
j / An electron in a gentle
electric field gradually shortens
its wavelength as it gains energy.

l / 1. Kinks like this don’t
happen. 2. The wave actually
penetrates into the classically
forbidden region.

Discussion questions

A Compare ∆p and ∆x for the two lowest energy levels of the one-
dimensional particle in a box, and discuss how this relates to the uncer-
tainty principle.

B On a graph of ∆p versus ∆x, sketch the regions that are allowed and
forbidden by the Heisenberg uncertainty principle. Interpret the graph:
Where does an atom lie on it? An elephant? Can either p or x be mea-
sured with perfect accuracy if we don’t care about the other?

35.5 Electrons in electric fields

So far the only electron wave patterns we’ve considered have been
simple sine waves, but whenever an electron finds itself in an electric
field, it must have a more complicated wave pattern. Let’s consider
the example of an electron being accelerated by the electron gun at
the back of a TV tube. The electron is moving from a region of low
voltage into a region of higher voltage. Since its charge is negative,
it loses PE by moving to a higher voltage, so its KE increases. As
its potential energy goes down, its kinetic energy goes up by an
equal amount, keeping the total energy constant. Increasing kinetic
energy implies a growing momentum, and therefore a shortening
wavelength, j.

The wavefunction as a whole does not have a single well-defined
wavelength, but the wave changes so gradually that if you only look
at a small part of it you can still pick out a wavelength and relate
it to the momentum and energy. (The picture actually exagger-
ates by many orders of magnitude the rate at which the wavelength
changes.)

But what if the electric field was stronger? The electric field in a TV
is only ∼ 105 N/C, but the electric field within an atom is more like
1012 N/C. In figure k, the wavelength changes so rapidly that there
is nothing that looks like a sine wave at all. We could get a general
idea of the wavelength in a given region by measuring the distance
between two peaks, but that would only be a rough approximation.
Suppose we want to know the wavelength at point P. The trick is
to construct a sine wave, like the one shown with the dashed line,
which matches the curvature of the actual wavefunction as closely
as possible near P. The sine wave that matches as well as possible is
called the “osculating” curve, from a Latin word meaning “to kiss.”
The wavelength of the osculating curve is the wavelength that will
relate correctly to conservation of energy.

Tunneling

We implicitly assumed that the particle-in-a-box wavefunction would
cut off abruptly at the sides of the box, l/1, but that would be un-
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k / A typical wavefunction of an electron in an atom (heavy curve)
and the osculating sine wave (dashed curve) that matches its curvature
at point P.

physical. A kink has infinite curvature, and curvature is related to
energy, so it can’t be infinite. A physically realistic wavefunction
must always “tail off” gradually, l/2. In classical physics, a parti-
cle can never enter a region in which its potential energy would be
greater than the amount of energy it has available. But in quantum
physics the wavefunction will always have a tail that reaches into
the classically forbidden region. If it was not for this effect, called
tunneling, the fusion reactions that power the sun would not occur
due to the high potential energy that nuclei need in order to get
close together! Tunneling is discussed in more detail in the next
section.

35.6
∫
? The Schrödinger equation

In section 35.5 we were able to apply conservation of energy to
an electron’s wavefunction, but only by using the clumsy graphical
technique of osculating sine waves as a measure of the wave’s cur-
vature. You have learned a more convenient measure of curvature
in calculus: the second derivative. To relate the two approaches, we
take the second derivative of a sine wave:

d2

dx2
sin

(
2πx

λ

)
=

d

dx

(
2π

λ
cos

2πx

λ

)
= −

(
2π

λ

)2

sin
2πx

λ

Taking the second derivative gives us back the same function, but
with a minus sign and a constant out in front that is related to
the wavelength. We can thus relate the second derivative to the
osculating wavelength:

[1]
d2 Ψ

dx2
= −

(
2π

λ

)2

Ψ

This could be solved for λ in terms of Ψ, but it will turn out to be
more convenient to leave it in this form.
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Using conservation of energy, we have

E = KE + PE

=
p2

2m
+ PE

=
(h/λ)2

2m
+ PE

[2]

Note that both equation [1] and equation [2] have λ2 in the denom-
inator. We can simplify our algebra by multiplying both sides of
equation [2] by Ψ to make it look more like equation [1]:

E ·Ψ =
(h/λ)2

2m
Ψ + PE ·Ψ

=
1

2m

(
h

2π

)2(2π

λ

)2

Ψ + PE ·Ψ

= − 1

2m

(
h

2π

)2 d2 Ψ

dx2
+ PE ·Ψ

Further simplification is achieved by using the symbol ~ (h with a
slash through it, read “h-bar”) as an abbreviation for h/2π. We then
have the important result known as the Schrödinger equation:

E ·Ψ = − ~
2

2m

d2 Ψ

dx2
+ PE ·Ψ

(Actually this is a simplified version of the Schrödinger equation,
applying only to standing waves in one dimension.) Physically it is
a statement of conservation of energy. The total energy E must be
constant, so the equation tells us that a change in potential energy
must be accompanied by a change in the curvature of the wavefunc-
tion. This change in curvature relates to a change in wavelength,
which corresponds to a change in momentum and kinetic energy.
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m / Tunneling through a bar-
rier.

self-check D
Considering the assumptions that were made in deriving the Schrödinger
equation, would it be correct to apply it to a photon? To an electron mov-
ing at relativistic speeds? . Answer, p.
1047

Usually we know right off the bat how the potential energy de-
pends on x, so the basic mathematical problem of quantum physics
is to find a function Ψ(x) that satisfies the Schrödinger equation
for a given function PE(x). An equation, such as the Schrödinger
equation, that specifies a relationship between a function and its
derivatives is known as a differential equation.

The study of differential equations in general is beyond the mathe-
matical level of this book, but we can gain some important insights
by considering the easiest version of the Schrödinger equation, in
which the potential energy is constant. We can then rearrange the
Schrödinger equation as follows:

d2 Ψ

dx2
=

2m(PE − E)

~2
Ψ,

which boils down to

d2 Ψ

dx2
= aΨ,

where, according to our assumptions, a is independent of x. We need
to find a function whose second derivative is the same as the original
function except for a multiplicative constant. The only functions
with this property are sine waves and exponentials:

d2

dx2
[ q sin(rx+ s) ] = −qr2 sin(rx+ s)

d2

dx2

[
qerx+s

]
= qr2erx+s

The sine wave gives negative values of a, a = −r2, and the exponen-
tial gives positive ones, a = r2. The former applies to the classically
allowed region with PE < E.

This leads us to a quantitative calculation of the tunneling effect
discussed briefly in the preceding subsection. The wavefunction ev-
idently tails off exponentially in the classically forbidden region.
Suppose, as shown in figure m, a wave-particle traveling to the right
encounters a barrier that it is classically forbidden to enter. Al-
though the form of the Schrödinger equation we’re using technically
does not apply to traveling waves (because it makes no reference
to time), it turns out that we can still use it to make a reasonable
calculation of the probability that the particle will make it through
the barrier. If we let the barrier’s width be w, then the ratio of the
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wavefunction on the left side of the barrier to the wavefunction on
the right is

qerx+s

qer(x+w)+s
= e−rw.

Probabilities are proportional to the squares of wavefunctions, so
the probability of making it through the barrier is

P = e−2rw

= exp

(
−2w

~
√

2m(PE − E)

)

self-check E
If we were to apply this equation to find the probability that a person can
walk through a wall, what would the small value of Planck’s constant
imply? . Answer, p. 1047

Use of complex numbers

In a classically forbidden region, a particle’s total energy, PE+KE,
is less than its PE, so its KE must be negative. If we want to
keep believing in the equation KE = p2/2m, then apparently the
momentum of the particle is the square root of a negative number.
This is a symptom of the fact that the Schrödinger equation fails
to describe all of nature unless the wavefunction and various other
quantities are allowed to be complex numbers. In particular it is not
possible to describe traveling waves correctly without using complex
wavefunctions.

This may seem like nonsense, since real numbers are the only ones
that are, well, real! Quantum mechanics can always be related to the
real world, however, because its structure is such that the results of
measurements always come out to be real numbers. For example, we
may describe an electron as having non-real momentum in classically
forbidden regions, but its average momentum will always come out
to be real (the imaginary parts average out to zero), and it can never
transfer a non-real quantity of momentum to another particle.

A complete investigation of these issues is beyond the scope of this
book, and this is why we have normally limited ourselves to standing
waves, which can be described with real-valued wavefunctions.

Section 35.6
∫
? The Schrödinger equation 1005



Summary
Selected vocabulary
wavefunction . . the numerical measure of an electron wave, or

in general of the wave corresponding to any
quantum mechanical particle

Notation
~ . . . . . . . . . . Planck’s constant divided by 2π (used only in

optional section 35.6)
Ψ . . . . . . . . . the wavefunction of an electron

Summary

Light is both a particle and a wave. Matter is both a particle and a
wave. The equations that connect the particle and wave properties
are the same in all cases:

E = hf

p = h/λ

Unlike the electric and magnetic fields that make up a photon-
wave, the electron wavefunction is not directly measurable. Only
the square of the wavefunction, which relates to probability, has
direct physical significance.

A particle that is bound within a certain region of space is a standing
wave in terms of quantum physics. The two equations above can
then be applied to the standing wave to yield some important general
observations about bound particles:

1. The particle’s energy is quantized (can only have certain val-
ues).

2. The particle has a minimum energy.

3. The smaller the space in which the particle is confined, the
higher its kinetic energy must be.

These immediately resolve the difficulties that classical physics had
encountered in explaining observations such as the discrete spectra
of atoms, the fact that atoms don’t collapse by radiating away their
energy, and the formation of chemical bonds.

A standing wave confined to a small space must have a short wave-
length, which corresponds to a large momentum in quantum physics.
Since a standing wave consists of a superposition of two traveling
waves moving in opposite directions, this large momentum should
actually be interpreted as an equal mixture of two possible mo-
menta: a large momentum to the left, or a large momentum to the
right. Thus it is not possible for a quantum wave-particle to be
confined to a small space without making its momentum very un-
certain. In general, the Heisenberg uncertainty principle states that
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it is not possible to know the position and momentum of a particle
simultaneously with perfect accuracy. The uncertainties in these
two quantities must satisfy the approximate inequality

∆p∆x & h.

When an electron is subjected to electric forces, its wavelength can-
not be constant. The “wavelength” to be used in the equation
p = h/λ should be thought of as the wavelength of the sine wave
that most closely approximates the curvature of the wavefunction
at a specific point.

Infinite curvature is not physically possible, so realistic wavefunc-
tions cannot have kinks in them, and cannot just cut off abruptly
at the edge of a region where the particle’s energy would be in-
sufficient to penetrate according to classical physics. Instead, the
wavefunction “tails off” in the classically forbidden region, and as a
consequence it is possible for particles to “tunnel” through regions
where according to classical physics they should not be able to pen-
etrate. If this quantum tunneling effect did not exist, there would
be no fusion reactions to power our sun, because the energies of
the nuclei would be insufficient to overcome the electrical repulsion
between them.

Exploring further

The New World of Mr. Tompkins: George Gamow’s Clas-
sic Mr. Tompkins in Paperback, George Gamow. Mr. Tomp-
kins finds himself in a world where the speed of light is only 30 miles
per hour, making relativistic effects obvious. Later parts of the book
play similar games with Planck’s constant.

The First Three Minutes: A Modern View of the Origin of
the Universe, Steven Weinberg. Surprisingly simple ideas allow
us to understand the infancy of the universe surprisingly well.

Three Roads to Quantum Gravity, Lee Smolin. The great-
est embarrassment of physics today is that we are unable to fully
reconcile general relativity (the theory of gravity) with quantum
mechanics. This book does a good job of introducing the lay reader
to a difficult, speculative subject, and showing that even though
we don’t have a full theory of quantum gravity, we do have a clear
outline of what such a theory must look like.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 In a television, suppose the electrons are accelerated from rest
through a voltage difference of 104 V. What is their final wavelength?√

2 Use the Heisenberg uncertainty principle to estimate the
minimum velocity of a proton or neutron in a 208Pb nucleus, which
has a diameter of about 13 fm (1 fm = 10−15 m). Assume that
the speed is nonrelativistic, and then check at the end whether this
assumption was warranted.

√

3 A free electron that contributes to the current in an ohmic
material typically has a speed of 105 m/s (much greater than the
drift velocity).
(a) Estimate its de Broglie wavelength, in nm.

√

(b) If a computer memory chip contains 108 electric circuits in a
1 cm2 area, estimate the linear size, in nm, of one such circuit.

√

(c) Based on your answers from parts a and b, does an electrical
engineer designing such a chip need to worry about wave effects
such as diffraction?
(d) Estimate the maximum number of electric circuits that can fit on
a 1 cm2 computer chip before quantum-mechanical effects become
important.

4 On page 998, I discussed the idea of hooking up a video
camera to a visible-light microscope and recording the trajectory of
an electron orbiting a nucleus. An electron in an atom typically has
a speed of about 1% of the speed of light.
(a) Calculate the momentum of the electron.

√

(b) When we make images with photons, we can’t resolve details
that are smaller than the photons’ wavelength. Suppose we wanted
to map out the trajectory of the electron with an accuracy of 0.01
nm. What part of the electromagnetic spectrum would we have to
use?
(c) As found in homework problem 12 on page 813, the momentum
of a photon is given by p = E/c. Estimate the momentum of a
photon having the necessary wavelength.

√

(d) Comparing your answers from parts a and c, what would be the
effect on the electron if the photon bounced off of it? What does
this tell you about the possibility of mapping out an electron’s orbit
around a nucleus?
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5 Find the energy of a nonrelativistic particle in a one-dimensional
box of length L, expressing your result in terms of L, the particle’s
mass m, the number of peaks and valleys n in the wavefunction, and
fundamental constants.

√

6 The Heisenberg uncertainty principle, ∆p∆x & h, can only be
made into a strict inequality if we agree on a rigorous mathematical
definition of ∆x and ∆p. Suppose we define the deltas in terms of the
full width at half maximum (FWHM), which we first encountered
on p. 481 and revisited on page 949 of this book. Now consider
the lowest-energy state of the one-dimensional particle in a box. As
argued on page 999, the momentum has equal probability of being
h/L or −h/L, so the FWHM definition gives ∆p = 2h/L.
(a) Find ∆x using the FWHM definition. Keep in mind that the
probability distribution depends on the square of the wavefunction.
(b) Find ∆x∆p.

√

7 If x has an average value of zero, then the standard deviation
of the probability distribution D(x) is defined by

σ2 =

√∫
D(x)x2 dx,

where the integral ranges over all possible values of x.

Interpretation: if x only has a high probability of having values close
to the average (i.e., small positive and negative values), the thing
being integrated will always be small, because x2 is always a small
number; the standard deviation will therefore be small. Squaring
x makes sure that either a number below the average (x < 0) or a
number above the average (x > 0) will contribute a positive amount
to the standard deviation. We take the square root of the whole
thing so that it will have the same units as x, rather than having
units of x2.

Redo problem 6 using the standard deviation rather than the FWHM.

Hints: (1) You need to determine the amplitude of the wave based
on normalization. (2) You’ll need the following definite integral:∫ π/2
−π/2 u

2 cos2 udu = (π3 − 6π)/24.
√ ∫

8 In section 35.6 we derived an expression for the probability
that a particle would tunnel through a rectangular barrier, i.e., a
region in which the interaction energy U(x) has a graph that looks
like a rectangle. Generalize this to a barrier of any shape. [Hints:
First try generalizing to two rectangular barriers in a row, and then
use a series of rectangular barriers to approximate the actual curve
of an arbitrary function U(x). Note that the width and height of
the barrier in the original equation occur in such a way that all that
matters is the area under the U -versus-x curve. Show that this is
still true for a series of rectangular barriers, and generalize using an
integral.] If you had done this calculation in the 1930’s you could
have become a famous physicist.

∫
?
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9 The electron, proton, and neutron were discovered, respec-
tively, in 1897, 1919, and 1932. The neutron was late to the party,
and some physicists felt that it was unnecessary to consider it as
fundamental. Maybe it could be explained as simply a proton with
an electron trapped inside it. The charges would cancel out, giving
the composite particle the correct neutral charge, and the masses
at least approximately made sense (a neutron is heavier than a pro-
ton). (a) Given that the diameter of a proton is on the order of
10−15 m, use the Heisenberg uncertainty principle to estimate the
trapped electron’s minimum momentum.

√

(b) Find the electron’s minimum kinetic energy.
√

(c) Show via E = mc2 that the proposed explanation may have a
problem, because the contribution to the neutron’s mass from the
electron’s kinetic energy would be comparable to the neutron’s en-
tire mass.
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A wavefunction of an electron in a
hydrogen atom.

Chapter 36

The Atom

You can learn a lot by taking a car engine apart, but you will have
learned a lot more if you can put it all back together again and make
it run. Half the job of reductionism is to break nature down into
its smallest parts and understand the rules those parts obey. The
second half is to show how those parts go together, and that is our
goal in this chapter. We have seen how certain features of all atoms
can be explained on a generic basis in terms of the properties of
bound states, but this kind of argument clearly cannot tell us any
details of the behavior of an atom or explain why one atom acts
differently from another.

The biggest embarrassment for reductionists is that the job of putting
things back together is usually much harder than the taking them
apart. Seventy years after the fundamentals of atomic physics were
solved, it is only beginning to be possible to calculate accurately the
properties of atoms that have many electrons. Systems consisting of
many atoms are even harder. Supercomputer manufacturers point
to the folding of large protein molecules as a process whose calcula-
tion is just barely feasible with their fastest machines. The goal of
this chapter is to give a gentle and visually oriented guide to some
of the simpler results about atoms.

1011



a / Eight wavelengths fit around
this circle: ` = 8.

36.1 Classifying states
We’ll focus our attention first on the simplest atom, hydrogen, with
one proton and one electron. We know in advance a little of what
we should expect for the structure of this atom. Since the electron
is bound to the proton by electrical forces, it should display a set
of discrete energy states, each corresponding to a certain standing
wave pattern. We need to understand what states there are and
what their properties are.

What properties should we use to classify the states? The most
sensible approach is to used conserved quantities. Energy is one
conserved quantity, and we already know to expect each state to
have a specific energy. It turns out, however, that energy alone is
not sufficient. Different standing wave patterns of the atom can
have the same energy.

Momentum is also a conserved quantity, but it is not particularly
appropriate for classifying the states of the electron in a hydrogen
atom. The reason is that the force between the electron and the pro-
ton results in the continual exchange of momentum between them.
(Why wasn’t this a problem for energy as well? Kinetic energy and
momentum are related by KE = p2/2m, so the much more mas-
sive proton never has very much kinetic energy. We are making an
approximation by assuming all the kinetic energy is in the electron,
but it is quite a good approximation.)

Angular momentum does help with classification. There is no trans-
fer of angular momentum between the proton and the electron, since
the force between them is a center-to-center force, producing no
torque.

Like energy, angular momentum is quantized in quantum physics.
As an example, consider a quantum wave-particle confined to a cir-
cle, like a wave in a circular moat surrounding a castle. A sine
wave in such a “quantum moat” cannot have any old wavelength,
because an integer number of wavelengths must fit around the cir-
cumference, C, of the moat. The larger this integer is, the shorter
the wavelength, and a shorter wavelength relates to greater momen-
tum and angular momentum. Since this integer is related to angular
momentum, we use the symbol ` for it:

λ =
C

`
The angular momentum is

L = rp.

Here, r = C/2π, and p = h/λ = h`/C, so

L =
C

2π
· h`
C

=
h

2π
`
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b / The angular momentum
vector of a spinning top.

In the example of the quantum moat, angular momentum is quan-
tized in units of h/2π, and this turns out to be a completely general
fact about quantum physics. That makes h/2π a pretty important
number, so we define the abbreviation ~ = h/2π. This symbol is
read “h-bar.”

quantization of angular momentum
The angular momentum of a particle due to its motion through
space is quantized in units of ~.

self-check A
What is the angular momentum of the wavefunction shown on page
1011? . Answer, p. 1047

36.2 Angular momentum in three dimensions
Up until now we’ve only worked with angular momentum in the
context of rotation in a plane, for which we could simply use pos-
itive and negative signs to indicate clockwise and counterclockwise
directions of rotation. A hydrogen atom, however, is unavoidably
three-dimensional. Let’s first consider the generalization of angu-
lar momentum to three dimensions in the classical case, and then
consider how it carries over into quantum physics.

Three-dimensional angular momentum in classical physics

If we are to completely specify the angular momentum of a classical
object like a top, b, in three dimensions, it’s not enough to say
whether the rotation is clockwise or counterclockwise. We must
also give the orientation of the plane of rotation or, equivalently,
the direction of the top’s axis. The convention is to specify the
direction of the axis. There are two possible directions along the
axis, and as a matter of convention we use the direction such that
if we sight along it, the rotation appears clockwise.

Angular momentum can, in fact, be defined as a vector pointing
along this direction. This might seem like a strange definition, since
nothing actually moves in that direction, but it wouldn’t make sense
to define the angular momentum vector as being in the direction of
motion, because every part of the top has a different direction of
motion. Ultimately it’s not just a matter of picking a definition
that is convenient and unambiguous: the definition we’re using is
the only one that makes the total angular momentum of a system a
conserved quantity if we let “total” mean the vector sum.

As with rotation in one dimension, we cannot define what we mean
by angular momentum in a particular situation unless we pick a
point as an axis. This is really a different use of the word “axis”
than the one in the previous paragraphs. Here we simply mean a

Section 36.2 Angular momentum in three dimensions 1013



c / 1. This particle is moving
directly away from the axis, and
has no angular momentum.
2. This particle has angular
momentum.

point from which we measure the distance r. In the hydrogen atom,
the nearly immobile proton provides a natural choice of axis.

Three-dimensional angular momentum in quantum physics

Once we start to think more carefully about the role of angular
momentum in quantum physics, it may seem that there is a basic
problem: the angular momentum of the electron in a hydrogen atom
depends on both its distance from the proton and its momentum,
so in order to know its angular momentum precisely it would seem
we would need to know both its position and its momentum simul-
taneously with good accuracy. This, however, might seem to be
forbidden by the Heisenberg uncertainty principle.

Actually the uncertainty principle does place limits on what can be
known about a particle’s angular momentum vector, but it does not
prevent us from knowing its magnitude as an exact integer multiple
of ~. The reason is that in three dimensions, there are really three
separate uncertainty principles:

∆px∆x & h

∆py∆y & h

∆pz∆z & h

Now consider a particle, c/1, that is moving along the x axis at
position x and with momentum px. We may not be able to know
both x and px with unlimited accuracy, but we can still know the
particle’s angular momentum about the origin exactly. Classically,
it is zero, because the particle is moving directly away from the
origin: if it was to be nonzero, we would need both a nonzero x and
a nonzero py. In quantum terms, the uncertainty principle does not
place any constraint on ∆x∆py.

Suppose, on the other hand, a particle finds itself, as in figure c/2,
at a position x along the x axis, and it is moving parallel to the y
axis with momentum py. It has angular momentum xpy about the z
axis, and again we can know its angular momentum with unlimited
accuracy, because the uncertainty principle only relates x to px and
y to py. It does not relate x to py.

As shown by these examples, the uncertainty principle does not re-
strict the accuracy of our knowledge of angular momenta as severely
as might be imagined. However, it does prevent us from knowing all
three components of an angular momentum vector simultaneously.
The most general statement about this is the following theorem,
which we present without proof:
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e / The energy of a state in
the hydrogen atom depends only
on its n quantum number.

the angular momentum vector in quantum physics
The most that can be known about an angular momentum vector
is its magnitude and one of its three vector components. Both are
quantized in units of ~.

36.3 The hydrogen atom
Deriving the wavefunctions of the states of the hydrogen atom from
first principles would be mathematically too complex for this book,
but it’s not hard to understand the logic behind such a wavefunction
in visual terms. Consider the wavefunction from the beginning of
the chapter, which is reproduced below. Although the graph looks
three-dimensional, it is really only a representation of the part of the
wavefunction lying within a two-dimensional plane. The third (up-
down) dimension of the plot represents the value of the wavefunction
at a given point, not the third dimension of space. The plane chosen
for the graph is the one perpendicular to the angular momentum
vector.

d / A wavefunction of a hydrogen
atom.

Each ring of peaks and valleys has eight wavelengths going around
in a circle, so this state has L = 8~, i.e., we label it ` = 8. The
wavelength is shorter near the center, and this makes sense because
when the electron is close to the nucleus it has a lower PE, a higher
KE, and a higher momentum.

Between each ring of peaks in this wavefunction is a nodal circle,
i.e., a circle on which the wavefunction is zero. The full three-
dimensional wavefunction has nodal spheres: a series of nested spher-
ical surfaces on which it is zero. The number of radii at which nodes
occur, including r = ∞, is called n, and n turns out to be closely
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related to energy. The ground state has n = 1 (a single node only
at r = ∞), and higher-energy states have higher n values. There
is a simple equation relating n to energy, which we will discuss in
section 36.4.

The numbers n and `, which identify the state, are called its quan-
tum numbers. A state of a given n and ` can be oriented in a variety
of directions in space. We might try to indicate the orientation using
the three quantum numbers `x = Lx/~, `y = Ly/~, and `z = Lz/~.
But we have already seen that it is impossible to know all three of
these simultaneously. To give the most complete possible descrip-
tion of a state, we choose an arbitrary axis, say the z axis, and label
the state according to n, `, and `z.

Angular momentum requires motion, and motion implies kinetic
energy. Thus it is not possible to have a given amount of angular
momentum without having a certain amount of kinetic energy as
well. Since energy relates to the n quantum number, this means
that for a given n value there will be a maximum possible `. It
turns out that this maximum value of ` equals n− 1.

In general, we can list the possible combinations of quantum num-
bers as follows:

n can equal 1, 2, 3, . . .
` can range from 0 to n− 1, in steps of 1
`z can range from −` to `, in steps of 1

Applying these rules, we have the following list of states:

n = 1, ` = 0, `z = 0 one state
n = 2, ` = 0, `z = 0 one state
n = 2, ` = 1, `z = −1, 0, or 1 three states
. . . . . .

self-check B
Continue the list for n = 3. . Answer, p. 1047

Figure f shows the lowest-energy states of the hydrogen atom. The
left-hand column of graphs displays the wavefunctions in the x− y
plane, and the right-hand column shows the probability distribution
in a three-dimensional representation.

Discussion questions

A The quantum number n is defined as the number of radii at which
the wavefunction is zero, including r = ∞. Relate this to the features of
the figures on the facing page.

B Based on the definition of n, why can’t there be any such thing as
an n = 0 state?

C Relate the features of the wavefunction plots in figure f to the corre-
sponding features of the probability distribution pictures.
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f / The three lowest-energy states of hydrogen.

D How can you tell from the wavefunction plots in figure f which ones
have which angular momenta?

E Criticize the following incorrect statement: “The ` = 8 wavefunction
in figure d has a shorter wavelength in the center because in the center
the electron is in a higher energy level.”

F Discuss the implications of the fact that the probability cloud in of the
n = 2, ` = 1 state is split into two parts.
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36.4 ? Energies of states in hydrogen
History

The experimental technique for measuring the energy levels of an
atom accurately is spectroscopy: the study of the spectrum of light
emitted (or absorbed) by the atom. Only photons with certain en-
ergies can be emitted or absorbed by a hydrogen atom, for example,
since the amount of energy gained or lost by the atom must equal
the difference in energy between the atom’s initial and final states.
Spectroscopy had become a highly developed art several decades
before Einstein even proposed the photon, and the Swiss spectro-
scopist Johann Balmer determined in 1885 that there was a simple
equation that gave all the wavelengths emitted by hydrogen. In
modern terms, we think of the photon wavelengths merely as indi-
rect evidence about the underlying energy levels of the atom, and
we rework Balmer’s result into an equation for these atomic energy
levels:

En = −2.2× 10−18 J

n2
,

This energy includes both the kinetic energy of the electron and
the electrical energy. The zero-level of the electrical energy scale
is chosen to be the energy of an electron and a proton that are
infinitely far apart. With this choice, negative energies correspond
to bound states and positive energies to unbound ones.

Where does the mysterious numerical factor of 2.2 × 10−18 J come
from? In 1913 the Danish theorist Niels Bohr realized that it was
exactly numerically equal to a certain combination of fundamental
physical constants:

En = −mk
2e4

2~2
· 1

n2
,

where m is the mass of the electron, and k is the Coulomb force
constant for electric forces.

Bohr was able to cook up a derivation of this equation based on the
incomplete version of quantum physics that had been developed by
that time, but his derivation is today mainly of historical interest.
It assumes that the electron follows a circular path, whereas the
whole concept of a path for a particle is considered meaningless in
our more complete modern version of quantum physics. Although
Bohr was able to produce the right equation for the energy levels,
his model also gave various wrong results, such as predicting that
the atom would be flat, and that the ground state would have ` = 1
rather than the correct ` = 0.

Approximate treatment

A full and correct treatment is impossible at the mathematical level
of this book, but we can provide a straightforward explanation for
the form of the equation using approximate arguments.
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g / The energy levels of a
particle in a box, contrasted with
those of the hydrogen atom.

A typical standing-wave pattern for the electron consists of a central
oscillating area surrounded by a region in which the wavefunction
tails off. As discussed in section 35.6, the oscillating type of pattern
is typically encountered in the classically allowed region, while the
tailing off occurs in the classically forbidden region where the elec-
tron has insufficient kinetic energy to penetrate according to clas-
sical physics. We use the symbol r for the radius of the spherical
boundary between the classically allowed and classically forbidden
regions. Classically, r would be the distance from the proton at
which the electron would have to stop, turn around, and head back
in.

If r had the same value for every standing-wave pattern, then we’d
essentially be solving the particle-in-a-box problem in three dimen-
sions, with the box being a spherical cavity. Consider the energy
levels of the particle in a box compared to those of the hydrogen
atom, g. They’re qualitatively different. The energy levels of the
particle in a box get farther and farther apart as we go higher in en-
ergy, and this feature doesn’t even depend on the details of whether
the box is two-dimensional or three-dimensional, or its exact shape.
The reason for the spreading is that the box is taken to be com-
pletely impenetrable, so its size, r, is fixed. A wave pattern with n
humps has a wavelength proportional to r/n, and therefore a mo-
mentum proportional to n, and an energy proportional to n2. In
the hydrogen atom, however, the force keeping the electron bound
isn’t an infinite force encountered when it bounces off of a wall, it’s
the attractive electrical force from the nucleus. If we put more en-
ergy into the electron, it’s like throwing a ball upward with a higher
energy — it will get farther out before coming back down. This
means that in the hydrogen atom, we expect r to increase as we go
to states of higher energy. This tends to keep the wavelengths of
the high energy states from getting too short, reducing their kinetic
energy. The closer and closer crowding of the energy levels in hydro-
gen also makes sense because we know that there is a certain energy
that would be enough to make the electron escape completely, and
therefore the sequence of bound states cannot extend above that
energy.

When the electron is at the maximum classically allowed distance r
from the proton, it has zero kinetic energy. Thus when the electron
is at distance r, its energy is purely electrical:

[1] E = −ke
2

r

Now comes the approximation. In reality, the electron’s wavelength
cannot be constant in the classically allowed region, but we pretend
that it is. Since n is the number of nodes in the wavefunction, we
can interpret it approximately as the number of wavelengths that
fit across the diameter 2r. We are not even attempting a derivation
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that would produce all the correct numerical factors like 2 and π
and so on, so we simply make the approximation

[2] λ ∼ r

n
.

Finally we assume that the typical kinetic energy of the electron is
on the same order of magnitude as the absolute value of its total
energy. (This is true to within a factor of two for a typical classical
system like a planet in a circular orbit around the sun.) We then
have

absolute value of total energy[3]

=
ke2

r
∼ K
= p2/2m

= (h/λ)2/2m

∼ h2n2/2mr2

We now solve the equation ke2/r ∼ h2n2/2mr2 for r and throw
away numerical factors we can’t hope to have gotten right, yielding

[4] r ∼ h2n2

mke2
.

Plugging n = 1 into this equation gives r = 2 nm, which is indeed
on the right order of magnitude. Finally we combine equations [4]
and [1] to find

E ∼ −mk
2e4

h2n2
,

which is correct except for the numerical factors we never aimed to
find.

Discussion questions

A States of hydrogen with n greater than about 10 are never observed
in the sun. Why might this be?

B Sketch graphs of r and E versus n for the hydrogen atom, and com-
pare with analogous graphs for the one-dimensional particle in a box.

36.5 Electron spin
It’s disconcerting to the novice ping-pong player to encounter for
the first time a more skilled player who can put spin on the ball.
Even though you can’t see that the ball is spinning, you can tell
something is going on by the way it interacts with other objects in
its environment. In the same way, we can tell from the way electrons
interact with other things that they have an intrinsic spin of their
own. Experiments show that even when an electron is not moving
through space, it still has angular momentum amounting to ~/2.
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h / The top has angular mo-
mentum both because of the
motion of its center of mass
through space and due to its
internal rotation. Electron spin is
roughly analogous to the intrinsic
spin of the top.

This may seem paradoxical because the quantum moat, for instance,
gave only angular momenta that were integer multiples of ~, not
half-units, and I claimed that angular momentum was always quan-
tized in units of ~, not just in the case of the quantum moat. That
whole discussion, however, assumed that the angular momentum
would come from the motion of a particle through space. The ~/2
angular momentum of the electron is simply a property of the par-
ticle, like its charge or its mass. It has nothing to do with whether
the electron is moving or not, and it does not come from any in-
ternal motion within the electron. Nobody has ever succeeded in
finding any internal structure inside the electron, and even if there
was internal structure, it would be mathematically impossible for it
to result in a half-unit of angular momentum.

We simply have to accept this ~/2 angular momentum, called the
“spin” of the electron — Mother Nature rubs our noses in it as an
observed fact. Protons and neutrons have the same ~/2 spin,
while photons have an intrinsic spin of ~. In general, half-integer
spins are typical of material particles. Integral values are found for
the particles that carry forces: photons, which embody the electric
and magnetic fields of force, as well as the more exotic messengers
of the nuclear and gravitational forces. The photon is particularly
important: it has spin 1.

As was the case with ordinary angular momentum, we can describe
spin angular momentum in terms of its magnitude, and its compo-
nent along a given axis. We notate these quantities, in units of ~,
as s and sz, so an electron has s = 1/2 and sz = +1/2 or -1/2.

Taking electron spin into account, we need a total of four quantum
numbers to label a state of an electron in the hydrogen atom: n, `,
`z, and sz. (We omit s because it always has the same value.) The
symbols ` and `z include only the angular momentum the electron
has because it is moving through space, not its spin angular mo-
mentum. The availability of two possible spin states of the electron
leads to a doubling of the numbers of states:

n = 1, ` = 0, `z = 0, sz = +1/2 or −1/2 two states
n = 2, ` = 0, `z = 0, sz = +1/2 or −1/2 two states
n = 2, ` = 1, `z = −1, 0, or 1, sz = +1/2 or −1/2 six states
. . . . . .

36.6 Atoms with more than one electron
What about other atoms besides hydrogen? It would seem that
things would get much more complex with the addition of a second
electron. A hydrogen atom only has one particle that moves around
much, since the nucleus is so heavy and nearly immobile. Helium,
with two, would be a mess. Instead of a wavefunction whose square
tells us the probability of finding a single electron at any given lo-
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cation in space, a helium atom would need to have a wavefunction
whose square would tell us the probability of finding two electrons
at any given combination of points. Ouch! In addition, we would
have the extra complication of the electrical interaction between the
two electrons, rather than being able to imagine everything in terms
of an electron moving in a static field of force created by the nucleus
alone.

Despite all this, it turns out that we can get a surprisingly good de-
scription of many-electron atoms simply by assuming the electrons
can occupy the same standing-wave patterns that exist in a hydro-
gen atom. The ground state of helium, for example, would have
both electrons in states that are very similar to the n = 1 states of
hydrogen. The second-lowest-energy state of helium would have one
electron in an n = 1 state, and the other in an n = 2 states. The
relatively complex spectra of elements heavier than hydrogen can
be understood as arising from the great number of possible combi-
nations of states for the electrons.

A surprising thing happens, however, with lithium, the three-electron
atom. We would expect the ground state of this atom to be one in
which all three electrons settle down into n = 1 states. What really
happens is that two electrons go into n = 1 states, but the third
stays up in an n = 2 state. This is a consequence of a new principle
of physics:

the Pauli exclusion principle
Only one electron can ever occupy a given state.

There are two n = 1 states, one with sz = +1/2 and one with
sz = −1/2, but there is no third n = 1 state for lithium’s third
electron to occupy, so it is forced to go into an n = 2 state.

It can be proved mathematically that the Pauli exclusion principle
applies to any type of particle that has half-integer spin. Thus
two neutrons can never occupy the same state, and likewise for two
protons. Photons, however, are immune to the exclusion principle
because their spin is an integer. Material objects can’t pass through
each other, but beams of light can. With a little oversimplification,
we can say that the basic reason is that the exclusion principle
applies to one but not to the other.1

Photons are made out electric and magnetic fields, which are di-
rectly measurable, but the wavefunction of a spin-1/2 particle is not
observable (p. 991). The exclusion principle offers a more funda-
mental explanation of this difference between light and matter. We
saw in example 2 on p. 971 that in a typical light wave, a huge num-

1There are also electrical forces between atoms, but as argued on page ??,
the attractions and repulsions tend to cancel out.
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i / The beginning of the peri-
odic table.

j / Hydrogen is highly reactive.

ber of photons overlap one another within a volume of one cubic
wavelength, and this is what allows us to measure the amplitude
and phase of the wave with a device like an antenna. But for elec-
trons, the exclusion principle prevents us from having more than one
particle in such a volume, so we can’t perform this type of classical
measurement of the wave.

Deriving the periodic table

We can now account for the structure of the periodic table, which
seemed so mysterious even to its inventor Mendeleev. The first row
consists of atoms with electrons only in the n = 1 states:

H 1 electron in an n = 1 state
He 2 electrons in the two n = 1 states

The next row is built by filling the n = 2 energy levels:

Li 2 electrons in n = 1 states, 1 electron in an n = 2 state
Be 2 electrons in n = 1 states, 2 electrons in n = 2 states
. . .
O 2 electrons in n = 1 states, 6 electrons in n = 2 states
F 2 electrons in n = 1 states, 7 electrons in n = 2 states

Ne 2 electrons in n = 1 states, 8 electrons in n = 2 states

In the third row we start in on the n = 3 levels:

Na 2 electrons in n = 1 states, 8 electrons in n = 2 states, 1
electron in an n = 3 state

...

We can now see a logical link between the filling of the energy levels
and the structure of the periodic table. Column 0, for example,
consists of atoms with the right number of electrons to fill all the
available states up to a certain value of n. Column I contains atoms
like lithium that have just one electron more than that.

This shows that the columns relate to the filling of energy levels,
but why does that have anything to do with chemistry? Why, for
example, are the elements in columns I and VII dangerously reac-
tive? Consider, for example, the element sodium (Na), which is so
reactive that it may burst into flames when exposed to air. The
electron in the n = 3 state has an unusually high energy. If we let
a sodium atom come in contact with an oxygen atom, energy can
be released by transferring the n = 3 electron from the sodium to
one of the vacant lower-energy n = 2 states in the oxygen. This
energy is transformed into heat. Any atom in column I is highly
reactive for the same reason: it can release energy by giving away
the electron that has an unusually high energy.

Column VII is spectacularly reactive for the opposite reason: these
atoms have a single vacancy in a low-energy state, so energy is re-
leased when these atoms steal an electron from another atom.
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It might seem as though these arguments would only explain reac-
tions of atoms that are in different rows of the periodic table, be-
cause only in these reactions can a transferred electron move from a
higher-n state to a lower-n state. This is incorrect. An n = 2 elec-
tron in fluorine (F), for example, would have a different energy than
an n = 2 electron in lithium (Li), due to the different number of
protons and electrons with which it is interacting. Roughly speak-
ing, the n = 2 electron in fluorine is more tightly bound (lower in
energy) because of the larger number of protons attracting it. The
effect of the increased number of attracting protons is only partly
counteracted by the increase in the number of repelling electrons,
because the forces exerted on an electron by the other electrons are
in many different directions and cancel out partially.

Neutron stars example 1
Here’s an exotic example that doesn’t even involve atoms. When
a star runs out of fuel for its nuclear reactions, it begins to collapse
under its own weight. Since Newton’s law of gravity depends on
the inverse square of the distance, the gravitational forces be-
come stronger as the star collapses, which encourages it to col-
lapse even further. The final result depends on the mass of the
star, but let’s consider a star that’s only a little more massive than
our own sun. Such a star will collapse to the point where the grav-
itational energy being released is sufficient to cause the reaction
p+e− → n+ν to occur. (As you found in homework problem 10 on
page 812, this reaction can only occur when there is some source
of energy, because the mass-energy of the products is greater
than the mass-energy of the things being consumed.) The neu-
trinos fly off and are never heard from again, so we’re left with a
star consisting only of neutrons!

Now the exclusion principle comes into play. The collapse can’t
continue indefinitely. The situation is in fact closely analogous
to that of an atom. A lead atom’s cloud of 82 electrons can’t
shrink down to the size of a hydrogen atom, because only two
electrons can have the lowest-energy wave pattern. The same
happens with the neutron star. No physical repulsion keeps the
neutrons apart. They’re electrically neutral, so they don’t repel or
attract one another electrically. The gravitational force is attrac-
tive, and as the collapse proceeds to the point where the neutrons
come within range of the strong nuclear force (∼ 10−15 m), we
even start getting nuclear attraction. The only thing that stops the
whole process is the exclusion principle. The star ends up being
only a few kilometers across, and has the same billion-ton-per-
teaspoon density as an atomic nucleus. Indeed, we can think of it
as one big nucleus (with atomic number zero, because there are
no protons).

As with a spinning figure skater pulling her arms in, conservation
of angular momentum makes the star spin faster and faster. The
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whole object may end up with a rotational period of a fraction of a
second! Such a star sends out radio pulses with each revolution,
like a sort of lighthouse. The first time such a signal was detected,
radio astronomers thought that it was a signal from aliens.
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Summary
Selected vocabulary
quantum number a numerical label used to classify a quantum

state
spin . . . . . . . . the built-in angular momentum possessed by

a particle even when at rest

Notation
n . . . . . . . . . . the number of radial nodes in the wavefunc-

tion, including the one at r =∞
~ . . . . . . . . . . h/2π
L . . . . . . . . . . the angular momentum vector of a particle,

not including its spin
` . . . . . . . . . . the magnitude of the L vector, divided by ~
`z . . . . . . . . . the z component of the L vector, divided by

~; this is the standard notation in nuclear
physics, but not in atomic physics

s . . . . . . . . . . the magnitude of the spin angular momentum
vector, divided by ~

sz . . . . . . . . . the z component of the spin angular momen-
tum vector, divided by ~; this is the standard
notation in nuclear physics, but not in atomic
physics

Other terminology and notation
m` . . . . . . . . . a less obvious notation for `z, standard in

atomic physics
ms . . . . . . . . . a less obvious notation for sz, standard in

atomic physics

Summary

Hydrogen, with one proton and one electron, is the simplest atom,
and more complex atoms can often be analyzed to a reasonably
good approximation by assuming their electrons occupy states that
have the same structure as the hydrogen atom’s. The electron in a
hydrogen atom exchanges very little energy or angular momentum
with the proton, so its energy and angular momentum are nearly
constant, and can be used to classify its states. The energy of a
hydrogen state depends only on its n quantum number.

In quantum physics, the angular momentum of a particle moving
in a plane is quantized in units of ~. Atoms are three-dimensional,
however, so the question naturally arises of how to deal with angu-
lar momentum in three dimensions. In three dimensions, angular
momentum is a vector in the direction perpendicular to the plane
of motion, such that the motion appears clockwise if viewed along
the direction of the vector. Since angular momentum depends on
both position and momentum, the Heisenberg uncertainty principle
limits the accuracy with which one can know it. The most that can
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be known about an angular momentum vector is its magnitude and
one of its three vector components, both of which are quantized in
units of ~.

In addition to the angular momentum that an electron carries by
virtue of its motion through space, it possesses an intrinsic angular
momentum with a magnitude of ~/2. Protons and neutrons also
have spins of ~/2, while the photon has a spin equal to ~.

Particles with half-integer spin obey the Pauli exclusion principle:
only one such particle can exist in a given state, i.e., with a given
combination of quantum numbers.

We can enumerate the lowest-energy states of hydrogen as follows:

n = 1, ` = 0, `z = 0, sz = +1/2 or −1/2 two states
n = 2, ` = 0, `z = 0, sz = +1/2 or −1/2 two states
n = 2, ` = 1, `z = −1, 0, or 1, sz = +1/2 or −1/2 six states
. . . . . .

The periodic table can be understood in terms of the filling of these
states. The nonreactive noble gases are those atoms in which the
electrons are exactly sufficient to fill all the states up to a given n
value. The most reactive elements are those with one more electron
than a noble gas element, which can release a great deal of energy
by giving away their high-energy electron, and those with one elec-
tron fewer than a noble gas, which release energy by accepting an
electron.
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Problem 2.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 (a) A distance scale is shown below the wavefunctions and
probability densities illustrated in figure f on page 1017. Compare
this with the order-of-magnitude estimate derived in section 36.4 for
the radius r at which the wavefunction begins tailing off. Was the
estimate in section 36.4 on the right order of magnitude?
(b) Although we normally say the moon orbits the earth, actually
they both orbit around their common center of mass, which is below
the earth’s surface but not at its center. The same is true of the
hydrogen atom. Does the center of mass lie inside the proton or
outside it?

2 The figure shows eight of the possible ways in which an electron
in a hydrogen atom could drop from a higher energy state to a
state of lower energy, releasing the difference in energy as a photon.
Of these eight transitions, only D, E, and F produce photons with
wavelengths in the visible spectrum.
(a) Which of the visible transitions would be closest to the violet
end of the spectrum, and which would be closest to the red end?
Explain.
(b) In what part of the electromagnetic spectrum would the photons
from transitions A, B, and C lie? What about G and H? Explain.
(c) Is there an upper limit to the wavelengths that could be emitted
by a hydrogen atom going from one bound state to another bound
state? Is there a lower limit? Explain.

3 Before the quantum theory, experimentalists noted that in
many cases, they would find three lines in the spectrum of the same
atom that satisfied the following mysterious rule: 1/λ1 = 1/λ2 +
1/λ3. Explain why this would occur. Do not use reasoning that
only works for hydrogen — such combinations occur in the spectra
of all elements. [Hint: Restate the equation in terms of the energies
of photons.]

4 Find an equation for the wavelength of the photon emitted
when the electron in a hydrogen atom makes a transition from en-
ergy level n1 to level n2. [You will need to have read optional section
36.4.]

√

5 Estimate the angular momentum of a spinning basketball, in
units of ~. Explain how this result relates to the correspondence
principle.

6 Assume that the kinetic energy of an electron in the n = 1
state of a hydrogen atom is on the same order of magnitude as the
absolute value of its total energy, and estimate a typical speed at
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which it would be moving. (It cannot really have a single, definite
speed, because its kinetic and interaction energy trade off at different
distances from the proton, but this is just a rough estimate of a
typical speed.) Based on this speed, were we justified in assuming
that the electron could be described nonrelativistically?

7 The wavefunction of the electron in the ground state of a
hydrogen atom, shown in the top left of figure f on p. 1017, is

Ψ = π−1/2a−3/2e−r/a,

where r is the distance from the proton, and a = ~2/kme2 =
5.3 × 10−11 m is a constant that sets the size of the wave. The
figure doesn’t show the proton; let’s take the proton to be a sphere
with a radius of b = 0.5 fm.
(a) Reproduce figure f in a rough sketch, and indicate, relative to
the size of your sketch, some idea of how big a and b are.
(b) Calculate symbolically, without plugging in numbers, the prob-
ability that at any moment, the electron is inside the proton. [Hint:
Does it matter if you plug in r = 0 or r = b in the equation for the
wavefunction?]

√

(c) Calculate the probability numerically.
√

(d) Based on the equation for the wavefunction, is it valid to think
of a hydrogen atom as having a finite size? Can a be interpreted
as the size of the atom, beyond which there is nothing? Or is there
any limit on how far the electron can be from the proton?

8 Use physical reasoning to explain how the equation for the
energy levels of hydrogen,

En = −mk
2e4

2~2
· 1

n2
,

should be generalized to the case of an atom with atomic number Z
that has had all its electrons removed except for one. ?

9 This question requires that you read optional section 36.4.
A muon is a subatomic particle that acts exactly like an electron
except that its mass is 207 times greater. Muons can be created by
cosmic rays, and it can happen that one of an atom’s electrons is
displaced by a muon, forming a muonic atom. If this happens to
a hydrogen atom, the resulting system consists simply of a proton
plus a muon.
(a) How would the size of a muonic hydrogen atom in its ground
state compare with the size of the normal atom?
(b) If you were searching for muonic atoms in the sun or in the
earth’s atmosphere by spectroscopy, in what part of the electromag-
netic spectrum would you expect to find the absorption lines?

10 Consider a classical model of the hydrogen atom in which
the electron orbits the proton in a circle at constant speed. In this
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model, the electron and proton can have no intrinsic spin. Using the
result of problem 14 in ch. 24, show that in this model, the atom’s
magnetic dipole moment Dm is related to its angular momentum
by Dm = (−e/2m)L, regardless of the details of the orbital motion.
Assume that the magnetic field is the same as would be produced
by a circular current loop, even though there is really only a sin-
gle charged particle. [Although the model is quantum-mechanically
incorrect, the result turns out to give the correct quantum mechan-
ical value for the contribution to the atom’s dipole moment coming
from the electron’s orbital motion. There are other contributions,
however, arising from the intrinsic spins of the electron and proton.]

11 Hydrogen is the only element whose energy levels can be
expressed exactly in an equation. Calculate the ratio λE/λF of the
wavelengths of the transitions labeled E and F in problem 2 on
p. 1028. Express your answer as an exact fraction, not a decimal
approximation. In an experiment in which atomic wavelengths are
being measured, this ratio provides a natural, stringent check on the
precision of the results.

√
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Exercise 36: Quantum versus classical randomness
1. Imagine the classical version of the particle in a one-dimensional box. Suppose you insert
the particle in the box and give it a known, predetermined energy, but a random initial position
and a random direction of motion. You then pick a random later moment in time to see where
it is. Sketch the resulting probability distribution by shading on top of a line segment. Does
the probability distribution depend on energy?

2. Do similar sketches for the first few energy levels of the quantum mechanical particle in a
box, and compare with 1.

3. Do the same thing as in 1, but for a classical hydrogen atom in two dimensions, which acts
just like a miniature solar system. Assume you’re always starting out with the same fixed values
of energy and angular momentum, but a position and direction of motion that are otherwise
random. Do this for L = 0, and compare with a real L = 0 probability distribution for the
hydrogen atom.

4. Repeat 3 for a nonzero value of L, say L=~.

5. Summarize: Are the classical probability distributions accurate? What qualitative features
are possessed by the classical diagrams but not by the quantum mechanical ones, or vice-versa?
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Hints for volume 2

Hints for chapter 21
Page 617, problem 8:
The force on the lithium ion is the vector sum of all the forces of all the quadrillions of sodium
and chlorine atoms, which would obviously be too laborious to calculate. Nearly all of these
forces, however, are canceled by a force from an ion on the opposite side of the lithium.

Page 619, problem 21:
The approach is similar to the one used for the other problem, but you want to work with
voltage and electrical energy rather than force.

Hints for chapter 22
Page 663, problem 13:
Since we have t � r, the volume of the membrane is essentially the same as if it was unrolled
and flattened out, and the field’s magnitude is nearly constant.

Hints for chapter 24
Page 723, problem 3:
A stable system has low energy; energy would have to be added to change its configuration.

Hints for chapter 27
Page 833, problem 7:
Apply the equivalence principle.

Solutions to selected problems for volume 2

Solutions for chapter 21
Page 618, problem 10:
∆t = ∆q/I = e/I = 0.160 µs

Page 619, problem 17:
It’s much more practical to measure voltage differences. To measure a current, you have to
break the circuit somewhere and insert the meter there, but it’s not possible to disconnect the
circuits sealed inside the board.

Page 622, problem 34:
In series, they give 11 kΩ. In parallel, they give (1/1 kΩ + 1/10 kΩ)−1 = 0.9 kΩ.

Page 622, problem 35:
The actual shape is irrelevant; all we care about is what’s connected to what. Therefore, we
can draw the circuit flattened into a plane. Every vertex of the tetrahedron is adjacent to every
other vertex, so any two vertices to which we connect will give the same resistance. Picking two
arbitrarily, we have this:

This is unfortunately a circuit that cannot be converted into parallel and series parts, and that’s
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what makes this a hard problem! However, we can recognize that by symmetry, there is zero
current in the resistor marked with an asterisk. Eliminating this one, we recognize the whole
arrangement as a triple parallel circuit consisting of resistances R, 2R, and 2R. The resulting
resistance is R/2.

Solutions for chapter 22
Page 662, problem 4:
Let the square’s sides be of length a. The field at the center is the vector sum of the fields that
would have been produced individually by the three charges. Each of these individual fields is
kq/r2, where r1 = a/

√
2 for the two charges q1, and r2 = a/2 for q2. Vector addition can be

done by adding components. Let x be horizontal and y vertical. The y components cancel by
symmetry. The sum of the x components is

Ex =
kq1

r2
1

cos 45◦ +
kq1

r2
1

cos 45◦ − kq2

r2
2

.

Substituting cos 45◦ = 1/
√

2 and setting this whole expression equal to zero, we find q2/q1 =
1/
√

2.

Solutions for chapter 23
Page 695, problem 7:
To make the units make sense, we need to make sure that both sides of the ≈ sign have the
same units, and also that both terms on the right-hand side have the same units. Everything is
unitless except for the second term on the right, so we add a factor of c−2 to fix it:

γ ≈ 1 +
v2

2c2
.

Solutions for chapter 24
Page 725, problem 11:
(a) Current means how much charge passes by a given point per unit time. During a time
interval ∆t, all the charge carriers in a certain region behind the point will pass by. This region
has length v∆t and cross-sectional area A, so its volume is Av∆t, and the amount of charge in
it is Avnq∆t. To find the current, we divide this amount of charge by ∆t, giving I = Avnq.
(b) A segment of the wire of length L has a force QvB acting on it, where Q = ALnq is the
total charge of the moving charge carriers in that part of the wire. The force per unit length is
ALnqvB/L = AnqvB. (c) Dividing the two results gives F/L = IB.

Page 725, problem 12:
(a) The figure shows the case where the currents are in opposite directions.

The field vector shown is one made by wire 1, which causes an effect on wire 2. It points up
because wire 1’s field pattern is clockwise as view from along the direction of current I1. For
simplicity, let’s assume that the current I2 is made by positively charged particles moving in
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the direction of the current. (You can check that the final result would be the same if they were
negatively charged, as would actually be the case in a metal wire.) The force on one of these
positively charged particles in wire 2 is supposed to have a direction such that when you sight
along it, the B vector is clockwise from the v vector. This can only be accomplished if the force
on the particle in wire 2 is in the direction shown. Wire 2 is repelled by wire 1.

To verify that wire 1 is also repelled by wire 2, we can either go through the same type of
argument again, or we can simply apply Newton’s third law.

Simialar arguments show that the force is attractive if the currents are in the same direction.

(b) The force on wire 2 is F/L = I2B, where B = 2kI1/c
2r is the field made by wire 1 and r is

the distance between the wires. The result is

F/L = 2kI1I2/c
2r.

Page 726, problem 16:
(a) Based on our knowledge of the field pattern of a current-carrying loop, we know that the
magnetic field must be either into or out of the page. This makes sense, since that would mean
the field is always perpendicular to the plane of the electrons’ motion; if it was in their plane of
motion, then the angle between the v and B vectors would be changing all the time, but we see
no evidence of such behavior. With the field turned on, the force vector is apparently toward
the center of the circle. Let’s analyze the force at the moment when the electrons have started
moving, which is at the right side of the circle. The force is to the left. Since the electrons are
negatively charged particles, we know that if we sight along the force vector, the B vector must
be counterclockwise from the v vector. The magnetic field must be out of the page. (b) Looking
at figure f on page 701, we can tell that the current in the coils must be counterclockwise as
viewed from the perspective of the camera. (c) Electrons are negatively charged, so to produce
a counterclockwise current, the electrons in the coils must be going clockwise, i.e., they are
counterrotating compared to the beam. (d) The current in the coils is keep the electrons in the
beam from going straight, i.e. the force is a repulsion. This makes sense by comparison with
figure w in section 23.2: like charges moving in opposite directions repel one another.

Page 727, problem 19:
The trick is to imagine putting together two identical solenoids to make one double-length
solenoid. The field of the doubled solenoid is given by the vector sum of the two solenoids’
individual fields. At points on the axis, symmetry guarantees that the individual fields lie along
the axis, and similarly for the total field. At the center of one of the mouths, we thus have two
parallel field vectors of equal strength, whose sum equals the interior field. But the interior field
of the doubled solenoid is the same as that of the individual ones, since the equation for the
field only depends on the number of turns per unit length. Therefore the field at the center of
a solenoid’s mouth equals exactly half the interior field.

Page 727, problem 21:
(a) Plugging in, we find √

1− w
1 + w

=

√
1− u
1 + u

√
1− v
1 + v

.

(b) First let’s simplify by squaring both sides.

1− w
1 + w

=
1− u
1 + u

· 1− v
1 + v

.

1034



For convenience, let’s write A for the right-hand side of this equation. We then have

1− w
1 + w

= A

1− w = A+Aw.

Solving for w,

w =
1−A
1 +A

=
(1 + u)(1 + v)− (1− u)(1− v)

(1 + u)(1 + v) + (1− u)(1− v)

=
2(u+ v)

2(1 + uv)

=
u+ v

1 + uv

(c) This is all in units where c = 1. The correspondence principle says that we should get
w ≈ u + v when both u and v are small compared to 1. Under those circumstances, uv is the
product of two very small numbers, which makes it very, very small. Neglecting this term in
the denominator, we recover the nonrelativistic result.

Solutions for chapter 26
Page 810, problem 2:
(a) In the reaction p + e− → n + ν, the charges on the left are e+ (−e) = 0, and both charges
on the right are zero. (b) The neutrino has negligible mass. The masses on the left add up to
1.6736× 10−27 kg, which is less than the 1.6750× 10−27 kg mass of the neutron on the right, so
energy would be required from an external source in order to make this reaction happen.

Page 811, problem 7:
(a) The change in PE is e∆V, so the KE gained is (1/2)mv2 = eV . Solving for v, we get
v =

√
2eV/m. (b) Plugging in numbers, the velocity is 5.9× 107 m/s. This is about 20% of the

speed of light. (Since it’s not that close to the speed of light, we’ll get a reasonably accurate
answer without taking into account Einstein’s theory of relativity.)

Solutions for chapter 27
Page 833, problem 1:
At the center of each of the large triangle’s sides, the angles add up to 180◦ because they form
a straight line. Therefore 4s = S + 3× 180◦, so S − 180◦ = 4(s− 180◦).

Page 833, problem 7:
By the equivalence principle, we can adopt a frame tied to the tossed clock, B, and in this frame
there is no gravitational field. We see a desk and clock A go by. The desk applies a force to clock
A, decelerating it and then reaccelerating it so that it comes back. We’ve already established
that the effect of motion is to slow down time, so clock A reads a smaller time interval.

Solutions for chapter 28
Page 853, problem 4:
Because the surfaces are flat, you get specular reflection. In specular reflection, all the reflected
rays go in one direction. Unless the plane is directly overhead, that direction won’t be the right
direction to make the rays come back to the radar station.
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This is different from a normal plane, which has complicated, bumpy surfaces. These surfaces
give diffuse reflection, which spreads the reflected rays randomly in more or less every possible
direction.

Page 853, problem 5:
(a) The rays all cross at pretty much the same place, given the accuracy with which we can
draw them.
(b) It could be used to cook food, for instance. All the sunlight is concentrated in a small area.
(c) Put the lightbulb at the point where the rays cross. The outgoing rays will then form a
parallel beam going out to the right.

Page 853, problem 6:
It spells “bonk.”

Solutions for chapter 29
Page 868, problem 5:
The magnification is the ratio of the image’s size to the object’s size. It has nothing to do
with the person’s location. The angular magnification, however, does depend on the person’s
location, because things farther away subtend smaller angles. The distance to the actual object
is not changed significantly, since it’s zillions of miles away in outer space, but the distance to
the image does change if the observer’s point of view changes. If you can get closer to the image,
the angular magnification is greater.

Solutions for chapter 30
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Page 887, problem 1:
For a flat mirror, di and do are equal, so the magnification is 1, i.e., the image is the same size
as the object.

Page 887, problem 2:
See the ray diagram below. Decreasing θo decreases θi, so the equation θf = ±θi + ±θo must
have opposite signs on the right. Since θo is bigger than θi, the only way to get a positive θf is
if the signs are θf = −θi + θo. This gives 1/f = −1/di + 1/do.

Page 887, problem 3:
(a) In problem #2 we found that the equation relating the object and image distances was
of the form 1/f = −1/di + 1/do. Let’s make f = 1.00 m. To get a virtual image we need
do < f , so let do = 0.50 m. Solving for di, we find di = 1/(1/do − 1/f) = 1.00 m. The
magnification is M = di/do = 2.00. If we change do to 0.55 m, the magnification becomes 2.22.
The magnification changes somewhat with distance, so the store’s ad must be assuming you’ll
use the mirror at a certain distance. It can’t have a magnification of 5 at all distances.
(b) Theoretically yes, but in practical terms no. If you go through a calculation similar to the
one in part a, you’ll find that the images of both planets are formed at almost exactly the same
di, di = f , since 1/do is pretty close to zero for any astronomical object. The more distant
planet has an image half as big (M = di/do, and do is doubled), but we’re talking about angular
magnification here, so what we care about is the angular size of the image compared to the
angular size of the object. The more distant planet has half the angular size, but its image has
half the angular size as well, so the angular magnification is the same. If you think about it, it
wouldn’t make much sense for the angular magnification to depend on the planet’s distance —
if it did, then determining astronomical distances would be much easier than it actually is!

Page 887, problem 4:
(a) This occurs when the di is infinite. Let’s say it’s a converging mirror creating a virtual
image, as in problems 2 and 3. Then we’d get an infinite di if we put do = f , i.e., the object is
at the focal point of the mirror. The image is infinitely large, but it’s also infinitely far away,
so its angular size isn’t infinite; an angular size can never be more than about 180◦ since you
can’t see in back of your head!.
(b) It’s not possible to make the magnification infinite by having do = 0. The image location
and object location are related by 1/f = 1/do − 1/di, so 1/di = 1/do − 1/f . If do is zero, then
1/do is infinite, 1/di is infinite, and di is zero as well. In other words, as do approaches zero,
so does di, and di/do doesn’t blow up. Physically, the mirror’s curvature becomes irrelevant
from the point of view of a tiny flea sitting on its surface: the mirror seems flat to the flea. So
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physically the magnification would be 1, not infinity, for very small values of do.

Page 888, problem 10:
(a) The object distance is less than the focal length, so the image is virtual: because the object
is so close, the cone of rays is diverging too strongly for the mirror to bring it back to a focus.
(b) Now the object distance is greater than the focal length, so the image is real. (c),(d) A
diverging mirror can only make virtual images.

Solutions for chapter 31
Page 906, problem 1:
The refracted ray that was bent closer to the normal in the plastic when the plastic was in air
will be bent farther from the normal in the plastic when the plastic is in water. It will become
a diverging lens.

Page 906, problem 3:
Refraction occurs only at the boundary between two substances, which in this case means the
surface of the lens. Light doesn’t get bent at all inside the lens, so the thickness of the lens isn’t
really what’s important. What matters is the angles of the lens’ surfaces at various points.

Ray 1 makes an angle of zero with respect to the normal as it enters the lens, so it doesn’t get
bent at all, and likewise at the back.

At the edge of the lens, 2, the front and back are not parallel, so a ray that traverses the lens
at the edge ends up being bent quite a bit.

Although I drew both ray 1 and ray 2 coming in along the axis of the lens, it really doesn’t
matter. For instance, ray 3 bends on the way in, but bends an equal amount on the way out,
so it still emerges from the lens moving in the same direction as the direction it originally had.

Summarizing and systematizing these observations, we can say that for a ray that enters the
lens at the center, where the surfaces are parallel, the sum of the two deflection angles is zero.
Since the total deflection is zero at the center, it must be larger away from the center.
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Page 907, problem 7:
Normally, in air, your eyes do most of their focusing at the air-eye boundary. When you swim
without goggles, there is almost no difference in speed at the water-eye interface, so light is not
strongly refracted there (see figure), and the image is far behind the retina.

Goggles fix this problem for the following reason. The light rays cross a water-air boundary
as they enter the goggles, but they’re coming in along the normal, so they don’t get bent. At
the air-eye boundary, they get bent the same amount they normally would when you weren’t
swimming.
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Page 907, problem 8:
(a) See the figure below. The first refraction clearly bends it inward. However, the back surface
of the lens is more slanted, so the ray makes a bigger angle with respect to the normal at the
back surface. The bending at the back surface is therefore greater than the bending at the front
surface, and the ray ends up being bent outward more than inward.

(b) Lens 2 must act the same as lens 1. It’s diverging. One way of knowing this is time-reversal
symmetry: if we flip the original figure over and then reverse the direction of the ray, it’s still a
valid diagram.

Lens 3 is diverging like lens 1 on top, and diverging like lens 2 on the bottom. It’s a diverging
lens.

As for lens 4, any close-up diagram we draw of a particular ray passing through it will look
exactly like the corresponding close-up diagram for some part of lens 1. Lens 4 behaves the
same as lens 1.

Page 909, problem 13:
Since do is much greater than di, the lens-film distance di is essentially the same as f . (a)
Splitting the triangle inside the camera into two right triangles, straightforward trigonometry
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gives

θ = 2 tan−1 w

2f

for the field of view. This comes out to be 39◦ and 64◦ for the two lenses. (b) For small angles,
the tangent is approximately the same as the angle itself, provided we measure everything in
radians. The equation above then simplifies to

θ =
w

f

The results for the two lenses are .70 rad = 40◦, and 1.25 rad = 72◦. This is a decent approxi-
mation.

(c) With the 28-mm lens, which is closer to the film, the entire field of view we had with the
50-mm lens is now confined to a small part of the film. Using our small-angle approximation
θ = w/f , the amount of light contained within the same angular width θ is now striking a piece
of the film whose linear dimensions are smaller by the ratio 28/50. Area depends on the square
of the linear dimensions, so all other things being equal, the film would now be overexposed by
a factor of (50/28)2 = 3.2. To compensate, we need to shorten the exposure by a factor of 3.2.

Page 910, problem 20:
One surface is curved outward and one inward. Therefore the minus sign applies in the lens-
maker’s equation. Since the radii of curvature are equal, the quantity 1/r1 − 1/r2 equals zero,
and the resulting focal length is infinite. A big focal length indicates a weak lens. An infinite
focal length tells us that the lens is infinitely weak — it doesn’t focus or defocus rays at all.

Page 911, problem 22:
(a) The situation being described requires a real image, since the rays need to converge at a
point on Becky’s neck. See the ray diagram drawn with thick lines, showing object location o
and image location i.

If we move the object farther away, to o′ the cone of rays intercepted by the lens (thin lines) is
less strongly diverging, and the lens is able to bring it to a closer focus, at i′. In the diagrams,
we see that a smaller θo leads to a larger θi, so the signs in the equation ±θo ± θi = θf must be
the same, and therefore both positive, since θf is positive by definition. The equation relating
the image and object locations must be 1/f = 1/do + 1/di.

(b) The case with di = f is not possible, because then we need 1/do = 0, i.e., do =∞. Although
it is possible in principle to have an object so far away that it is practically at infinity, that is
not possible in this situation, since Zahra can’t take her lens very far away from the fire. By the
way, this means that the focal length f is not where the focus happens — the focus happens at
di.

For similar reasons, we can’t have do = f .

Since all the variables are positive, we must have 1/do and 1/di both less than 1/f . This implies
that do > f and di > f . Of the nine logical possibilities in the table, only this one is actually
possible for this real image.
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Solutions for chapter 32
Page 929, problem 1:
You don’t want the wave properties of light to cause all kinds of funny-looking diffraction effects.
You want to see the thing you’re looking at in the same way you’d see a big object. Diffraction
effects are most pronounced when the wavelength of the light is relatively large compared to the
size of the object the light is interacting with, so red would be the worst. Blue light is near the
short-wavelength end of the visible spectrum, which would be the best.

Page 930, problem 6:
For the size of the diffraction blob, we have:

λ

d
∼ sin θ

≈ θ

θ ∼ 700 nm

10 m
≈ 10−7 radians

For the actual angular size of the star, the small-angle approximation gives

θ ∼ 109 m

1017 m
= 10−8 radians

The diffraction blob is ten times bigger than the actual disk of the star, so we can never make
an image of the star itself in this way.

Page 930, problem 7:
The equation, solved for θ, is θ = sin−1(mλ/d). The sine function only ranges from −1 to +1,
so the inverse sine is undefined for |mλ/d| > 1, i.e., |m| > d/λ. Physically, we only get fringes
out to angles of 90 degrees (the inverse sine of 1) on both sides, corresponding to values of m
less than d/λ.

Page 931, problem 9:
(a) You can tell it’s a single slit because of the double-width central fringe.
(b) Four fringes on the top pattern are about 23.5 mm, while five fringes on the bottom one are
about 14.5 mm. The spacings are 5.88 and 2.90 mm, with a ratio of 2.03. A smaller d leads to
larger diffraction angles, so the width of the slit used to make the bottom pattern was almost
exactly twice as wide as the one used to make the top one.

Page 932, problem 11:
(a) The patterns have two structures, a coarse one and a fine one. You can look up in the book
which corresponds to w and which to d, or just use the fact that smaller features make bigger
diffraction angles. The top and middle patterns have the same coarse spacing, so they have the
same w. The fine structure in the top pattern has 7 fringes in 12.5 mm, for a spacing of 1.79
mm, while the middle pattern has 11 fringes in 41.5 mm, giving a spacing of 3.77 mm. The
value of d for the middle pattern is therefore (0.50 mm)(1.79/3.77) = 0.23 mm.
(b) This one has about the same d as the top one (it’s difficult to measure accurately because
each group has only a small number of fringes), but the coarse spacing is different, indicating
a different value of w. It has two coarse groupings in 23 mm, i.e., a spacing of 12.5 mm. The
coarse groupings in the original pattern were about 23 mm apart, so there is a factor of two
between the w = 0.04 mm of the top pattern and the w = 0.08 mm of the bottom one.
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Answers to self-checks for volume 2

Answers to self-checks for chapter 21
Page 579, self-check A:
Either type can be involved in either an attraction or a repulsion. A positive charge could be
involved in either an attraction (with a negative charge) or a repulsion (with another positive),
and a negative could participate in either an attraction (with a positive) or a repulsion (with a
negative).

Page 580, self-check B:
It wouldn’t make any difference. The roles of the positive and negative charges in the paper
would be reversed, but there would still be a net attraction.

Page 595, self-check C:
The large amount of power means a high rate of conversion of the battery’s chemical energy
into heat. The battery will quickly use up all its energy, i.e., “burn out.”

Answers to self-checks for chapter 22
Page 641, self-check A:
The reasoning is exactly analogous to that used in example 1 on page 639 to derive an equation
for the gravitational field of the earth. The field is F/qt = (kQqt/r

2)/qt = kQ/r2.

Page 653, self-check B:

Ex = −dV

dx

= − d

dx

(
kQ

r

)
=
kQ

r2

Page 654, self-check C:
(a) The voltage (height) increases as you move to the east or north. If we let the positive x
direction be east, and choose positive y to be north, then dV/ dx and dV/ dy are both positive.
This means that Ex and Ey are both negative, which makes sense, since the water is flowing in
the negative x and y directions (south and west).
(b) The electric fields are all pointing away from the higher ground. If this was an electrical
map, there would have to be a large concentration of charge all along the top of the ridge, and
especially at the mountain peak near the south end.

Answers to self-checks for chapter 23
Page 671, self-check A:
The diagram for the house looks like because in the one dimension of space being repre-
sented, it has walls on both sides, and its existence also extends over a certain amount of time
(left to right). If the dog is in the house at rest, then goes outside, and stays at rest in the

back yard for a while, the spacetime diagram looks like this: . An observer using
another frame of reference has to agree that the dog went outside, because observers agree on
intersections of world-lines, and the dog’s world-line intersects the world-line of the house’s back
wall.
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Page 681, self-check B:
At v = 0, we get γ = 1, so t = T . There is no time distortion unless the two frames of reference
are in relative motion.

Answers to self-checks for chapter 24
Page 710, self-check A:
An induced electric field can only be created by a changing magnetic field. Nothing is changing
if your car is just sitting there. A point on the coil won’t experience a changing magnetic field
unless the coil is already spinning, i.e., the engine has already turned over.

Page 718, self-check B:
Both the time axis and the position axis have been turned around. Flipping the time axis means
that the roles of transmitter and receiver have been swapped, and it also means that Alice and
Betty are approaching one another rather that receding. The time experienced by the receiving
observer is now the longer one, so the Doppler-shift factor has been inverted: the receiver now
measures a Doppler shift of 1/2 rather than 2 in frequency.

Answers to self-checks for chapter 25
Page 739, self-check A:
Yes. The mass has the same kinetic energy regardless of which direction it’s moving. Friction
coverts mechanical energy into heat at the same rate whether the mass is sliding to the right
or to the left. The spring has an equilibrium length, and energy can be stored in it either by
compressing it (x < 0) or stretching it (x > 0).

Page 739, self-check B:
Velocity, v, is the rate of change of position, x, with respect to time. This is exactly analogous
to I = ∆q/∆t.

Page 748, self-check C:
The impedance depends on the frequency at which the capacitor is being driven. It isn’t just a
single value for a particular capacitor.

Answers to self-checks for chapter 26
Page 758, self-check A:
Yes. In U.S. currency, the quantum of money is the penny.

Page 779, self-check B:
Thomson was accelerating electrons, which are negatively charged. This apparatus is supposed
to accelerated atoms with one electron stripped off, which have positive net charge. In both
cases, a particle that is between the plates should be attracted by the forward plate and repelled
by the plate behind it.

Page 787, self-check C:
The hydrogen-1 nucleus is simple a proton. The binding energy is the energy required to tear a
nucleus apart, but for a nucleus this simple there is nothing to tear apart.

Page 795, self-check D:
The total momentum is zero before the collision. After the collision, the two momenta have
reversed their directions, but they still cancel. Neither object has changed its kinetic energy, so
the total energy before and after the collision is also the same.

Page 802, self-check E:
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At v = 0, we have γ = 1, so the mass-energy is mc2 as claimed. As v approaches c, γ approaches
infinity, so the mass energy becomes infinite as well.

Answers to self-checks for chapter 28
Page 848, self-check A:
Only 1 is correct. If you draw the normal that bisects the solid ray, it also bisects the dashed
ray.

Answers to self-checks for chapter 29
Page 856, self-check A:
You should have found from your ray diagram that an image is still formed, and it has simply
moved down the same distance as the real face. However, this new image would only be visible
from high up, and the person can no longer see his own image.

Page 861, self-check B:
Increasing the distance from the face to the mirror has decreased the distance from the image
to the mirror. This is the opposite of what happened with the virtual image.

Answers to self-checks for chapter 30
Page 878, self-check A:
At the top of the graph, di approaches infinity when do approaches f . Interpretation: the rays
just barely converge to the right of the mirror.

On the far right, di approaches f as do approaches infinity; this is the definition of the focal
length.

At the bottom, di approaches negative infinity when do approaches f from the other side.
Interpretation: the rays don’t quite converge on the right side of the mirror, so they appear to
have come from a virtual image point very far to the left of the mirror.

Answers to self-checks for chapter 31
Page 895, self-check A:
(1) If n1 and n2 are equal, Snell’s law becomes sin θ1 = sin θ2, which implies θ1 = θ2, since both
angles are between 0 and 90◦. The graph would be a straight line along the diagonal of the
graph. (2) The graph is farthest from the diagonal when the angles are large, i.e., when the ray
strikes the interface at a grazing angle.

Page 899, self-check B:
(1) In 1, the rays cross the image, so it’s real. In 2, the rays only appear to have come from the
image point, so the image is virtual. (2) A rays is always closer to the normal in the medium
with the higher index of refraction. The first left turn makes the ray closer to the normal, which
is what should happen in glass. The second left turn makes the ray farther from the normal,
and that’s what should happen in air. (3) Take the topmost ray as an example. It will still take
two right turns, but since it’s entering the lens at a steeper angle, it will also leave at a steeper
angle. Tracing backward to the image, the steeper lines will meet closer to the lens.

Answers to self-checks for chapter 32
Page 917, self-check A:
It would have to have a wavelength on the order of centimeters or meters, the same distance
scale as that of your body. These would be microwaves or radio waves. (This effect can easily
be noticed when a person affects a TV’s reception by standing near the antenna.) None of this
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contradicts the correspondence principle, which only states that the wave model must agree with
the ray model when the ray model is applicable. The ray model is not applicable here because
λ/d is on the order of 1.

Page 919, self-check B:
At this point, both waves would have traveled nine and a half wavelengths. They would both
be at a negative extreme, so there would be constructive interference.

Page 923, self-check C:
Judging by the distance from one bright wave crest to the next, the wavelength appears to be
about 2/3 or 3/4 as great as the width of the slit.

Page 924, self-check D:
Since the wavelengths of radio waves are thousands of times longer, diffraction causes the res-
olution of a radio telescope to be thousands of times worse, all other things being equal. (To
compensate for the wavelength, it’s desirable to make the telescope very large, as in figure z on
page 924.)

(1 rectangle = 5 cm × 0.005 cm−1 = 0.025), but that would have been pointless, because we
were just going to compare the two areas.

Answers to self-checks for chapter 33
Page 947, self-check A:
(1) Most people would think they were positively correlated, but they could be independent. (2)
These must be independent, since there is no possible physical mechanism that could make one
have any effect on the other. (3) These cannot be independent, since dying today guarantees
that you won’t die tomorrow.

Page 949, self-check B:
The area under the curve from 130 to 135 cm is about 3/4 of a rectangle. The area from 135
to 140 cm is about 1.5 rectangles. The number of people in the second range is about twice as
much. We could have converted these to actual probabilities

Answers to self-checks for chapter 34
Page 970, self-check A:
The axes of the graph are frequency and photon energy, so its slope is Planck’s constant. It
doesn’t matter if you graph e∆V rather than Es + e∆V , because that only changes the y-
intercept, not the slope.

Answers to self-checks for chapter 35
Page 991, self-check A:
Wavelength is inversely proportional to momentum, so to produce a large wavelength we would
need to use electrons with very small momenta and energies. (In practical terms, this isn’t very
easy to do, since ripping an electron out of an object is a violent process, and it’s not so easy
to calm the electron down afterward.)

Page 1000, self-check B:
Under the ordinary circumstances of life, the accuracy with which we can measure the position
and momentum of an object doesn’t result in a value of ∆p∆x that is anywhere near the tiny
order of magnitude of Planck’s constant. We run up against the ordinary limitations on the
accuracy of our measuring techniques long before the uncertainty principle becomes an issue.
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Page 1000, self-check C:
The electron wave will suffer single-slit diffraction, and spread out to the sides after passing
through the slit. Neither ∆p nor ∆x is zero for the diffracted wave.

Page 1004, self-check D:
No. The equation KE = p2/2m is nonrelativistic, so it can’t be applied to an electron moving
at relativistic speeds. Photons always move at relativistic speeds, so it can’t be applied to them,
either.

Page 1005, self-check E:
Dividing by Planck’s constant, a small number, gives a large negative result inside the exponen-
tial, so the probability will be very small.

Answers to self-checks for chapter 36
Page 1013, self-check A:
If you trace a circle going around the center, you run into a series of eight complete wavelengths.
Its angular momentum is 8~.

Page 1016, self-check B:
n = 3, ` = 0, `z = 0: one state
n = 3, ` = 1, `z = −1, 0, or 1: three states
n = 3, ` = 2, `z = −2, -1, 0, 1, or 2: five states
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as a vector, 221
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definition, 106
negative, 102

alchemists, 293
alchemy, 17, 576
alpha decay, 781

nature of emitted particle, 768
alpha particle, see alpha decay
ammeter, 584
ampere (unit), 582
amplitude

defined, 460
peak-to-peak, 460
related to energy, 472

anamorph, 889
angular magnification, 862
angular momentum

and the uncertainty principle, 1013
choice of axis theorem, 402
defined, 395
definition, 396
in three dimensions, 1013
introduction to, 393
quantization of, 1012
related to area swept out, 400
spin theorem, 403

antielectron, 783
antimatter, 783
area, 109

operational definition, 41
scaling of, 43

area under a curve
area under a-t graph, 111
under v-t graph, 109

astrology, 17
atom

raisin-cookie model of, 762

atomic number

defined, 772

atoms

helium, 1021

lithium, 1022

sodium, 1023

with many electrons, 1021

averages, 946

rule for calculating, 946

Avogadro’s number, 441

Bacon, Francis, 21

Balmer, Johann, 1018

beta decay, 783

nature of emitted particle, 768

beta particle, see beta decay

Big Bang, 276

described in general relativity, 829

binding energy

nuclear, 787

black hole, 448, 800, 826

event horizon, 826

formation, 828

information paradox, 827

singularity, 828
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Bohr, Niels, 1018
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bond, see chemical bonds
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Brownian motion, 756

calculus

differential, 86

fundamental theorem of, 115

integral, 115

invention by Newton, 85
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with vectors, 228
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