imprecise knowledge of the radius of the earth’s orbit or limitations
in the reliability of pendulum clocks.)

Light can travel through a vacuum.

Many people are confused by the relationship between sound and
light. Although we use different organs to sense them, there are
some similarities. For instance, both light and sound are typically
emitted in all directions by their sources. Musicians even use visual
metaphors like “tone color,” or “a bright timbre” to describe sound.
One way to see that they are clearly different phenomena is to note
their very different velocities. Sure, both are pretty fast compared to
a flying arrow or a galloping horse, but as we have seen, the speed of
light is so great as to appear instantaneous in most situations. The
speed of sound, however, can easily be observed just by watching a
group of schoolchildren a hundred feet away as they clap their hands
to a song. There is an obvious delay between when you see their
palms come together and when you hear the clap.

The fundamental distinction between sound and light is that sound
is an oscillation in air pressure, so it requires air (or some other
medium such as water) in which to travel. Today, we know that
outer space is a vacuum, so the fact that we get light from the
sun, moon and stars clearly shows that air is not necessary for the
propagation of light.
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Discussion questions

A If you observe thunder and lightning, you can tell how far away the
storm is. Do you need to know the speed of sound, of light, or of both?

B When phenomena like X-rays and cosmic rays were first discovered,
suggest a way one could have tested whether they were forms of light.

C Why did Roemer only need to know the radius of the earth’s orbit,
not Jupiter’s, in order to find the speed of light?

28.2 Interaction of light with matter
Absorption of light

The reason why the sun feels warm on your skin is that the sunlight
is being absorbed, and the light energy is being transformed into
heat energy. The same happens with artificial light, so the net
result of leaving a light turned on is to heat the room. It doesn’t
matter whether the source of the light is hot, like the sun, a flame,
or an incandescent light bulb, or cool, like a fluorescent bulb. (If
your house has electric heat, then there is absolutely no point in
fastidiously turning off lights in the winter; the lights will help to
heat the house at the same dollar rate as the electric heater.)

This process of heating by absorption is entirely different from heat-
ing by thermal conduction, as when an electric stove heats spaghetti
sauce through a pan. Heat can only be conducted through matter,
but there is vacuum between us and the sun, or between us and the
filament of an incandescent bulb. Also, heat conduction can only
transfer heat energy from a hotter object to a colder one, but a cool
fluorescent bulb is perfectly capable of heating something that had
already started out being warmer than the bulb itself.

How we see nonluminous objects

Not all the light energy that hits an object is transformed into heat.
Some is reflected, and this leads us to the question of how we see
nonluminous objects. If you ask the average person how we see a
light bulb, the most likely answer is “The light bulb makes light,
which hits our eyes.” But if you ask how we see a book, they
are likely to say “The bulb lights up the room, and that lets me
see the book.” All mention of light actually entering our eyes has
mysteriously disappeared.

Most people would disagree if you told them that light was reflected
from the book to the eye, because they think of reflection as some-
thing that mirrors do, not something that a book does. They asso-
ciate reflection with the formation of a reflected image, which does
not seem to appear in a piece of paper.

Imagine that you are looking at your reflection in a nice smooth
piece of aluminum foil, fresh off the roll. You perceive a face, not a
piece of metal. Perhaps you also see the bright reflection of a lamp
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d / Two self-portraits of the
author, one taken in a mirror and
one with a piece of aluminum foil.

e / Specular and diffuse re-
flection.

over your shoulder behind you. Now imagine that the foil is just
a little bit less smooth. The different parts of the image are now
a little bit out of alignment with each other. Your brain can still
recognize a face and a lamp, but it’s a little scrambled, like a Picasso
painting. Now suppose you use a piece of aluminum foil that has
been crumpled up and then flattened out again. The parts of the
image are so scrambled that you cannot recognize an image. Instead,
your brain tells you you’re looking at a rough, silvery surface.

Mirror-like reflection at a specific angle is known as specular re-
flection, and random reflection in many directions is called diffuse
reflection. Diffuse reflection is how we see nonluminous objects.
Specular reflection only allows us to see images of objects other
than the one doing the reflecting. In top part of figure d, imagine
that the rays of light are coming from the sun. If you are looking
down at the reflecting surface, there is no way for your eye-brain
system to tell that the rays are not really coming from a sun down
below you.

Figure f shows another example of how we can’t avoid the conclusion
that light bounces off of things other than mirrors. The lamp is one
I have in my house. It has a bright bulb, housed in a completely
opaque bowl-shaped metal shade. The only way light can get out of
the lamp is by going up out of the top of the bowl. The fact that I
can read a book in the position shown in the figure means that light
must be bouncing off of the ceiling, then bouncing off of the book,
then finally getting to my eye.

This is where the shortcomings of the Greek theory of vision become
glaringly obvious. In the Greek theory, the light from the bulb and
my mysterious “eye rays” are both supposed to go to the book,
where they collide, allowing me to see the book. But we now have a
total of four objects: lamp, eye, book, and ceiling. Where does the
ceiling come in? Does it also send out its own mysterious “ceiling
rays,” contributing to a three-way collision at the book? That would
just be too bizarre to believe!

The differences among white, black, and the various shades of gray
in between is a matter of what percentage of the light they absorb
and what percentage they reflect. That’s why light-colored clothing
is more comfortable in the summer, and light-colored upholstery in
a car stays cooler that dark upholstery.
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f / Light bounces off of the
ceiling, then off of the book.

g / Discussion question C.

Numerical measurement of the brightness of light

We have already seen that the physiological sensation of loudness
relates to the sound’s intensity (power per unit area), but is not
directly proportional to it. If sound A has an intensity of 1 nW/m2,
sound B is 10 nW/m2, and sound C is 100 nW/m2, then the increase
in loudness from B to C is perceived to be the same as the increase
from A to B, not ten times greater. That is, the sensation of loudness
is logarithmic.

The same is true for the brightness of light. Brightness is related
to power per unit area, but the psychological relationship is a log-
arithmic one rather than a proportionality. For doing physics, it’s
the power per unit area that we’re interested in. The relevant unit
is W/m2. One way to determine the brightness of light is to mea-
sure the increase in temperature of a black object exposed to the
light. The light energy is being converted to heat energy, and the
amount of heat energy absorbed in a given amount of time can be
related to the power absorbed, using the known heat capacity of the
object. More practical devices for measuring light intensity, such
as the light meters built into some cameras, are based on the con-
version of light into electrical energy, but these meters have to be
calibrated somehow against heat measurements.

Discussion questions

A The curtains in a room are drawn, but a small gap lets light through,
illuminating a spot on the floor. It may or may not also be possible to see
the beam of sunshine crossing the room, depending on the conditions.
What’s going on?

B Laser beams are made of light. In science fiction movies, laser
beams are often shown as bright lines shooting out of a laser gun on a
spaceship. Why is this scientifically incorrect?

C A documentary film-maker went to Harvard’s 1987 graduation cer-
emony and asked the graduates, on camera, to explain the cause of the
seasons. Only two out of 23 were able to give a correct explanation, but
you now have all the information needed to figure it out for yourself, as-
suming you didn’t already know. The figure shows the earth in its winter
and summer positions relative to the sun. Hint: Consider the units used
to measure the brightness of light, and recall that the sun is lower in the
sky in winter, so its rays are coming in at a shallower angle.

28.3 The ray model of light
Models of light

Note how I’ve been casually diagramming the motion of light with
pictures showing light rays as lines on the page. More formally,
this is known as the ray model of light. The ray model of light
seems natural once we convince ourselves that light travels through
space, and observe phenomena like sunbeams coming through holes
in clouds. Having already been introduced to the concept of light
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as an electromagnetic wave, you know that the ray model is not the
ultimate truth about light, but the ray model is simpler, and in any
case science always deals with models of reality, not the ultimate
nature of reality. The following table summarizes three models of
light.

h / Three models of light.

The ray model is a generic one. By using it we can discuss the path
taken by the light, without committing ourselves to any specific
description of what it is that is moving along that path. We will
use the nice simple ray model for most of our treatment of optics,
and with it we can analyze a great many devices and phenomena.
Not until chapter 32 will we concern ourselves specifically with wave
optics, although in the intervening chapters I will sometimes analyze
the same phenomenon using both the ray model and the wave model.

Note that the statements about the applicability of the various mod-
els are only rough guides. For instance, wave interference effects are
often detectable, if small, when light passes around an obstacle that
is quite a bit bigger than a wavelength. Also, the criterion for when
we need the particle model really has more to do with energy scales
than distance scales, although the two turn out to be related.

The alert reader may have noticed that the wave model is required
at scales smaller than a wavelength of light (on the order of a mi-
crometer for visible light), and the particle model is demanded on
the atomic scale or lower (a typical atom being a nanometer or so in
size). This implies that at the smallest scales we need both the wave
model and the particle model. They appear incompatible, so how
can we simultaneously use both? The answer is that they are not
as incompatible as they seem. Light is both a wave and a particle,
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but a full understanding of this apparently nonsensical statement is
a topic for chapter 34.

i / Examples of ray diagrams.

Ray diagrams

Without even knowing how to use the ray model to calculate any-
thing numerically, we can learn a great deal by drawing ray dia-
grams. For instance, if you want to understand how eyeglasses help
you to see in focus, a ray diagram is the right place to start. Many
students under-utilize ray diagrams in optics and instead rely on rote
memorization or plugging into formulas. The trouble with memo-
rization and plug-ins is that they can obscure what’s really going
on, and it is easy to get them wrong. Often the best plan is to do a
ray diagram first, then do a numerical calculation, then check that
your numerical results are in reasonable agreement with what you
expected from the ray diagram.

j / 1. Correct. 2. Incorrect: im-
plies that diffuse reflection only
gives one ray from each reflecting
point. 3. Correct, but unneces-
sarily complicated

Figure j shows some guidelines for using ray diagrams effectively.
The light rays bend when they pass out through the surface of the
water (a phenomenon that we’ll discuss in more detail later). The
rays appear to have come from a point above the goldfish’s actual
location, an effect that is familiar to people who have tried spear-
fishing.

• A stream of light is not really confined to a finite number of
narrow lines. We just draw it that way. In j/1, it has been
necessary to choose a finite number of rays to draw (five),
rather than the theoretically infinite number of rays that will
diverge from that point.
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• There is a tendency to conceptualize rays incorrectly as ob-
jects. In his Optics, Newton goes out of his way to caution
the reader against this, saying that some people “consider ...
the refraction of ... rays to be the bending or breaking of them
in their passing out of one medium into another.” But a ray
is a record of the path traveled by light, not a physical thing
that can be bent or broken.

• In theory, rays may continue infinitely far into the past and
future, but we need to draw lines of finite length. In j/1, a
judicious choice has been made as to where to begin and end
the rays. There is no point in continuing the rays any farther
than shown, because nothing new and exciting is going to
happen to them. There is also no good reason to start them
earlier, before being reflected by the fish, because the direction
of the diffusely reflected rays is random anyway, and unrelated
to the direction of the original, incoming ray.

• When representing diffuse reflection in a ray diagram, many
students have a mental block against drawing many rays fan-
ning out from the same point. Often, as in example j/2, the
problem is the misconception that light can only be reflected
in one direction from one point.

• Another difficulty associated with diffuse reflection, example
j/3, is the tendency to think that in addition to drawing many
rays coming out of one point, we should also be drawing many
rays coming from many points. In j/1, drawing many rays
coming out of one point gives useful information, telling us,
for instance, that the fish can be seen from any angle. Drawing
many sets of rays, as in j/3, does not give us any more useful
information, and just clutters up the picture in this example.
The only reason to draw sets of rays fanning out from more
than one point would be if different things were happening to
the different sets.

Discussion question

A Suppose an intelligent tool-using fish is spear-hunting for humans.
Draw a ray diagram to show how the fish has to correct its aim. Note
that although the rays are now passing from the air to the water, the same
rules apply: the rays are closer to being perpendicular to the surface when
they are in the water, and rays that hit the air-water interface at a shallow
angle are bent the most.

28.4 Geometry of specular reflection
To change the motion of a material object, we use a force. Is there
any way to exert a force on a beam of light? Experiments show
that electric and magnetic fields do not deflect light beams, so ap-
parently light has no electric charge. Light also has no mass, so
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k / The geometry of specular
reflection.

until the twentieth century it was believed to be immune to gravity
as well. Einstein predicted that light beams would be very slightly
deflected by strong gravitational fields, and he was proved correct
by observations of rays of starlight that came close to the sun, but
obviously that’s not what makes mirrors and lenses work!

If we investigate how light is reflected by a mirror, we will find that
the process is horrifically complex, but the final result is surprisingly
simple. What actually happens is that the light is made of electric
and magnetic fields, and these fields accelerate the electrons in the
mirror. Energy from the light beam is momentarily transformed
into extra kinetic energy of the electrons, but because the electrons
are accelerating they re-radiate more light, converting their kinetic
energy back into light energy. We might expect this to result in a
very chaotic situation, but amazingly enough, the electrons move
together to produce a new, reflected beam of light, which obeys two
simple rules:

• The angle of the reflected ray is the same as that of the incident
ray.

• The reflected ray lies in the plane containing the incident ray
and the normal (perpendicular) line. This plane is known as
the plane of incidence.

The two angles can be defined either with respect to the normal, like
angles B and C in the figure, or with respect to the reflecting surface,
like angles A and D. There is a convention of several hundred years’
standing that one measures the angles with respect to the normal,
but the rule about equal angles can logically be stated either as
B=C or as A=D.

The phenomenon of reflection occurs only at the boundary between
two media, just like the change in the speed of light that passes from
one medium to another. As we have seen in chapter 20, this is the
way all waves behave.

Most people are surprised by the fact that light can be reflected
back from a less dense medium. For instance, if you are diving and
you look up at the surface of the water, you will see a reflection of
yourself.
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self-check A
Each of these diagrams is supposed to show two different rays being
reflected from the same point on the same mirror. Which are correct,
and which are incorrect?

. Answer, p. 1045

Reversibility of light rays

The fact that specular reflection displays equal angles of incidence
and reflection means that there is a symmetry: if the ray had come
in from the right instead of the left in the figure above, the angles
would have looked exactly the same. This is not just a pointless
detail about specular reflection. It’s a manifestation of a very deep
and important fact about nature, which is that the laws of physics do
not distinguish between past and future. Cannonballs and planets
have trajectories that are equally natural in reverse, and so do light
rays. This type of symmetry is called time-reversal symmetry.

Typically, time-reversal symmetry is a characteristic of any process
that does not involve heat. For instance, the planets do not ex-
perience any friction as they travel through empty space, so there
is no frictional heating. We should thus expect the time-reversed
versions of their orbits to obey the laws of physics, which they do.
In contrast, a book sliding across a table does generate heat from
friction as it slows down, and it is therefore not surprising that this
type of motion does not appear to obey time-reversal symmetry. A
book lying still on a flat table is never observed to spontaneously
start sliding, sucking up heat energy and transforming it into kinetic
energy.

Similarly, the only situation we’ve observed so far where light does
not obey time-reversal symmetry is absorption, which involves heat.
Your skin absorbs visible light from the sun and heats up, but we
never observe people’s skin to glow, converting heat energy into vis-
ible light. People’s skin does glow in infrared light, but that doesn’t
mean the situation is symmetric. Even if you absorb infrared, you
don’t emit visible light, because your skin isn’t hot enough to glow
in the visible spectrum.

These apparent heat-related asymmetries are not actual asymme-
tries in the laws of physics. The interested reader may wish to learn
more about this from optional chapter 16 on thermodynamics.

Ray tracing on a computer example 1
A number of techniques can be used for creating artificial visual
scenes in computer graphics. Figure l shows such a scene, which
was created by the brute-force technique of simply constructing
a very detailed ray diagram on a computer. This technique re-
quires a great deal of computation, and is therefore too slow to
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be used for video games and computer-animated movies. One
trick for speeding up the computation is to exploit the reversibility
of light rays. If one was to trace every ray emitted by every illu-
minated surface, only a tiny fraction of those would actually end
up passing into the virtual “camera,” and therefore almost all of
the computational effort would be wasted. One can instead start
a ray at the camera, trace it backward in time, and see where it
would have come from. With this technique, there is no wasted
effort.

l / This photorealistic image of a nonexistent countertop was pro-
duced completely on a computer, by computing a complicated ray
diagram.

Section 28.4 Geometry of specular reflection 849



m / Discussion question B.

n / Discussion question C.

o / The solid lines are physi-
cally possible paths for light rays
traveling from A to B and from
A to C. They obey the principle
of least time. The dashed lines
do not obey the principle of
least time, and are not physically
possible.

Discussion questions

A If a light ray has a velocity vector with components cx and cy , what
will happen when it is reflected from a surface that lies along the y axis?
Make sure your answer does not imply a change in the ray’s speed.

B Generalizing your reasoning from discussion question A, what will
happen to the velocity components of a light ray that hits a corner, as
shown in the figure, and undergoes two reflections?

C Three pieces of sheet metal arranged perpendicularly as shown in
the figure form what is known as a radar corner. Let’s assume that the
radar corner is large compared to the wavelength of the radar waves, so
that the ray model makes sense. If the radar corner is bathed in radar
rays, at least some of them will undergo three reflections. Making a fur-
ther generalization of your reasoning from the two preceding discussion
questions, what will happen to the three velocity components of such a
ray? What would the radar corner be useful for?

28.5 ? The principle of least time for reflection
We had to choose between an unwieldy explanation of reflection at
the atomic level and a simpler geometric description that was not as
fundamental. There is a third approach to describing the interaction
of light and matter which is very deep and beautiful. Emphasized
by the twentieth-century physicist Richard Feynman, it is called the
principle of least time, or Fermat’s principle.

Let’s start with the motion of light that is not interacting with
matter at all. In a vacuum, a light ray moves in a straight line.
This can be rephrased as follows: of all the conceivable paths light
could follow from P to Q, the only one that is physically possible is
the path that takes the least time.

What about reflection? If light is going to go from one point to
another, being reflected on the way, the quickest path is indeed the
one with equal angles of incidence and reflection. If the starting and
ending points are equally far from the reflecting surface, o, it’s not
hard to convince yourself that this is true, just based on symmetry.
There is also a tricky and simple proof, shown in figure p, for the
more general case where the points are at different distances from
the surface.
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