
Enrichment

Chapters 1–4 form an idealized undergraduate course, written in the style of a graduate
text. To help those seeing abstract algebra for the first time, I have prepared this section,
which contains advice, explanations and additional examples for each section in the first
four chapters.

Section 1.1

When we say that the rational numbers form a group under addition, we mean that
rational numbers can be added and subtracted, and the result will inevitably be rational.
Similarly for the integers, the real numbers, and the complex numbers. But the integers
(even the nonzero integers) do not form a group under multiplication. If a is an integer
other than ±1, there is no integer b such that ab = 1. The nonzero rational numbers
form a group under multiplication, as do the nonzero reals and the nonzero complex
numbers. Not only can we add and subtract rationals, we can multiply and divide them
(if the divisor is nonzero). The rational, reals and complex numbers are examples of fields,
which will be studied systematically in Chapter 3.

Here is what the generalized associative law is saying. To compute the product of the
elements a, b, c, d and e, one way is to first compute bc, then (bc)d, then a((bc)d), and
finally [a((bc)d)e]. Another way is (ab), then (cd), then (ab)(cd), and finally ([(ab)(cd)]e).
All procedures give the same result, which can therefore be written as abcde.

Notice that the solution to Problem 6 indicates how to construct a formal proof
of 1.1.4.

Section 1.2

Groups whose descriptions differ may turn out to be isomorphic, and we already have an
example from the groups discussed in this section. Consider the dihedral group D6, with
elements I, R, R2, F , RF , R2F . Let S3 be the group of all permutations of {1, 2, 3}. We
claim that D6 and S3 are isomorphic. This can be seen geometrically if we view D6 as a
group of permutations of the vertices of an equilateral triangle. Since D6 has 6 elements
and there are exactly 6 permutations of 3 symbols, we must conclude that D6 and S3

are essentially the same. To display an isomorphism explicitly, let R correspond to the
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permutation (1,2,3) and F to (2,3). Then

I = (1), R = (1, 2, 3), R2 = (1, 3, 2), F = (2, 3), RF = (1, 2), R2F = (1, 3).

If G is a nonabelian group, then it must have an element of order 3 or more. (For
example, S3 has two elements of order 3.) In other words, if every element of G has order
1 or 2, then G is abelian. To prove this, let a, b ∈ G; we will show that ab = ba. We can
assume with loss of generality that a �= 1 and b �= 1. But then a2 = 1 and b2 = 1, so that
a is its own inverse, and similarly for b. If ab has order 1, then ab = 1, so a and b are
inverses of each other. By uniqueness of inverses, a = b, hence ab = ba. If ab has order 2,
then abab = 1, so ab = b−1a−1 = ba.

Section 1.3

Here is another view of cosets that may be helpful. Suppose that a coded message is to
be transmitted, and the message is to be represented by a code word x (an n-dimensional
vector with components in some field). The allowable code words are solutions of Ax = 0,
where A is an m by n matrix, hence the set H of code words is an abelian group under
componentwise addition, a subgroup of the abelian group G of all n-dimensional vectors.
(In fact, G and H are vector space, but let’s ignore the additional structure.) Transmission
is affected by noise, so that the received vector is of the form z = x+y, where y is another
n-dimensional vector, called the error vector or error pattern vector. Upon receiving z,
we calculate the syndrome s = Az. If s turns out to be the zero vector, we declare that no
error has occurred, and the transmitted word is z. Of course our decision may be incorrect,
but under suitable assumptions about the nature of the noise, our decision procedure will
minimize the probability of making a mistake. Again, let’s ignore this difficulty and focus
on the algebraic aspects of the problem. We make the following claim:

Two vectors z1 and z2 have the same syndrome if and only if they lie in the same coset
of H in G.

To prove this, observe that Az1 = Az2 iff A(z1−z2) = 0 iff z1−z2 ∈ H iff z1 ∈ z2 +H.
(We are working in an abelian group, so we use the additive notation z2 + H rather than
the multiplicative notation z2H.)

Now suppose that we agree that we are going to correct the error pattern y1, in other
words, if we receive z = x1 + y1, where x1 is a code word, we will decode z as x1. If
we receive z′ = x′1 + y1, where x′1 is another code word, we decode z′ as x′1. Thus
our procedure corrects y1 regardless of the particular word transmitted. Here is a key
algebraic observation:

If y1 and y2 are distinct vectors that lie in the same coset, it is impossible to correct
both y1 and y2.

This holds because y1 = y2 + x for some code word x �= 0, hence y1 + 0 = y2 + x.
Therefore we cannot distinguish between the following two possibilities:

1. The zero word is transmitted and the error pattern is y1;
2. x is transmitted and the error pattern is y2.

It follows that among all vectors in a given coset, equivalently among all vectors
having the same syndrome, we can choose exactly one as a correctable error pattern. If
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the underlying field has only two elements 0 and 1, then (under suitable assumptions) it is
best to choose to correct the pattern of minimum weight, that is, minimum number of 1’s.
In particular, if the coset is the subgroup H itself, then we choose the zero vector. This
agrees with our earlier proposal: if the received vector z has zero syndrome, we decode
z as z itself, thus “correcting” the zero pattern, in other words, declaring that there has
been no error in transmission.

For further discussion and examples, see Information Theory by R. B. Ash, Dover
1991, Chapter 4.

Section 1.4

Here are some intuitive ideas that may help in visualizing the various isomorphism theo-
rems. In topology, we can turn the real interval [0, 1] into a circle by gluing the endpoints
together, in other words identifying 0 and 1. Something similar is happening when we
form the quotient group G/N where N is a normal subgroup of G. We have identified
all the elements of N , and since the identity belongs to every subgroup, we can say that
we have set everything in N equal to 1 (or 0 in the abelian case). Formally, (1.4.6) gives
a correspondence between the subgroup of G/N consisting of the identity alone, and the
subgroup N of G.

We have already seen an example of this identification process. In (1.2.4), we started
with the free group G generated by the symbols R and F , and identified all sequences
satisfying the relations Rn = I, F 2 = I, and RF = FR−1 (equivalently RFRF = I).
Here we would like to take N to be the subgroup of G generated by Rn, F 2, and RFRF ,
but N might not be normal. We will get around this technical difficulty when we discuss
generators and relations in more detail in Section 5.8.

Section 1.5

Direct products provide a good illustration of the use of the first isomorphism theorem.
Suppose that G = H × K; what can we say about G/H? If (h, k) ∈ G, then (h, k) =
(h, 1K)(1H , k), and intuitively we have identified (h, 1K) with the identity (1H , 1K). What
we have left is (1H , k), and it appears that G/H should be isomorphic to K. To prove
this formally, define f : G → K by f(h, k) = k. Then f is an epimorphism whose kernel
is {(h, 1K) : h ∈ H}, which can be identified with H. By the first isomorphism theorem,
G/H ∼= K.

Section 2.1

Here is an interesting ring that will come up in Section 9.5 in connection with group
representation theory. Let G = {x1, . . . xm} be a finite group, and let R be any ring.
The group ring RG consists of all elements r1x1 + · · · + rmxm. Addition of elements
is componentwise, just as if the xi were basis vectors of a vector space and the ri were
scalars in a field. Multiplication in RG is governed by the given multiplication in R, along
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with linearity. For example,

(r1x1 + r2x2)(s1x1 + s2x2) = r1s1x
2
1 + r1s2x1x2 + r2s1x2x1 + r2s2x

2
2.

The elements x2
1, x1x2, x2x1, and x2

2 belong to G, which need not be abelian. The elements
r1s1, r1s2, r2s1, and r2s2 belong to R, which is not necessarily commutative. Thus it is
essential to keep track of the order in which elements are written.

Section 2.2

Here is some additional practice with ideals in matrix rings. If I is an ideal of Mn(R),
we will show that I must have the form Mn(I0) for some unique ideal I0 of R. [Mn(I0) is
the set of all n by n matrices with entries in I0.]

We note first that for any matrix A, we have EijAEkl = ajkEil. This holds because
EijA puts row j of A in row i, and AEkl puts column k of A in column l. Thus EijAEkl

puts ajk in the il position, with zeros elsewhere.
If I is an ideal of Mn(R), let I0 be the set of all entries a11, where A = (aij) is a matrix

in I. To verify that I0 is an ideal, observe that (A + B)11 = a11 + b11, ca11 = (cE11A)11,
and a11c = (AE11c)11. We will show that I = Mn(I0).

If A ∈ I, set i = l = 1 in the basic identity involving the elementary matrices Eij

(see the second paragraph above) to get ajkE11 ∈ I. Thus ajk ∈ I0 for all j and k, so
A ∈Mn(I0).

Conversely, let A ∈ Mn(I0), so that ail ∈ I0 for all i, l. By definition of I0, there
is a matrix B ∈ I such that b11 = ail. Take j = k = 1 in the basic identity to get
Ei1BE1l = b11Eil = ailEil. Consequently, ailEil ∈ I for all i and l. But the sum of the
matrices ailEil over all i and l is simply A, and we conclude that A ∈ I.

To prove uniqueness, suppose that Mn(I0) = Mn(I1). If a ∈ I0, then aE11 ∈Mn(I0) =
Mn(I1), so a ∈ I1. A symmetrical argument completes the proof.

Section 2.3

If a and b are relatively prime integers, then ai and bj are relatively prime for all positive
integers i and j. Here is an analogous result for ideals. Suppose that the ideals I1 and I2

of the ring R are relatively prime, so that I1 + I2 = R. Let us prove that I2
1 and I2 are

relatively prime as well. By the definitions of the sum and product of ideals, we have

R = RR = (I1 + I2)(I1 + I2) = I2
1 + I1I2 + I2I1 + I2

2 ⊆ I2
1 + I2 ⊆ R

so R = I2
1 + I2, as asserted. Similarly, we can show that R = I3

1 + I2 by considering the
product of I2

1 + I2 and I1 + I2. More generally, an induction argument shows that if

I1 + · · ·+ In = R,

then for all positive integers m1, . . . , mn we have

Im1
1 + · · ·+ Imn

n = R.
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Section 2.4

We have defined prime ideals only when the ring R is commutative, and it is natural to ask
why this restriction is imposed. Suppose that we drop the hypothesis of commutativity,
and define prime ideals as in (2.4.4). We can then prove that if P is a prime ideal, I and J
are arbitrary ideals, and P ⊇ IJ , then either P ⊇ I or P ⊇ J . [If the conclusion is false,
there are elements a ∈ I \ P and b ∈ J \ P . Then ab ∈ IJ ⊆ P , but a /∈ P and b /∈ P , a
contradiction.]

If we try to reverse the process and show that a proper ideal P such that P ⊇ IJ
implies P ⊇ I or P ⊇ J must be prime, we run into trouble. If ab belongs to P , then the
principal ideal (ab) is contained in P . We would like to conclude that (a)(b) ⊆ P , so that
(a) ⊆ P or (b) ⊆ P , in other words, a ∈ P or b ∈ P . But (ab) need not equal (a)(b). For
example, to express the product of the element ar ∈ (a) and the element sb ∈ (b) as a
multiple of ab, we must invoke commutativity.

An explicit example: Let P be the zero ideal in the ring Mn(R) of n by n matrices over
a division ring R (see Section 2.2, exercises). Since Mn(R) has no nontrivial two-sided
ideals, P ⊇ IJ implies P ⊇ I or P ⊇ J . But ab ∈ P does not imply a ∈ P or b ∈ P ,
because the product of two nonzero matrices can be zero.

This example illustrates another source of difficulty. The zero ideal P is maximal,
but Mn(R)/P is not a division ring. Thus we cannot generalize (2.4.3) by dropping
commutativity and replacing “field” by “division ring”. [If R/M is a division ring, it does
follow that M is a maximal ideal; the proof given in (2.4.3) works.]

Section 2.5

Let’s have a brief look at polynomials in more than one variable; we will have much
more to say in Chapter 8. For example, a polynomial f(X, Y, Z) in 3 variables is a sum of
monomials; a monomial is of the form aXiY jZk where a belongs to the underlying ring R.
The degree of such a monomial is i+j +k, and the degree of f is the maximum monomial
degree. Formally, we can define R[X, Y ] as (R[X])[Y ], R[X, Y, Z] as (R[X, Y ])[Z], etc.

Let f be a polynomial of degree n in F [X, Y ], where F is a field. There are many cases
in which f has infinitely many roots in F . For example, consider f(X, Y ) = X + Y over
the reals. The problem is that there is no direct extension of the division algorithm (2.5.1)
to polynomials in several variables. The study of solutions to polynomial equations in
more than one variable leads to algebraic geometry, which will be introduced in Chapter 8.

Section 2.6

We have shown in (2.6.8) that every principal ideal domain is a unique factorization
domain. Here is an example of a UFD that is not a PID. Let R = Z[X], which will be
shown to be a UFD in (2.9.6). Let I be the maximal ideal < 2, X > (see (2.4.8)). If I is
principal, then I consists of all multiples of a polynomial f(X) with integer coefficients.
Since 2 ∈ I, we must be able to multiply f(X) = a0 + a1X + · · ·+ anXn by a polynomial
g(X) = b0 +b1X + · · ·+bmXm and produce 2. There is no way to do this unless f(X) = 1
or 2. But if f(X) = 1 then I = R, a contradiction (a maximal ideal must be proper).
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Thus f(X) = 2, but we must also be able to multiply f(X) by some polynomial in Z[X]
to produce X. This is impossible, and we conclude that I is not principal.

A faster proof that Z[X] is not a PID is as follows. In (2.4.8) we showed that < 2 >
and < X > are prime ideals that are not maximal, and the result follows from (2.6.9).
On the other hand, the first method produced an explicit example of an ideal that is not
principal.

Section 2.7

It may be useful to look at the Gaussian integers in more detail, and identify the primes
in Z[i]. To avoid confusion, we will call a prime in Z[i] a Gaussian prime and a prime
in Z a rational prime. Anticipating some terminology from algebraic number theory, we
define the norm of the Gaussian integer a + bi as N(a + bi) = a2 + b2. We will outline
a sequence of results that determine exactly which Gaussian integers are prime. We use
Greek letters for members of Z[i] and roman letters for ordinary integers.

1. α is a unit in Z[i] iff N(α) = 1. Thus the only Gaussian units are ±1 and ±i.

[If αβ = 1, then 1 = N(1) = N(α)N(β), so both N(α) and N(β) must be 1.]
Let n be a positive integer.

2. If n is a Gaussian prime, then n is a rational prime not expressible as the sum of two
squares.

[n is a rational prime because any factorization in Z is also a factorization in Z[i]. If
n = x2 + y2 = (x + iy)(x − iy), then either x + iy or x − iy is a unit. By (1), n = 1, a
contradiction.]

Now assume that n is a rational prime but not a Gaussian prime.

3. If α = a + bi is a nontrivial factor of n, then gcd(a, b) = 1.

[If the greatest common divisor d is greater than 1, then d = n. Thus α divides n and n
divides α, so n and α are associates, a contradiction.]

4. n is a sum of two squares.

[Let n = (a+ bi)(c+di); since n is real we have ad+ bc = 0, so a divides bc. By (3), a and
b are relatively prime, so a divides c, say c = ka. Then b(ka) = bc = −ad, so d = −bk.
Thus n = ac − bd = ka2 + kb2 = k(a2 + b2). But a + bi is a nontrivial factor of n, so
a2 +b2 = N(a+bi) > 1. Since n is a rational prime, we must have k = 1 and n = a2 +b2.]

By the above results, we have:

5. If n is a positive integer, then n is a Gaussian prime if and only if n is a rational prime
not expressible as the sum of two squares.

Now assume that α = a + bi is a Gaussian integer with both a and b nonzero. (The cases
in which a or b is 0 are covered by (1) and (5).)

6. If N(α) is a rational prime, then α is a Gaussian prime.
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[If α = βγ where β and γ are not units, then N(α) = N(β)N(γ), where N(β) and N(γ)
are greater than 1, contradicting the hypothesis.]

Now assume that α is a Gaussian prime.

7. If N(α) = hk is a nontrivial factorization, so that h > 1 and k > 1, then α divides
either h or k. If, say, α divides h, then so does its complex conjugate α.

[We have N(α) = a2 + b2 = (a + bi)(a− bi) = αα = hk. Since α divides the product hk,
it must divide one of the factors. If αβ = h, take complex conjugates to conclude that
αβ = h.]

8. N(α) is a rational prime.

[If not, then we can assume by (7) that α and α divide h. If α and α are not associates,
then N(α) = αα divides h, so hk divides h and therefore k = 1, a contradiction. If α and
its conjugate are associates, then one is ±i times the other. The only way this can happen
is if α = γ(1 ± i) where γ is a unit. But then N(α) = N(γ)N(1 ± i) = N(1 ± i) = 2, a
rational prime.]

By the above results, we have:

9. If α = a + bi with a �= 0, b �= 0, then α is a Gaussian prime if and only if N(α) is a
rational prime.

The assertions (5) and (9) give a complete description of the Gaussian primes, except
that it would be nice to know when a rational prime p can be expressed as the sum of
two squares. We have 2 = 12 + 12, so 2 is not a Gaussian prime, in fact 2 = (1 + i)(1− i).
If p is an odd prime, then p is a sum of two squares iff p ≡ 1 mod 4, as we will prove at
the beginning of Chapter 7. Thus we may restate (5) as follows:
10. If n is a positive integer, then n is a Gaussian prime iff n is a rational prime congruent

to 3 mod 4.
[Note that a number congruent to 0 or 2 mod 4 must be even.]

Section 2.8

Suppose that R is an integral domain with quotient field F , and g is a ring homomorphism
from R to an integral domain R′. We can then regard g as mapping R into the quotient
field F ′ of R′. It is natural to try to extend g to a homomorphism g : F → F ′. If a, b ∈ R
with b �= 0, then a = b(a/b), so we must have g(a) = g(b)g(a/b). Thus if an extension
exists, it must be given by

g(a/b) = g(a)[g(b)]−1.

For this to make sense, we must have g(b) �= 0 whenever b �= 0, in other words, g is a
monomorphism. [Note that if x, y ∈ R and g(x) = g(y), then g(x−y) = 0, hence x−y = 0,
so x = y.] We will see in (3.1.2) that any homomorphism of fields is a monomorphism, so
this condition is automatically satisfied. We can establish the existence of g by defining it
as above and then showing that it is a well-defined ring homomorphism. This has already
been done in Problem 8. We are in the general situation described in Problem 7, with S
taken as the set of nonzero elements of R. We must check that g(s) is a unit in F ′ for
every s ∈ S, but this holds because g(s) is a nonzero element of F ′.
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Section 2.9

Here is another useful result relating factorization over an integral domain to factorization
over the quotient field. Suppose that f is a monic polynomial with integer coefficients,
and that f can be factored as gh, where g and h are monic polynomials with rational
coefficients. Then g and h must have integer coefficients. More generally, let D be a
unique factorization domain with quotient field F , and let f be a monic polynomial in
D[X]. If f = gh, with g, h ∈ F [X], then g and h must belong to D[X].

To prove this, we invoke the basic proposition (2.9.2) to produce a nonzero λ ∈ F
such that λg ∈ D[X] and λ−1h ∈ D[X]. But g and h are monic, so λ = 1 and the result
follows.

Let f be a cubic polynomial in F [X]. If f is reducible, it must have a linear factor and
hence a root in F . We can check this easily if F is a finite field; just try all possibilities. A
finite check also suffices when F = Q, by the rational root test (Section 2.9, Problem 1).
If g is a linear factor of f , then f/g = h is quadratic. We can factor h as above, and in
addition the quadratic formula is available if square roots can be extracted in F . In other
words, if a ∈ F , then b2 = a for some b ∈ F .

Section 3.1

All results in this section are basic and should be studied carefully. You probably have
some experience with polynomials over the rational numbers, so let’s do an example with
a rather different flavor. Let F = F2 be the field with two elements 0 and 1, and let
f ∈ F [X] be the polynomial X2 + X + 1. Note that f is irreducible over F , because if f
were factorable, it would have a linear factor and hence a root in F . This is impossible,
as f(0) = f(1) = 1 �= 0. If we adjoin a root α of f to produce an extension F (α), we
know that f is the minimal polynomial of α over F , and that F (α) consists of all elements
b0 + b1α, with b0 and b1 in F . Since b0 and b1 take on values 0 and 1, we have constructed
a field F (α) with 4 elements. Moreover, all nonzero elements of F (α) can be expressed
as powers of α, as follows:

α0 = 1, α1 = α, α2 = −α − 1 = 1 + α. (The last equality follows because 1 + 1 = 0
in F .)

This is a typical computation involving finite fields, which will be studied in detail in
Chapter 6.

Section 3.2

We found in Problem 3 that a splitting field for X4− 2 has degree 8 over Q. If we make a
seemingly small change and consider f(X) = X4 − 1, the results are quite different. The
roots of f are 1, i, −1 and −i. Thus Q(i) is the desired splitting field, and it has degree 2
over Q because the minimal polynomial of i over Q has degree 2.

A general problem suggested by this example is to describe a splitting field for Xn−1
over Q for an arbitrary positive integer n. The splitting field is Q(ω), where ω is a
primitive nth root of unity, for example, ω = ei2π/n. We will see in Section 6.5 that the
degree of Q(ω) over Q is ϕ(n), where ϕ is the Euler phi function.
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Section 3.3

In Problem 8 we used the existence of an algebraic closure of F to show that any set of
nonconstant polynomials in F [X] has a splitting field over F . Conversely, if we suppose
that it is possible to find a splitting field K for an arbitrary family of polynomials over
the field F , then the existence of an algebraic closure of F can be established quickly.
Thus let K be a splitting field for the collection of all polynomials in F [X], and let C
be the algebraic closure of F in K (see (3.3.4)). Then by definition, C is an algebraic
extension of F and every nonconstant polynomial in F [X] splits over C. By (3.3.6), C is
an algebraic closure of F .

Section 3.4

Let’s have another look at Example 3.4.8 with p = 2 to get some additional practice with
separability and inseparability. We have seen that

√
t is not separable over F , in fact it is

purely inseparable because its minimal polynomial X2 − t can be written as (X −
√

t)2.
But if we adjoin a cube root of t, the resulting element 3

√
t is separable over F , because

X3 − t has nonzero derivative, equivalently does not belong to F [X2] (see 3.4.3).
Notice also that adjoining

√
t and 3

√
t is equivalent to adjoining 6

√
t, in other words,

F (
√

t, 3
√

t) = F ( 6
√

t). To see this, first observe that if α = 6
√

t, then
√

t = α3 and 3
√

t = α2.
On the other hand, (

√
t/ 3
√

t)6 = t.
It is possible for an element α to be both separable and purely inseparable over F , but

it happens if and only if α belongs to F . The minimal polynomial of α over F must have
only one distinct root and no repeated roots, so min(α, F ) = X − α. But the minimal
polynomial has coefficients in F (by definition), and the result follows.

Section 3.5

Suppose we wish to find the Galois group of the extension E/F , where E = F (α). Assume
that α is algebraic over F with minimal polynomial f , and that f has n distinct roots
α1 = α, α2, . . . , αn in some splitting field. If σ ∈ Gal(E/F ), then σ permutes the roots
of f by (3.5.1). Given any two roots αi and αj , i �= j, we can find an F -isomorphism
that carries αi into αj ; see (3.2.3). Do not jump to the conclusion that all permutations
are allowable, and therefore Gal(E/F ) is isomorphic to Sn. For example, we may not be
able to simultaneously carry α1 into α2 and α3 into α4. Another difficulty is that the
F -isomorphism carrying αi into αj need not be an F -automorphism of E. This suggests
that normality of the extension is a key property. If E/F is the non-normal extension of
Example (3.5.10), the only allowable permutation is the identity.

Section 4.1

Finitely generated algebras over a commutative ring R frequently appear in applications
to algebraic number theory and algebraic geometry. We say that A is a finitely generated
R-algebra if there are finitely many elements x1, . . . , xn in A such that every element of
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A is a polynomial f(x1, . . . , xn) with coefficients in R. Equivalently, A is a homomorphic
image of the polynomial ring R[X1, . . . , Xn]. The homomorphism is determined explicitly
by mapping Xi to xi, i = 1, . . . , n. The polynomial f(X1, . . . , Xn) is then mapped to
f(x1, . . . , xn).

If every element is not just a polynomial in the xi but a linear combination of the xi

with coefficients in R, then A is a finitely generated module over R. To see the difference
clearly, look at the polynomial ring R[X], which is a finitely generated R algebra. (In the
above discussion we can take n = 1 and x1 = X.) But if f1, . . . , fn are polynomials in
R[X] and the maximum degree of the fi is m, there is no way to take linear combinations
of the fi and produce a polynomial of degree greater than m. Thus R[X] is a not a finitely
generated R-module.

Section 4.2

Here is some practice working with quotient modules. Let N be a submodule of the
R-module M , and let π be the canonical map from M onto M/N , taking x ∈ M to
x + N ∈M/N . Suppose that N1 and N2 are submodules of M satisfying

(a) N1 ≤ N2;

(b) N1 ∩N = N2 ∩N ;

(c) π(N1) = π(N2).

Then N1 = N2.
To prove this, let x ∈ N2. Hypothesis (c) says that (N1 + N)/N = (N2 + N)/N ; we

don’t write Ni/N, i = 1, 2, because N is not necessarily a submodule of N1 or N2. Thus
x+N ∈ (N2 +N)/N = (N1 +N)/N , so x+N = y +N for some y ∈ N1. By (a), y ∈ N2,
hence x − y ∈ N2 ∩N = N1 ∩N by (b). Therefore x − y and y both belong to N1, and
consequently so does x. We have shown that N2 ≤ N1, and in view of hypothesis (a), we
are finished.

Section 4.3

If M is a free R-module with basis S = (xi), then an arbitrary function f from S to
an arbitrary R-module N has a unique extension to an R-homomorphism f : M → N ;
see (4.3.6).

This property characterizes free modules, in other words, if M is an R-module with a
subset S satisfying the above property, then M is free with basis S. To see this, build a
free module M ′ with basis S′ = (yi) having the same cardinality as S. For example, we
can take M ′ to be the direct sum of copies of R, as many copies as there are elements
of S. Define f : S → S′ ⊆ M ′ by f(xi) = yi, and let f be the unique extension of f to
an R-homomorphism from M to M ′. Similarly, define g : S′ → S ⊆ M by g(yi) = xi,
and let g be the unique extension of g to an R-homomorphism from M ′ to M . Note
that g exists and is unique because M ′ is free. Now g ◦ f is the identity on S, so by
uniqueness of extensions from S to M , g ◦ f is the identity on M . Similarly, f ◦ g is the
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identity on M ′. Thus M and M ′ are not only isomorphic, but the isomorphism we have
constructed carries S into S′. It follows that M is free with basis S.

This is an illustration of the characterization of an algebraic object by a universal
mapping property. We will see other examples in Chapter 10.

Section 4.4

Here is some practice in decoding abstract presentations. An R-module can be defined as
a representation of R in an endomorphism ring of an abelian group M . What does this
mean?

First of all, for each r ∈ R, we have an endomorphism fr of the abelian group M , given
by fr(x) = rx, x ∈M . To say that fr is an endomorphism is to say that r(x+y) = rx+ry,
x, y ∈M , r ∈ R.

Second, the mapping r → fr is a ring homomorphism from R to EndR(M). (Such
a mapping is called a representation of R in EndR(M).) This says that fr+s(x) =
fr(x) + fs(x), frs(x) = fr(fs(x)), and f1(x) = x. In other words, (r + s)x = rx + sx,
(rs)x = r(sx), and 1x = x.

Thus we have found a fancy way to write the module axioms. If you are already
comfortable with the informal view of a module as a “vector space over a ring”, you are
less likely to be thrown off stride by the abstraction.

Section 4.5

The technique given in Problems 1–3 for finding new bases and generators is worth em-
phasizing. We start with a matrix A to be reduced to Smith normal form. The equations
U = AX give the generators U of the submodule K in terms of the basis X of the free
module M . The steps in the Smith calculation are of two types:

1. Premultiplication by an elementary row matrix R. This corresponds to changing gen-
erators via V = RU .

2. Postmultiplication by an elementary column matrix C. This corresponds to changing
bases via Y = C−1X.

Suppose that the elementary row matrices appearing in the calculation are R1, . . . , Rs,
in that order, and the elementary column matrices are C1, . . . , Ct, in that order. Then
the matrices Q and P are given by

Q = Rs · · ·R2R1, P−1 = C1C2 · · ·Ct

hence P = C−1
t · · ·C−1

2 C−1
1 . The final basis for M is Y = PX, and the final generating

set for K is V = QU = SY , where S = QAP−1 is the Smith normal form (see 4.4.2).

Section 4.6

Here is a result that is used in algebraic number theory. Let G be a free abelian group
of rank n, and H a subgroup of G. By the simultaneous basis theorem, there is a basis
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y1, . . . yn of G and there are positive integers a1, . . . ar, r ≤ n, such that ai divides ai+1

for all i, and a1y1, . . . , aryr is a basis for H. We claim that the abelian group G/H is
finite if and only if r = n, and in this case, the size of G/H is |G/H| = a1a2 · · · ar.

To see this, look at the proof of (4.6.3) with Rn replaced by G and K by H. The
argument shows that G/H is the direct sum of cyclic groups Z/Zai, i = 1, . . . , n, with
ai = 0 for r < i ≤ n. In other words, G/H is the direct sum of r finite cyclic groups (of
order a1, . . . , ar respectively) and n− r copies of Z. The result follows.

Now assume that r = n, and let x1, . . . , xn and z1, . . . , zn be arbitrary bases for G
and H respectively. Then each zi is a linear combination of the xi with integer coefficients;
in matrix form, z = Ax. We claim that |G/H| is the absolute value of the determinant
of A. To verify this, first look at the special case xi = yi and zi = aiyi, i = 1, . . . , n.
Then A is a diagonal matrix with entries ai, and the result follows. But the special case
implies the general result, because any matrix corresponding to a change of basis of G
or H is unimodular, in other words, has determinant ±1. (See Section 4.4, Problem 1.)

Section 4.7

Here is some extra practice in diagram chasing. The diagram below is commutative with
exact rows.

A
f ��

t

��

B
g ��

u

��

C ��

v

��

0

A′
f ′

�� B′
g′

�� C ′ �� 0

If t and u are isomorphisms, we will show that v is also an isomorphism. (The hypothesis
on t can be weakened to surjectivity.)

Let c′ ∈ C ′; then c′ = g′b′ for some b′ ∈ B′. Since u is surjective, g′b′ = g′ub for some
b ∈ B. By commutativity, g′ub = vgb, which proves that v is surjective.

Now assume vc = 0. Since g is surjective, c = gb for some b ∈ B. By commutativity,
vgb = g′ub = 0. Thus ub ∈ ker g′ = im f ′, so ub = f ′a′ for some a′ ∈ A′. Since t is
surjective, f ′a′ = f ′ta for some a ∈ A. By commutativity, f ′ta = ufa. We now have
ub = ufa, so b− fa ∈ ker u, hence b = fa because u is injective. Consequently,

c = gb = gfa = 0

which proves that v is injective.


