
Solutions Chapters 6–10

Section 6.1

1. We have r1 = 2, r2 = 1, r3 = 1 so t1 = 1, t2 = 0, t3 = 1. The algorithm terminates in
one step after after subtraction of (X1 + X2 + X3)(X1X2X3). The given polynomial
can be expressed as e1e3.

2. We have r1 = 2, r2 = 1, r3 = 0 so t1 = 1, t2 = 1, t3 = 0. At step 1, subtract
(X1 + X2 + X3)(X1X2 + X1X3 + X2X3). The result is −3X1X2X3 + 4X1X2X3 =
X1X2X3. By inspection (or by a second step of the algorithm), the given polynomial
can be expressed as e1e2 + e3.

3. Equation (1) follows upon taking σ1(h) outside the summation and using the linear
dependence. Equation (2) is also a consequence of the linear dependence, because
σi(h)σi(g) = σi(hg).

4. By hypothesis, the characters are distinct, so for some h ∈ G we have σ1(h) �= σ2(h).
Thus in (3), each ai is nonzero and

σ1(h) − σi(h)

{
= 0 if i = 1;
�= 0 if i = 2.

This contradicts the minimality of r. (Note that the i = 2 case is important, since
there is no contradiction if σ1(h) − σi(h) = 0 for all i.)

5. By (3.5.10), the Galois group consists of the identity alone. Since the identity fixes all
elements, the fixed field of G is Q( 3

√
2).

6. Since C = R[i], an R-automorphism σ of C is determined by its action on i. Since σ
must permute the roots of X2 + 1 by (3.5.1), we have σ(i) = i or −i. Thus the Galois
group has two elements, the identity automorphism and complex conjugation.

7. The complex number z is fixed by complex conjugation if and only if z is real, so the
fixed field is R.

Section 6.2

1. The right side is a subset of the left since both Ei and Ep
i+1 are contained in Ei+1. Since

Ei is contained in the set on the right, it is enough to show that αi+1 ∈ Ei(E
p
i+1). By
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hypothesis, αi+1 is separable over F , hence over Ei(α
p
i+1). By Section 3.4, Problem 3,

αi+1 ∈ Ei(α
p
i+1) ⊆ Ei(E

p
i+1).

2. Apply Section 3.4, Problem 7, with E = F (Ep) replaced by Ei+1 = Ei(E
p
i+1), to

conclude that Ei+1 is separable over Ei. By the induction hypothesis, Ei is separable
over F . By transitivity of separable extensions (Section 3.4, Problem 8), Ei+1 is
separable over F . By induction, E/F is separable.

3. Let fi be the minimal polynomial of αi over F . Then E is a splitting field for f =
f1 · · · fn over F , and the result follows.

4. This is a corollary of part 2 of the fundamental theorem, with F replaced by Ki−1 and
G replaced by Gal(E/Ki−1) = Hi−1.

5. E(A) is a field containing E ≥ F and A, hence E(A) contains E and K, so that by
definition of composite, EK ≤ E(A). But any field (in particular EK) that contains
E and K contains E and A, hence contains E(A). Thus E(A) ≤ EK.

6. If σ ∈ G, define Ψ(σ)(τ(x)) = τσ(x), x ∈ E. Then ψ(σ) ∈ G′. [If y = τ(x) ∈ F ′ with
x ∈ F , then Ψ(σ)y = Ψ(σ)τx = τσ(x) = τ(x) = y.] Now Ψ(σ1σ2)τ(x) = τσ1σ2(x) and
Ψ(σ1)Ψ(σ2)τ(x) = Ψ(σ1)τσ2(x) = τσ1σ2(x), so Ψ is a group homomorphism. The
inverse of Ψ is given by Ψ′(σ′)τ−1y = τ−1σ′(y), σ′ ∈ G′, y ∈ E′. To see this, we
compute

Ψ′(Ψ(σ))τ−1y = τ−1Ψ(σ)y = τ−1Ψ(σ)τx = τ−1τσ(x) = σ(x) = σ(τ−1y).

Thus Ψ′Ψ is the identity on G.

7. Since H ′ is a normal subgroup of G, its fixed field L = F (H ′) is normal over F , so
by minimality of the normal closure, we have N ⊆ L. But all fixed fields are subfields
of N , so L ⊆ N , and consequently L = N .

8. If σ ∈ H ′, then σ fixes everything in the fixed field N , so σ is the identity. Thus the
largest normal subgroup of G that is contained in H is trivial. But this largest normal
subgroup is the core of H in G, and the resulting formula follows from Problems 4
and 5 of Section 5.1.

Section 6.3

1. G = {σ1, . . . , σn} where σi is the unique F -automorphism of E that takes α to αi.

2. We must find an α such that 1, α, . . . , αn−1 is a basis for E/Q. If α = b1x1 + · · · +
bnxn, we can compute the various powers of α and write αi = ci1x1 + · · · + cinxn,
i = 0, 1, . . . , n − 1, where each cij is a rational number. The powers of α will form
a basis iff det[cij ] �= 0. This will happen “with probability 1”; if a particular choice
of the bi yields det[cij ] = 0, a slight perturbation of the bi will produce a nonzero
determinant.

3. By (6.3.1), we may regard G as a group of permutations of the roots α1, . . . , αn of f ,
and therefore G is isomorphic to a subgroup H of Sn. Since G acts transitively on
the αi (see (6.3.1)), the natural action of H on {1, 2, . . . , n} is transitive. [For an
earlier appearance of the natural action, see the discussion before (5.3.1).]
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4. The Galois group G must be isomorphic to a transitive subgroup of S2, which is cyclic
of order 2. There is only one transitive subgroup of S2, namely S2 itself, so G is a
cyclic group of order 2.

5. Since [Q(
√

2) : Q] = 2 and [Q(
√

2,
√

3) : Q(
√

2)] = 2, the Galois group G has order 4.
[Note that

√
3 /∈ Q(

√
2) because a + b

√
2 can never be

√
3 for a, b ∈ Q.] An automor-

phism σ in G must take
√

2 to ±
√

2 and
√

3 to ±
√

3. Thus σ is either the identity or
has order 2. Now a group in which every element has order 1 or 2 must be abelian,
regardless of the size of the group [(ab)(ab) = 1, so ab = b−1a−1 = ba]. Since G is not
cyclic, it must be isomorphic to the four group Z2 ⊕Z2. (See the analysis in (4.6.4).)

6. Let H be the subgroup generated by H1 and H2, that is, by H1 ∪H2. If σ ∈ H1 ∪H2,
then σ fixes K1 ∩ K2 = K. Since H consists of all finite products (= compositions)
of elements in H1 or H2, everything in H fixes K, so that K ⊆ F(H). On the other
hand, if x ∈ F(H) but x /∈ K, say x /∈ K1. Then some τ ∈ H1 ⊆ H fails to fix x, so
x /∈ F(H), a contradiction. Therefore K = F(H).

7. The fixed field is K1K2, the composite of K1 and K2. For if σ fixes K1K2, then
it fixes both K1 and K2, so σ belongs to H1 ∩ H2. Conversely, if σ ∈ H1 ∩ H2,
then σ is the identity on both K1 and K2. But by the explicit form of K1K2 (see
Section 3.1, Problem 1 and Section 6.2, Problem 5), σ is the identity on K1K2. Thus
F(H1 ∩ H2) = K1K2.

8. We have E = F (α1, . . . , αn), where the αi are the roots of f . Since min(αi, F ) divides
the separable polynomial f , each αi is separable over F . By Section 6.2, Problem 1,
E is separable over F .

9. Since [Q(θ, i) : Q] = [Q(θ) : Q][Q(θ, i) : Q(θ)] = 4 × 2 = 8, we have |G| = 8. Any
σ ∈ G must map θ to a root of f (4 choices), and i to a root of X2 + 1 (2 choices, i
or −i). Since σ is determined by its action on θ and i, we have found all 8 members
of G.

10. Let σ(θ) = iθ, σ(i) = i, and let τ(θ) = θ, τ(i) = −i. Then σ4 = 1, τ2 = 1, and the
automorphisms 1, σ, σ2, σ3, τ, στ, σ2τ, σ3τ are distinct (by direct verification). Also,
we have στ = τσ−1 = τσ3. The result follows from the analysis of the dihedral group
in Section 5.8.

11. By direct verification, every member of N fixes iθ2 = i
√

2. Since N has index 2 in G,
the fixed field of N has degree 2 over Q. But the minimal polynomial of i

√
2 over Q

is X2 + 2, and it follows that F(N) = Q(i
√

2}. F(N) is the splitting field of X2 + 2
over Q and is therefore normal over Q, as predicted by Galois theory.

Section 6.4

1. We have α4 = 1 + α + α2 + α3 and α5 = 1. Thus the powers of α do not exhaust the
nonzero elements of GF (16).

2. We may assume that E = GF (pn) and that E contains F = GF (pm), where n = md.
Then [E : F ] = [E : Fp]/[F : Fp] = n/m = d. Since E/F is separable, we have
E = F (α) by the theorem of the primitive element. The minimal polynomial of α
over F is an irreducible polynomial of degree d.



4

3. Exactly as in (6.4.5), carry out a long division of Xn − 1 by Xm − 1. The division
will be successful iff m divides n.

4. Since the bi belong to L, we have K ⊆ L, and since h ∈ L[X], it follows that g|h. But
g ∈ K[X] by definition of K, so h|g. Since g and h are monic, they must be equal.
In particular, they have the same degree, so [E : L] = [E : K]. Since K ⊆ L, we have
L = K.

5. Since L = K, L is completely determined by g. But if f = min(α, F ), then g divides f .
Since f has only finitely many irreducible divisors, there can only be finitely many
intermediate fields L.

6. Since there are finitely many intermediate fields between E and F , the same is true
between L and F . By induction hypothesis, L = F (β) for some β ∈ L. Thus
E = L(αn) = F (β, αn).

7. By hypothesis, there are only finitely many fields of the form F (cβ +αn), c ∈ F . But
there are infinitely many choices of c, and the result follows.

8. Since E = F (β, αn), it suffices to show that β ∈ F (cβ + αn). This holds because

β =
(cβ + αn) − (dβ + αn)

c − d
.

9. Let σ : F → F be the Frobenius automorphism, given by σ(x) = xp. Let f =
min(α,Fp) and g = min(αp,Fp). Then f(αp) = f(σ(α)) = σ(f(α)) since σ is a
monomorphism, and σ(f(α)) = σ(0) = 0. Thus g divides the monic irreducible
polynomial f , so g = f .

10. By Problem 9, the subsets are {0}, {1, 3, 9}, {2, 6, 5}, {4, 12, 10}, and {7, 8, 11}. [For
example, starting with 2, we have 2 × 3 = 6, 6 × 3 = 18 ≡ 5 mod 13, 5 × 3 = 15 ≡
2 mod 13.] In the second case, we get

{0}, {1, 2, 4, 8}, {3, 6, 9, 12}, {5, 10}, {7, 14, 13, 11}.

Section 6.5

1. Ψn(Xp) =
∏

i(X
p−ωi) where the ωi are the primitive nth roots of unity. But the roots

of Xp −ωi are the pth roots of ωi, which must be primitive npth roots of unity because
p is prime and p divides n. The result follows. (The map θ → θp is a bijection between
primitive npth roots of unity and primitive nth roots of unity, because ϕ(np) = pϕ(n).)

2. By (6.5.1) and (6.5.6), the Galois group of the nth cyclotomic extension of Q can be
identified with the group of automorphisms of the cyclic group of nth roots of unity.
By (6.5.6), the Galois group is isomorphic to Un, and the result follows.

3. The powers of 3 mod 7 are 3, 9 ≡ 2, 6, 18 ≡ 4, 12 ≡ 5, 1.
4. This follows from Problem 3 and (1.1.4).
5. σ6(ω + ω6) = ω6 + ω36 = ω + ω6, so ω + ω6 ∈ K. Now ω + ω6 = ω + ω−1 = 2 cos 2π/7,

so ω satisfies a quadratic equation over Q(cos 2π/7). By (3.1.9),

[Q7 : Q] = [Q7 : K][K : Q(cos 2π/7)][Q(cos 2π/7) : Q]
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where the term on the left is 6, the first term on the right is |〈σ6〉| = 2, and the second
term on the right is (by the above remarks) 1 or 2. But [K : Q(cos 2π/7)] cannot be 2
(since 6 is not a multiple of 4), so we must have K = Q(cos 2π/7).

6. σ2(ω + ω2 + ω4) = ω2 + ω4 + ω8 = ω + ω2 + ω4, so ω + ω2 + ω4 ∈ L;
σ3(ω + ω2 + ω4) = ω3 + ω6 + ω12 = ω3 + ω5 + ω6 �= ω + ω2 + ω4, so ω + ω2 + ω4 /∈ Q.
[If ω3 +ω5 +ω6 = ω +ω2 +ω4, then we have two distinct monic polynomials of degree
6 satisfied by ω (the other is Ψ7(X)), which is impossible.]

7. By the fundamental theorem, [L : Q] = [G : 〈σ2〉] = 2, so we must have L = Q(ω +
ω2 + ω4).

8. The roots of Ψq are the prth roots of unity that are not pr−1th roots of unity. Thus

Ψq(X) =
Xpr − 1

Xpr−1 − 1
=

tp − 1
t − 1

and the result follows.
9. By Problem 1,

Ψ18(X) = Ψ(3)(6)(X) = Ψ6(X3) = X6 − X3 + 1.

Section 6.6

1. f is irreducible by Eisenstein, and the Galois group is S3. This follows from (6.6.7) or
via the discriminant criterion of (6.6.3); we have D(f) = −27(4) = −108, which is not
a square in Q.

2. f is irreducible by the rational root test, and D(f) = −4(−3)3 − 27 = 108 − 27 = 81,
a square in Q. Thus the Galois group is A3.

3. f is irreducible by Eisenstein. The derivative is f ′(X) = 5X4 − 40X3 = 5X3(X − 8).
We have f ′(x) positive for x < 0 and for x > 8, and f ′(x) negative for 0 < x < 8. Since
f(0) > 0 and f(8) < 0, graphing techniques from calculus show that f has exactly 3
real roots. By (6.6.7), G = S5.

4. f is irreducible by the rational root test. By the formula for the discriminant of a
general cubic with a = 3, b = −2, c = 1, we have D = 9(−8) − 4(−8) − 27 − 18(6) =
−175. Alternatively, if we replace X by X − a

3 = X − 1, the resulting polynomial is
g(X) = X3 − 5X + 5, whose discriminant is −4(−5)3 − 27(25) = −175. In any event,
D is not a square in Q, so G = S3. (Notice also that g is irreducible by Eisenstein, so
we could have avoided the rational root test at the beginning.)

5. If f is reducible, then it is the product of a linear factor and a quadratic polynomial g.
If g is irreducible, then G is cyclic of order 2 (Section 6.3, Problem 4). If g is reducible,
then all roots of f are in the base field, and G is trivial.

6. Let the roots be a, b + ic and b − ic. Then

∆ = (a − b − ic)(a − b + ic)2ic = ((a − b)2 + c2)2ic

and since i2 = −1, we have D < 0. Since D cannot be a square in Q, the Galois group
is S3. [This also follows from (6.6.7).]
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7. If the roots are a, b and c, then D = (a − b)2(a − c)2(b − c)2 > 0. The result follows
from (6.6.3).

Section 6.7

1. By (6.7.2), the Galois group of Q(
√

m)/Q is Z2 for m = 2, 3, 5, 7. It follows that the
Galois group of Q(

√
2,
√

3,
√

5,
√

7)/Q is Z2×Z2×Z2×Z2. See (6.7.5), and note that
Q contains a primitive square root of unity, namely −1. (It is not so easy to prove
that the Galois group has order 16. One approach is via the texhnique of Section 7.3,
Problems 9 and 10.)

2. Yes. Let E be the pth cyclotomic extension of Q, where p is prime. If p > 2, then
Q does not contain a primitive pth root of unity. By (6.5.6), the Galois group is
isomorphic to the group of units modp, which is cyclic.

3. Since the derivative of Xn − a is nXn−1 �= 0, it follows as in (6.5.1) that f has n
distinct roots β1, . . . , βn in E. Since βn

i = a and β−n
i = a−1, there are n distinct

nth roots of unity in E, namely 1 = β1β
−1
1 , β2β

−1
1 , . . . , βnβ−1

1 . Since the group of nth

roots of unity is cyclic, there must be a primitive nth root of unity in E.

4. Each root of g is of the form ωiθ, so g0 = ωkθd for some k. Since ωp = 1, we have
gp
0 = θdp. But c = θp since θ is also a root of f , and the result follows.

5. By Problem 4 we have

c = c1 = cadcbp = gap
0 cbp = (ga

0cb)p

with ga
0cb ∈ F . Thus ga

0cb is a root of f in F .

6. [E : F (ω)] divides p and is less than p by (6.7.2); note that E is also a splitting field
for f over F (ω). Thus [E : F (ω)] must be 1, so E = F (ω).

7. F contains a primitive pth root of unity ω iff E(= F (ω)) = F iff Xp − c splits over F .

8. By induction, σj(θ) = θ+j, 0 ≤ j ≤ p−1. Thus the subgroup of G that fixes θ, hence
fixes F (θ), consists only of the identity. By the fundamental theorem, E = F (θ).

9. We have σ(θp − θ) = σ(θ)p − σ(θ) = (θ + 1)p − (θ + 1) = θp − θ in characteristic p.
Thus θp − θ belongs to the fixed field of G, which is F . Let a = θp − θ, and the result
follows.

10. Since f(θ) = 0, min(θ, F ) divides f . But the degree of the minimal polynomial is
[F (θ) : F ] = [E : F ] = p = deg f . Thus f = min(θ, F ), which is irreducible.

11. Since θp−θ = a, we have (θ+1)p−(θ+1) = θp−θ = a. Inductively, θ, θ+1, . . . , θ+p−1
are distinct roots of f in E, and since f has degree p, we have found all the roots and
f is separable. Since E is a splitting field for f over F , we have E = F (θ).

12. By Problem 11, every root of f generates the same extension of F , namely E. But
any monic irreducible factor of f is the minimal polynomial of at least one of the
roots of f , and the result follows.

13. [E : F ] = [F (θ) : F ] = deg(min(θ, F )) = deg f = p. Thus the Galois group has prime
order p and is therefore cyclic.
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Section 6.8

1. Take the real part of each term of the identity to get

cos 3θ = cos3 θ + 3 cos θ(i sin θ)2 = cos3 θ − 3 cos θ(1 − cos2 θ);

thus cos 3θ = 4 cos3 θ − 3 cos θ. If 3θ = π/3, we have

cos π/3 = 1/2 = 4α3 − 3α

so 8α3 − 6α − 1 = 0. But 8X3 − 6X − 1 is irreducible over Q (rational root test), so
α is algebraic over Q and [Q(α) : Q] = 3 (not a power of 2), a contradiction.

2. X3 − 2 is irreducible by Eisenstein, so [Q( 3
√

2) : Q] = 3 and 3
√

2 is not constructible.
3. The side of such a square would be

√
π, so

√
π, hence π, would be algebraic over Q,

a contradiction.
4. ω is a root of X2 − 2(cos 2π/n)X + 1 since cos 2π/n = 1

2 (ω + ω−1) and
ω2 − (ω + ω−1)ω + 1 = 0. The discriminant of the quadratic polynomial is nega-
tive, proving irreducibility over R ⊇ Q(cos 2π/n).

5. By (6.5.2), (6.5.5) and (3.1.9),

ϕ(n) = [Q(ω) : Q] = [Q(ω) : Q(cos 2π/n)][Q(cos 2π/n) : Q].

By Problem 4, [Q(ω) : Q(cos 2π/n)] = 2, and if the regular n-gon is constructible,
then [Q(cos 2π/n) : Q] is a power of 2. The result follows.

6. By hypothesis, G = Gal(Q(ω)/Q) is a 2-group since its order is ϕ(n). Therefore
every quotient group of G, in particular Gal(Q(cos 2π/n)/Q), is a 2-group. [Note
that by (6.5.1), G is abelian, hence every subgroup of G is normal, and therefore
every intermediate field is a Galois extension of Q. Thus part 2c of the fundamental
theorem (6.2.1) applies.]

7. By the fundamental theorem (specifically, by Section 6.2, Problem 4), there are fields
Q = K0 ≤ K1 ≤ · · · ≤ Kr = Q(cos 2π/n) with [Ki : Ki−1] = 2 for all i = 1, . . . , r.
Thus cos 2π/n is constructible.

8. If n = pe1
1 · · · per

r , then (see Section 1.1, Problem 13)

ϕ(n) = pe1−1
1 (p1 − 1) · · · per−1

r (pr − 1).

If pi �= 2, we must have ei = 1, and in addition, pi − 1 must be a power of 2. The
result follows.

9. If m is not a power of 2, then m can be factored as ab where a is odd and 1 < b < m.
In the quotient (Xa + 1)/(X + 1), set X = 2b. It follows that (2m + 1)/(2b + 1) is an
integer. Since 1 < 2b + 1 < 2m + 1, 2m + 1 cannot be prime.

10. The ei belong to E and are algebraically independent over K, so the transcendence
detree of E over K is at least n. It follows that the αi are algebraically independent
over K, and the transcendence degree is exactly n. Therefore any permutation of
the αi induces a K-automorphism of E = K(α1, . . . , αn) which fixes each ei, hence
fixes F . Thus the Galois group of f consists of all permutations of n letters.
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11. Since Sn is not solvable, the general equation of degree n is not solvable by radicals
if n ≥ 5. In other words, if n ≥ 5, there is no sequence of operations on e1, . . . , en

involving addition, subtraction, multiplication, division and extraction of mth roots,
that will yield the roots of f .

Section 6.9

1. If S is not maximal, keep adding elements to S until a maximal algebraically indepen-
dent set is obtained. If we go all the way to T , then T is algebraically independent and
spans E algebraically, hence is a transcendence basis. (Transfinite induction supplies
the formal details.)

2. For the first statement, take T = E in Problem 1. For the second statement, take
S = ∅.

3. (i) implies (ii): Suppose that ti satisfies f(ti) = b0 + b1ti + · · · + bmtmi = 0, with
bj ∈ F (T \ {ti}). By forming a common denominator for the bj , we
may assume that the bj are polynomials in F [T \{ti}] ⊆ F [T ]. By (i),
bj = 0 for all j, so f = 0.

(ii) implies (iii): Note that F (t1, . . . , ti−1) ⊆ F (T \ {ti}).
(iii) implies (i): Suppose that f is a nonzero polynomial in F [X1, . . . , Xm] such that

f(t1, . . . , tm) = 0, where m is as small as possible. Then f = h0 +
h1Xm + · · · + hrX

r
m where the hj belong to F [X1, . . . , Xm−1]. Now

f(t1, . . . , tm) = b0 + b1tm + · · · + brt
r
m where bj = hj(t1, . . . , tm−1).

If the bj are not all zero, then tm is algebraic over F (t1, . . . , tm−1),
contradicting (iii). Thus bj ≡ 0, so by minimality of m, hj ≡ 0,
so f = 0.

4. If S ∪ {t} is algebraically dependent over F , then there is a positive integer n and
a nonzero polynomial f in F [X1, . . . , Xn, Z] such that f(t1, . . . , tn, t) = 0 for some
t1, . . . , tn ∈ S. Since S is algebraically independent over F , f must involve Z. We
may write f = b0 + b1Z + · · · + bmZm where bm �= 0 and the bj are polynomials in
F [X1, . . . , Xn]. But then t is algebraic over F (S).
Conversely, if t is algebraic over F (S), then for some positive integer n, there are
elements t1, . . . , tn ∈ S such that t is algebraic over F (t1, . . . , tn). By Problem 3,
{t1, . . . , tn, t} is algebraically dependent over F , hence so is S ∪ {t}.

5. Let A = {s1, . . . , sm, t1, . . . , tn} be an arbitrary finite subset of S ∪ T , with si ∈ S and
tj ∈ T . By Problem 3, si is transcendental over F (s1, . . . , si−1) and tj is transcendental
over K(t1, . . . , tj−1), hence over F (s1, . . . , sm, t1, . . . , tj−1) since S ⊆ K. Again by
Problem 3, A is algebraically independent over F . Since A is arbitrary, S ∪ T is
algebraically independent over F . Now if t ∈ K then {t} is algebraically dependent
over K (t is a root of X − t). But if t also belongs to T , then T is algebraically
dependent over K, contradicting the hypothesis. Thus K and T , hence S and T , are
disjoint.

6. By Problem 5, S∪T is algebraically independent over F . By hypothesis, E is algebraic
over K(T ) and K is algebraic over F (S). Since each t ∈ T is algebraic over F (S)(T ) =
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F (S ∪ T ), it follows that K(T ) is algebraic over F (S ∪ T ). By (3.3.5), E is algebraic
over F (S ∪ T ). Therefore S ∪ T is a transcendence basis for E/F .

7. If T is algebraically independent over F , the map f(X1, . . . , Xn) → f(t1, . . . , tn) ex-
tends to an F -isomorphism of F (X1, . . . , Xn) and F (t1, . . . , tn). Conversely, assume
that F (T ) is F -isomorphic to the rational function field. By Problem 2, there is a tran-
scendence basis B for F (T )/F such that B ⊆ T . By (6.9.7), the transcendence degree
of F (T )/F is |T | = n. By (6.9.5) or (6.9.6), B = T , so T is algebraically independent
over F .

8. The “if” part is clear since [K(z) : K] can’t be finite; if so, [F : K] < ∞. For the “only
if” part, z is algebraic over K(x), so let

zn + ϕn−1(x)zn−1 + · · · + ϕ0(x) = 0, ϕi ∈ K(x).

Clear denominators to get a polynomial f(z, x) = 0, with coefficients of f in K. Now
x must appear in f , otherwise z is not transcendental. Thus x is algebraic over K(z),
so [K(z, x) : K(z)] < ∞. Therefore

[F : K(z)] = [F : K(z, x)][K(z, x) : K(z)].

The first term on the right is finite since K(x) ⊆ K(z, x), and the second term is finite,
as we have just seen. Thus [F : K(z)] < ∞, and the result follows. ♣

9. We have tr deg(C/Q) = c, the cardinality of C (or R). For if C has a countable
transcendence basis z1, z2, . . . over Q, then C is algebraic over Q(z1, z2, . . . ). Since a
polynomial over Q can be identified with a finite sequence of rationals, it follows that
|C| = |Q|, a contradiction.

Section 7.1

1. Replace (iii) by (iv) and the proof goes through as before. If R is a field, then in (iii)
implies (i), x is an eigenvalue of C, so det(xI − C) = 0.

2. Replace (iii) by (v) and the proof goes through as before. [Since B is an A[x]-module,
in (iii) implies (i) we have xβi ∈ B; when we obtain [det(xI−C)]b = 0 for every b ∈ B,
the hypothesis that B is faithful yields det(xI − C) = 0.]

3. Multiply the equation by an−1 to get

a−1 = −(cn−1 + · · · + c1a
n−2 + c0a

n−1) ∈ A.

4. Since A[b] is a subring of B, it is an integral domain. Thus if bz = 0 and b �= 0,
then z = 0.

5. Any linear transformation on a finite-dimensional vector space is injective iff it is
surjective. Thus if b ∈ B and b �= 0, there is an element c ∈ A[b] ⊆ B such that bc = 1.
Therefore B is a field.

6. P is the preimage of Q under the inclusion map of A into B, so P is a prime ideal.
The map a+P → a+Q is a well-defined injection of A/P into B/Q, since P = Q∩A.
Thus A/P can be viewed as a subring of B/Q.
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7. If b + Q ∈ B/Q, then b satisfies an equation of the form

xn + an−1x
n−1 + · · · + a1x + a0 = 0, ai ∈ A.

By Problem 6, b + Q satisfies the same equation with ai replaced by ai + P for all i.
Thus B/Q is integral over A/P .

8. By Problems 3–5, A/P is a field if and only if B/Q is a field, and the result follows.
(Note that since Q is a prime ideal, B/Q is an integral domain, as required in the
hypothesis of the result just quoted.)

Section 7.2

1. By the quadratic formula, L = Q(
√

b2 − 4c). Since b2 − 4c ∈ Q, we may write
b2 − 4c = s/t = st/t2 for relatively prime integers s and t. We also have s = uy2

and t = vz2 where u, v, y, z ∈ Z, with u and v relatively prime and square-free. Thus
L = Q(

√
uv) = Q(

√
d).

2. If Q(
√

d) = Q(
√

e), then
√

d = a + b
√

e for rational numbers a and b. Thus d =
a2 + b2e + 2ab

√
e, so

√
e is rational, a contradiction (unless a = 0 and b = 1).

3. Any isomorphism of Q(
√

d) and Q(
√

e) must carry
√

d into a+b
√

e for rational numbers
a and b. Thus d is mapped to a2 + b2e + 2ab

√
e. But a Q-isomorphism maps d to d,

and we reach a contradiction as in Problem 2.

4. Since ωn = ω2
2n we have ωn ∈ Q(ω2n), so Q(ωn) ⊆ Q(ω2n). If n is odd then n+1 = 2r,

so

ω2n = −ω2r
2n = −(ω2

2n)r = −ωr
n.

Therefore Q(ω2n) ⊆ Q(ωn).

5. Let f be a monic polynomial over Z with f(x) = 0. If f is factorable over Q, then it is
factorable over Z by (2.9.2). Thus min(x,Q) is the monic polynomial in Z[X] of least
degree such that f(x) = 0.

6. Q(
√
−3) = Q(ω) where ω = − 1

2 + 1
2

√
−3 is a primitive cube root of unity.

7. If n = [L : Q], then an integral basis consists of n elements of L that are linearly inde-
pendent over Z, hence over Q. (A linear dependence relation over Q can be converted
to one over Z by multiplying by a common denominator.)

Section 7.3

1. The Galois group of E/Q consists of the identity and the automorphism σ(a+b
√

d) =
a − b

√
d. By (7.3.6), T (x) = x + σ(x) = 2a and N(x) = xσ(x) = a2 + db2.

2. A basis for E/Q is 1, θ, θ2, and

θ21 = θ2, θ2θ = θ3 = 3θ − 1, θ2θ2 = θ4 = θθ3 = 3θ2 − θ.
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Thus

m(θ2) =


0 −1 0

0 3 −1
1 0 3




and we have T (θ2) = 6, N(θ2) = 1. Note that if we had already computed the norm
of θ (the matrix of θ is

m(θ) =


0 0 −1

1 0 3
0 1 0




and T (θ) = 0, N(θ) = −1), it would be easier to calculate N(θ2) as [N(θ)]2 =
(−1)2 = 1.

3. The cyclotomic polynomial Ψ6 has only two roots, ω and its complex conjugate ω.
By (7.3.5),

T (ω) = ω + ω = eiπ/3 + e−iπ/3 = 2 cos(π/3) = 1.

4. By (7.3.6), N(x) = xσ(x) · · ·σn−1(x) and T (x) = x + σ(x) + · · · + σn−1(x). If
x = y/σ(y), then σ(x) = σ(y)/σ2(y), . . . , σn−1(x) = σn−1(y)/σn(y) = σn−1(y)/y,
and the telescoping effect gives N(x) = 1. If x = z − σ(z), then σ(x) = σ(z)− σ2(z),
. . . , σn−1(x) = σn−1(z) − z, and a similar telescoping effect gives T (x) = 0.

5. Choose v ∈ E such that

y = v + xσ(v) + xσ(x)σ2(v) + · · · + xσ(x) · · ·σn−2(x)σn−1(v) �= 0

and hence

σ(y) = σ(v) + σ(x)σ2(v) + σ(x)σ2(x)σ3(v) + · · · + σ(x)σ2(x) · · ·σn−1(x)σn(v).

We are assuming that N(x) = xσ(x) · · ·σn−1(x) = 1, and it follows that the last
summand in σ(y) is x−1σn(v) = x−1v. Comparing the expressions for y and σ(y), we
have xσ(y) = y, as desired.

6. Since T (x) = 0, we have −x = σ(x) + · · · + σn−1(x), so the last summand of σ(w)
is −xu. Thus

w − σ(w) = x(u + σ(u) + σ2(u) + · · · + σn−1(u)) = xT (u).

7. We have

z − σ(z) =
w

T (u)
− σ(w)

σ(T (u))
=

w − σ(w)
T (u)

since T (u) belongs to F and is therefore fixed by σ (see (7.3.3)). By Problem 6,
z − σ(z) = x.
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8. No. We have y/σ(y) = y′/σ(y′) iff y/y′ = σ(y/y′) iff y/y′ is fixed by all automor-
phisms in the Galois group G iff y/y′ belongs to the fixed field of G, which is F .
Similarly, z − σ(z) = z′ − σ(z′) iff z − z′ ∈ F .

9. We have min(θ,Q) = X4 − 2, min(θ2,Q) = X2 − 2, min(θ3,Q) = X4 − 8,
min(

√
3θ,Q) = X4 − 18. (To compute the last two minimal polynomials, note that

(θ3)4 = (θ4)3 = 23 = 8, and (
√

3θ)4 = 18.) Therefore, all 4 traces are 0.

10. Suppose that
√

3 = a+ bθ + cθ2 +dθ3 with a, b, c ∈ Q. Take the trace of both sides to
conclude that a = 0. (The trace of

√
3 is 0 because its minimal polynomial is X2−3.)

Thus
√

3 = bθ+cθ2 +dθ3, so
√

3θ = bθ2 +cθ3 +2d. Again take the trace of both sides
to get d = 0. The same technique yields b = c = 0, and we reach a contradiction.

Section 7.4

1. If l(y) = 0, then (x, y) = 0 for all x. Since the bilinear form is nondegenerate, we
must have y = 0.

2. Since V and V ∗ have the same dimension n, the map y → l(y) is surjective.

3. We have (xi, yj) = l(yj)(xi) = fj(xi) = δij . Since the fj = l(yj) form a basis, so do
the yj .

4. Write xi =
∑n

k=1 aikyk, and take the inner product of both sides with xj to conclude
that aij = (xi, xj).

5. The “if” part was done in the proof of (7.4.10). If detC = ±1, then C−1 has coeffi-
cients in Z by Cramer’s rule.

6. If d �≡ 1 mod 4, then by (7.2.3), 1 and
√

d form an integral basis. Since the trace of
a + b

√
d is 2a (Section 7.3, Problem 1), the field discriminant is

D = det
[
2 0
0 2d

]
= 4d.

If d ≡ 1 mod 4, then 1 and 1
2 (1 +

√
d) form an integral basis, and

[
1
2
(1 +

√
d)

]2

=
1
4

+
d

4
+

1
2

√
d.

Thus

D = det
[
2 1
1 d+1

2

]
= d.

7. The first statement follows because multiplication of each element of a group G by a
particular element g ∈ G permutes the elements of G. The plus and minus signs are
balanced in P + N and PN , before and after permutation. We can work in a Galois
extension of Q containing L, and each automorphism in the Galois group restricts to
one of the σi on L. Thus P +N and PN belong to the fixed field of the Galois group,
which is Q.
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8. Since the xj are algebraic integers, so are the σi(xj), as in the proof of (7.3.10). By
(7.1.5), P and N , hence P + N and PN , are algebraic integers. By (7.1.7), Z is
integrally closed, so by Problem 7, P + N and PN belong to Z.

9. D = (P − N)2 = (P + N)2 − 4PN ≡ (P + N)2 mod 4. But any square is congruent
to 0 or 1 mod 4, and the result follows.

10. We have yi =
∑n

j=1 aijxj with aij ∈ Z. By (7.4.3), D(y) = (detA)2D(x). Since D(y)
is square-free, det A = ±1, so A has an inverse with entries in Z. Thus x = A−1y, as
claimed.

11. Every algebraic integer is a Z-linear combination of the xi, hence of the yi by Prob-
lem 10. Since the yi form a basis for L over Q, they are linearly independent and the
result follows.

12. No. For example, let L = Q(
√

d), where d is a square-free integer with d �≡ 1 mod 4.
(See Problem 6). The field discriminant is 4d, which is not square-free.

13. This follows from the proof of (7.4.7).

Section 7.5

1. A0 ⊂ A1 ⊂ A2 ⊂ · · ·
2. Let a/pn ∈ B, where p does not divide a. There are integers r and s such that

ra + spn = 1. Thus ra/pn = 1/pn in Q/Z, and An ⊆ B. If there is no upper bound
on n, then 1/pn ∈ B for all n (note 1/pn = p/pn+1 = p2/pn+2, etc.), hence B = A. If
there is a largest n, then for every m > n, B∩Am ⊆ An by maximality of n. Therefore
B = An.

3. Let x1, x2, . . . be a basis for V . Let Mr be the subspace spanned by x1, . . . , xr, and
Lr the subspace spanned by the xj , j > r. If V is n-dimensional, then V = L0 > L1 >
· · · > Ln−1 > Ln = 0 is a composition series since a one-dimensional subspace is a
simple module. [V = Mn > Mn−1 > · · · > M1 > 0 is another composition series.]
Thus V is Noetherian and Artinian. If V is infinite-dimensional, then M1 < M2 < · · ·
violates the acc, and L0 > L1 > L2 > · · · violates the dcc. Thus V is neither
Noetherian nor Artinian. [Note that if V has an uncountable basis, there is no problem;
just take a countably infinite subset of it.]

4. l(M) is finite iff M has a composition series iff M is Noetherian and Artinian iff N
and M/N are Noetherian and Artinian iff l(N) and l(M/N) are finite.

5. By Problem 4, the result holds when l(M) = ∞, so assume l(M), hence l(N) and
l(M/N), finite. Let 0 < N1 < · · · < Nr = N be a composition series for N , and let
N/N < (M1 + N)/N < · · · < (Ms + N)/N = M/N be a composition series for M/N .
Then

0 < N1 < · · · < Nr < M1 + N < · · · < Ms + N = M

is a composition series for M . (The factors in the second part of the series are simple
by the third isomorphism theorem.) It follows that l(M) = r + s = l(N) + l(M/N).
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6. By (7.5.9), R is a Noetherian S-module, hence a Noetherian R-module. (Any R-
submodule T of R is, in particular, an S-submodule of R. Therefore T is finitely
generated.)

7. Yes. Map a polynomial to its constant term and apply the first isomorphism theorem
to show that R ∼= R[X]/(X). Thus R is a quotient of a Noetherian R-module, so is
Noetherian by (7.5.7).

8. If there is an infinite descending chain of submodules Mi of M , then the intersection
N = ∩iMi cannot be expressed as the intersection of finitely many Mi. By the corre-
spondence theorem, ∩i(Mi/N) = 0, but no finite intersection of the submodules Mi/N
of M/N is 0. Thus M/N is not finitely cogenerated. Conversely, suppose that M/N is
not finitely cogenerated. By the correspondence theorem, we have ∩αMα = N , but no
finite intersection of the Mα is N . Pick any Mα and call it M1. If M1 ⊆ Mα for all α,
then M1 = N , a contradiction. Thus we can find Mα = M2 such that M1 ⊃ M1 ∩M2.
Continue inductively to produce an infinite descending chain.

Section 7.6

1. The “only if” part follows from (7.6.2). If the given condition is satisfied and ab ∈ P ,
then (a)(b) ⊆ P , hence (a) ⊆ P or (b) ⊆ P , and the result follows.

2. If xi /∈ Pi for some i, then xi ∈ I \ ∪n
j=1Pj and we are finished.

3. Since I is an ideal, x ∈ I. Say x ∈ P1. All terms in the sum that involve x1 belong
to P1 by Problem 2. The remaining term x2 · · ·xn is the difference of two elements in
P1, hence x2 · · ·xn ∈ P1. Since P1 is prime, xj ∈ P1 for some j �= 1, contradicting the
choice of xj .

4. The product of ideals is always contained in the intersection. If I and J are relatively
prime, then 1 = x + y with x ∈ I and y ∈ J . If z ∈ I ∩ J , then z = z1 = zx + zy ∈ IJ .
The general result follows by induction, along with the computation

R = (I1 + I3)(I2 + I3) ⊆ I1I2 + I3.

Thus I1I2 and I3 are relatively prime.
5. See (2.6.9).
6. Assume that R is not a field, equivalently, {0} is not a maximal ideal. Thus by (7.6.9),

every maximal idea is invertible.
7. Let r be a nonzero element of R such that rK ⊆ R, hence K ⊆ r−1R ⊆ K. Thus

K = r−1R. Since r−2 ∈ K we have r−2 = r−1s for some s ∈ R. But then r−1 = s ∈ R,
so K ⊆ R and consequently K = R.

8. R = Rr = (P1 + P2)r ⊆ P r
1 + P2. Thus P r

1 and P2 are relatively prime for all r ≥ 1.
Assuming inductively that P r

1 and P s
2 are relatively prime, we have

P s
2 = P s

2 R = P s
2 (P r

1 + P2) ⊆ P r
1 + P s+1

2

so

R = P r
1 + P s

2 ⊆ P r
1 + (P r

1 + P s+1
2 ) = P r

1 + P s+1
2
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completing the induction.

Section 7.7

1. By Section 7.3, Problem 1, the norms are 6, 6, 4 and 9. Now if x = a + b
√
−5 and

x = yz, then N(x) = a2 + 5b2 = N(y)N(z). The only algebraic integers of norm 1
are ±1, and there are no algebraic integers of norm 2 or 3. Thus there cannot be a
nontrivial factorization of 1 ±

√
−5, 2 or 3.

2. If (a+ b
√
−5)(c+d

√
−5) = 1, take norms to get (a2 +5b2)(c2 +5d2) = 1, so b = d = 0,

a = ±1, c = ±1.
3. By Problem 2, if two factors are associates, then the quotient of the factors is ±1,

which is impossible.
4. This is a nice application of the principle that divides means contains. The greatest

common divisor is the smallest ideal containing both I and J , that is, I +J . The least
common multiple is the largest ideal contained in both I and J , which is I ∩ J .

5. If I is a fractional ideal, then by (7.7.1) there is a fractional ideal I ′ such that II ′ = R.
By definition of fractional ideal, there is a nonzero element r ∈ R such that rI ′ is an
integral ideal. If J = rI ′, then IJ = Rr, a principal ideal of R.

6. This is done just as in Problems 1–3, using the factorization 18 = (2)(32) = (1 +√
−17)(1 −

√
−17).

7. By (7.2.2), the algebraic integers are of the form a + b
√
−3, a, b ∈ Z, or u

2 + v
2

√
−3

where u and v are odd integers. If we require that the norm be 1, we only get ±1 in
the first case. But in the second case, we have u2 + 3v2 = 4, so u = ±1, v = ±1. Thus
if ω = ei2π/3, the algebraic integers of norm 1 are ±1,±ω, and ±ω2.

Section 7.8

1. If Rx and Ry belong to P (R), then (Rx)(Ry)−1 = (Rx)(Ry−1) = Rxy−1 ∈ P (R), and
the result follows from (1.1.2).

2. If C(R) is trivial, then every integral ideal I of R is a principal fractional ideal Rx, x ∈
K. But I ⊆ R, so x = 1x must belong to R, proving that R is a PID. The converse
holds because every principal ideal is a principal fractional ideal.

3. 1 −
√
−5 = 2 − (1 +

√
−5) ∈ P2, so (1 +

√
−5)(1 −

√
−5) = 6 ∈ P 2

2 .
4. Since 2 ∈ P2, it follows that 4 ∈ P 2

2 , so by Problem 3, 2 = 6 − 4 ∈ P 2
2 .

5. (2, 1+
√
−5)(2, 1+

√
−5) = (4, 2(1+

√
−5), (1+

√
−5)2), and (1+

√
−5)2 = −4+2

√
−5.

Thus each of the generators of the ideal P 2
2 is divisible by 2, hence belongs to (2).

Therefore P 2
2 ⊆ (2).

6. x2+5 ≡ (x+1)(x−1) mod 3, which suggests that (3) = P3P
′
3, where P3 = (3, 1+

√
−5)

and P ′3 = (3, 1 −
√
−5).

7. P3P
′
3 = (3, 3(1−

√
−5), 3(1+

√
−5), 6) ⊆ (3) since each generator of P3P

′
3 is divisible by

3. But 3 ∈ P3 ∩P ′3, hence 9 ∈ P3P
′
3, and therefore 9−6 = 3 ∈ P3P

′
3. Thus (3) ⊆ P3P

′
3,

and the result follows.
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Section 7.9

1. Using (1), the product is z = 4 + 2p + 4p2 + p3 + p4. But 4 = 3 + 1 = 1 + p and
4p2 = p2 + 3p2 = p2 + p3. Thus z = 1 + 3p + p2 + 2p3 + p4 = 1 + 2p2 + 2p3 + p4.
Using (2), we are multiplying x = {2, 5, 14, 14, . . . } by y = {2, 2, 11, 11, . . . }. Thus
z0 = 4, z1 = 10, z2 = 154, z3 = 154, z4 = 154, and so on. But 4 ≡ 1 mod 3, 10 ≡
1 mod 9, 154 ≡ 19 mod 27, 154 ≡ 73 mod 81, 154 ≡ 154 mod 243. The standard form
is {1, 1, 19, 73, 154, 154, . . . }. As a check, the product is (2+3+9)(2+9) = 154, whose
base 3 expansion is 1 + 0(3) + 2(9) + 2(27) + 1(81) as found above.

2. We have a0 = −1 and an = 0 for n ≥ 1; equivalently, xn = −1 for all n. In standard
form, x0 = p−1, x1 = p2−1, x2 = p3−1, . . . .Since (pr−1)−(pr−1−1) = (p−1)(pr−1),
the series representation is

(p − 1) + (p − 1)p + (p − 1)p2 + · · · + (p − 1)pn + · · · .

The result can also be obtained by multiplying by -1 on each side of the equation

1 = (1 − p)(1 + p + p2 + · · · ).

3. Let x be a nonzero element of GF (q). By (6.4.1), xq−1 = 1, so |x|q−1 = 1. Thus |x| is
a root of unity, and since absolute values are nonnegative real, we must have |x| = 1,
and the result follows.

4. If the absolute value is nonarchimedian, then S is bounded by (7.9.6). If the absolute
value is archimedian, then by (7.9.6), |n| > 1 for some n. But then |nk| = |n|k → ∞
as k → ∞. Therefore S is unbounded.

5. A field of prime characteristic p has only finitely many integers 0, 1, . . . , p − 1. Thus
the set S of Problem 4 must be bounded, so the absolute value is nonarchimedian.

6. The “only if” part is handled just as in calculus. For the “if” part, note that by (iv)
of (7.9.5), we have |zm + zm+1 + · · · + zn| ≤ max{|zi| : m ≤ i ≤ n} → 0 as m, n → ∞.
Thus the nth partial sums form a Cauchy sequence, which must converge to an element
in Qp.

7. Since n! = 1 · 2 · · · p · · · 2p · · · 3p · · · , it follows from (7.9.2) and (7.9.3) that if rp ≤ n <
(r + 1)p, then |n!| = 1/pr. Thus |n!| → 0 as n → ∞.

8. No. Although |pr| = 1/pr → 0 as r → ∞, all integers n such that rp < n < (r + 1)p
have p-adic absolute value 1, by (7.9.2). Thus the sequence of absolute values |n|
cannot converge, hence the sequence itself cannot converge.

Section 8.1

1. If x ∈ V and f1(x) �= 0, then f2(x) must be 0 since f1f2 ∈ I(V ); the result follows.
2. By Problem 1, V ⊆ V (f1) ∪ V (f2). Thus

V = (V ∩ V (f1)) ∪ (V ∩ V (f2)) = V1 ∪ V2.

Since f1 /∈ I(V ), there exists x ∈ V such that f1(x) �= 0. Thus x /∈ V1, so V1 ⊂ V ;
similarly, V2 ⊂ V .
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3. I(V ) ⊇ I(W ) by (4). If I(V ) = I(W ), let V = V (S), W = V (T ). Then IV (S) =
IV (T ), and by applying V to both sides, we have V = W by (6).

4. Let x ∈ V ; if f1(x) �= 0, then since f1 ∈ I(V1), we have x /∈ V1. But then x ∈ V2, and
therefore f2(x) = 0 (since f2 ∈ I(V2)). Thus f1f2 = 0 on V , so f1f2 ∈ I(V ).

5. If V is reducible, then V is the union of proper subvarieties V1 and V2. If V1 is
reducible, then it too is the union of proper subvarieties. This decomposition process
must terminate in a finite number of steps, for otherwise by Problems 1–4, there
would be a strictly increasing infinite sequence of ideals, contradicting the fact that
k[X1, . . . , Xn] is Noetherian.

6. If V =
⋃

i Vi =
⋃

j Wj , then Vi =
⋃

j(Vi

⋂
Wj), so by irreducibility, Vi = Vi

⋂
Wj for

some j. Thus Vi ⊆ Wj , and similarly Wj ⊆ Vk for some k. But then Vi ⊆ Vk, hence
i = k (otherwise we would have discarded Vi). Thus each Vi can be paired with a
corresponding Wj , and vice versa.

7. By hypothesis, An = ∪(An \V (Ii)). Taking complements, we have ∩V (Ii) = ∅. But by
(8.1.2), ∩V (Ii) = V (∪Ii) = V (I), so by the weak Nullstellensatz, I = k[X1, . . . , Xn].
Thus the constant polynomial 1 belongs to I.

8. Suppose that the open sets An \ V (Ii) cover An. By Problem 7, 1 ∈ I, hence 1
belongs to a finite sum

∑
i∈F Ii. Since 1 never vanishes, V (

∑
i∈F Ii) = ∅. By (8.1.2),

∩i∈F Vi = ∅, where Vi = V (Ii). Taking complements, we have ∪i∈F (An \ Vi) = An.
Thus the original open covering of An has a finite subcovering, proving compactness.

Section 8.2

1. If a /∈ (a1, . . . , ak), then g or some other element of I would extend the inductive
process to step k + 1.

2. In going from di to di+1 we are taking the minimum of a smaller set.
3. By minimality of m, a /∈ (a1, . . . , am−1), hence fm and g satisfy conditions 1 and 2.

By choice of fm we have dm ≤ d. (If m = 1, then d1 ≤ d by choice of f1.)
4. Let f be the unique ring homomorphism from R[X1, . . . , Xn] to S such that f is the

identity on R and f(Xi) = xi, i = 1, . . . , n. (For example, if a ∈ R, then aX2
1X7

4 →
ax2

1x
7
4.) Since the image of f contains R and {x1, . . . , xn}, f is surjective and the result

follows.
5. By the Hilbert basis theorem, R[X1, . . . , Xn] is a Noetherian ring, hence a Noetherian

R[X1, . . . , Xn]-module. By (7.5.7), S is a Noetherian R[X1, . . . , Xn]-module. But the
submodules of S considered as an R[X1, . . . , Xn]-module coincide with the submodules
of S as an S-module. (See Section 4.2, Problems 6 and 7; note that the kernel of the
homomorphism f of Problem 4 annihilates S.) Thus S is a Noetherian S-module, that
is, a Noetherian ring.

Section 8.3

1. Suppose that xy ∈ J with x /∈ J and y /∈ J . By maximality of J , the ideal J + (x)
contains an element s ∈ S. Similarly, J + (y) contains an element t ∈ S. But then
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st ∈ (J + (x))(J + (y)) ⊆ J + (xy) ⊆ J , so S ∩ J �= ∅, a contradiction.

2. Let S = {1, f, f2, . . . , fr, . . . }. Then I ∩ S = ∅ since f /∈
√

I. By Problem 1, I is
contained in a prime ideal P disjoint from S. But f ∈ S, so f cannot belong to P , and
the result follows.

3. The “if” part follows because f and fr have the same zero-set. Conversely, if
V (f) = V (g), then by the Nullstellensatz,

√
(f) =

√
(g), and the result follows.

4. W ⊆ V since (t4)2 = (t3)(t5) and (t5)2 = (t3)2(t4); L ⊆ V by direct verification.
Conversely, if y2 = xz and z2 = x2y, let t = y/x. (If x = 0, then y = z = 0 and
we can take t = 0.) Then z = y2/x = (y/x)2x = t2x, and z2 = x2y. Therefore
z2 = t4x2 = x2y, hence y = t4. If t = 0 then y = 0, hence z = 0 and (x, y, z) ∈ L.
Thus assume t �= 0. But then x = y/t = t3 and z = t2x = t5.

5. We will show that I(V ) is a prime ideal (see the exercises in Section 8.1). If fg ∈ I(V ),
then fg vanishes on V . Using the parametric form, we have f(t, t2, t3)g(t, t2, t3) = 0
for all complex numbers t. Since we are now dealing with polynomials in only one
variable, either f(t, t2, t3) = 0 for all t or g(t, t2, t3) = 0 for all t. Thus f ∈ I(V )
or g ∈ I(V ).

6. (a) x = 2t/(t2 + 1), y = (t2 − 1)/(t2 + 1)

(b) x = t2, y = t3

(c) x = t2 − 1, y = t(t2 − 1)

7. (Following Shafarevich, Basic Algebraic Geometry, Vol.1, page 2.) We can assume that
x appears in f with positive degree. Viewing f and g as polynomials in k(y)[x], a PID,
f is still irreducible because irreducibility over an integral domain implies irreducibility
over the quotient field. If g = fh where h is a polynomial in x with coefficients in k(y),
then by clearing denominators we see that f must divide g in k[x, y], a contradiction.
(Since f is irreducible, it must either divide g or a polynomial in y alone, and the
latter is impossible because x appears in f .) Thus f does not divide g in k(y)[x].
Since f and g are relatively prime, there exist s, t ∈ k(y)[x] such that fs + gt = 1.
Clearing denominators, we get u, v ∈ k[x, y] such that fu + gv = a, where a is a
nonzero polynomial in y alone. Now if α, β ∈ k and f(α, β) = g(α, β) = 0, then
a(β) = 0, and this can only happen for finitely many β. For any fixed β, consider
f(x, β) = 0. If this polynomial in x is not identically 0, then there are only finitely
many α such that f(α, β) = 0, and we are finished. Thus assume f(x, β) ≡ 0. Then
f(x, y) = f(x, y) − f(x, β) = (y − β)h in k(x)[y], contradicting the irreducibility of f .

Section 8.4

1. Since f = 0 iff some fi = 0, V (f) is the union of the V (fi). Since each fi is irreducible,
the ideal Ii = (fi) is prime by (2.6.1), hence V (Ii) = V (fi) is an irreducible subvariety
of V (f). [See the problems in Section 8.1, along with the Nullstellensatz and the
fact that every prime ideal is a radical ideal (Section 8.3, Problem 2).] No other
decomposition is possible, for if V (fi) ⊆ V (fj), then (fi) ⊇ (fj). This is impossible
if fi and fj are distinct irreducible factors of f .



19

2. By the Nullstellensatz, IV (f) =
√

(f), and we claim that
√

(f) = (f1 · · · fr). For if
g ∈ (f1 · · · fr), then a sufficiently high power of g will belong to (f). Conversely, if
gm = hf , then each fi divides gm, and since the fi are irreducible, each fi divides g,
so (f1 · · · fr) divides g.

3. By Problem 1, f is irreducible if and only if V (f) is an irreducible hypersurface. If f
and g are irreducible and V (f) = V (g), then as in Problem 1, (f) = (g), so f = cg
for some nonzero constant c (Section 2.1, Problem 2). Thus f → V (f) is a bijection
between irreducible polynomials and irreducible hypersurfaces, if the polynomials f
and cf, c �= 0, are identified.

4. This follows from the definition of I(X) in (8.1.3), and the observation that a function
vanishes on a union of sets iff it vanishes on each of the sets.

5. By Section 8.1, Problem 5, every variety V is the union of finitely many irreducible
subvarieties V1, . . . , Vr. By Problem 4, I(V ) = ∩r

i=1I(Vi). By the Problems in Sec-
tion 8.1, each I(Vi) is a prime ideal. By (8.4.3), every radical ideal is I(V ) for some
variety V , and the result follows.

6. By Section 8.1, Problem 6, and the inclusion-reversing property of I (part (4) of
(8.1.3)), the decomposition is unique if we discard any prime ideal that properly
contains another one. In other words, we retain only the minimal prime ideals.

7. If f is any irreducible factor of any of the fi, then f does not divide g. Thus for some
j �= i, f does not divide fj . By Problem 7 of Section 8.3, the simultaneous equations
f = fj = 0 have only finitely many solutions, and consequently X is a finite set.

8. With notation as in Problem 7, fi = ghi, where the gcd of the hi is constant. Thus
X is the union of the algebraic curve defined by g = 0 and the finite set defined by
h1 = · · · = hm = 0. (This analysis does not apply when X is defined by the zero
polynomial, in which case X = A2.)

9. If k = R, the zero-set of x2 + y2n is {(0, 0)} for all n = 1, 2, . . . . If k is algebraically
closed, then as a consequence of the Nullstellensatz, V (f) = V (g) with f and g
irreducible implies that f = cg for some constant c. (See Problem 3).

10. Let k = F2, and let I be the ideal of k[X] generated by f(X) = X2 + X + 1. Since
f is irreducible, I is a maximal ideal (Section 3.1, Problem 8), in particular, I is
proper. But f(0) and f(1) are nonzero, so V (I) is empty, contradicting the weak
Nullstellensatz.

Section 8.5

1. If x /∈ M , then the ideal generated by M and x is R, by maximality of M . Thus there
exists y ∈ M and z ∈ R such that y + zx = 1. By hypothesis, zx, hence x, is a unit.
Take the contrapositive to conclude that every nonunit belongs to M .

2. Any additive subgroup of the cyclic additive group of Zpn must consist of multiples
of some power of p, and it follows that every ideal is contained in (p), which must
therefore be the unique maximal ideal.

3. No. A can be nilpotent, that is, some power of A can be 0. The set will be multiplicative
if A is invertible.
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4. S−1(gf) takes m/s to g(f(m))/s, as does S−1gS−1f . If f is the identity on M , then
S−1f is the identity on S−1M .

5. By hypothesis, gf = 0, so S−1gS−1f = S−1gf = S−10 = 0. Thus imS−1f ⊆ ker S−1g.
Conversely, let x ∈ N, s ∈ S, with x/s ∈ ker S−1g. Then g(x)/s = 0/1, so for some
t ∈ S we have tg(x) = g(tx) = 0. Therefore tx ∈ ker g = im f , so tx = f(y) for some
y ∈ M . We now have x/s = f(y)/st = (S−1f)(y/st) ∈ im S−1f .

6. The set of nonuits is M = {f/g : g(a) �= 0, f(a) = 0}, which is an ideal. By (8.5.9), R
is a local ring with maximal ideal M .

7. The sequence 0 → N → M → M/N → 0 is exact, so by Problem 5, 0 → NS →
MS → (M/N)S → 0 is exact. (If f is one of the maps in the first sequence, the
corresponding map in the second sequence is S−1f .) It follows from the definition of
localization of a module that NS ≤ MS , and by exactness of the second sequence we
have (M/N)S

∼= MS/NS , as desired.

Section 8.6

1. If xm belongs to the intersection of the Ii, then x belongs to each
√

Ii, so x ∈ ∩n
i=1

√
Ii.

Conversely, if x ∈ ∩n
i=1

√
Ii, let xmi ∈ Ii. If m is the maximum of the mi, then

xm ∈ ∩n
i=1Ii, so x ∈

√
∩n

i=1Ii.
2. We are essentially setting X = Z = 0 in R, and this collapses R down to k[Y ]. Formally,

map f + I to g + I, where g consists of those terms in f that do not involve X or Z.
Then R/P ∼= k[Y ], an integral domain. Therefore P is prime.

3. (X + I)(Y + I) = Z2 + I ∈ P 2, but X + I /∈ P 2 and Y + I /∈
√

P 2 = P .
4. P1 is prime because R/P1

∼= k[Y ], an integral domain. P2 is maximal by (8.3.1), so P 2
2

is P2-primary by (8.6.6). The radical of Q is P2, so by (8.6.5), Q is P2-primary.
5. The first assertion is that

(X2, XY ) = (X) ∩ (X, Y )2 = (X) ∩ (X2, XY, Y 2)

and the second is

(X2, XY ) = (X) ∩ (X2, Y ).

In each case, the left side is contained in the right side by definition of the ideals
involved. The inclusion from right to left follows because if f(X, Y )X = g(X, Y )Y 2

(or f(X, Y )X = g(X, Y )Y ), then g(X, Y ) must involve X and f(X, Y ) must involve Y .
Thus f(X, Y )X is a polynomial multiple of XY .

6. By (8.6.9), a proper ideal I can be expressed as the intersection of finitely many primary
ideals Qi. If Qi is Pi-primary, then by Problem 1,

I =
√

I = ∩i

√
Qi = ∩iPi.

7. Since X3 and Y n belong to In, we have X, Y ∈
√

In, so (X, Y ) ⊆
√

In. By (8.3.1),
(X, Y ) is a maximal ideal. Since

√
In is proper (it does not contain 1), we have

(X, Y ) =
√

In. By (8.6.5), In is primary.
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Section 8.7

1. [(x, y + y′) + G]− [(x, y) + G]− [(x, y′) + G] = 0 since (x, y + y′)− (x, y)− (x, y′) ∈ G;
r[(x, y) + G]− [(rx, y) + G] = 0 since r(x, y)− (rx, y) ∈ G; the other cases are similar.

2. Let a and b be integers such that am + bn = 1. If x ∈ Zm and y ∈ Zn, then
x ⊗ y = 1(x ⊗ y) = a(mx ⊗ y) + b(x ⊗ ny) = 0 since z ⊗ 0 = 0 ⊗ z = 0.

3. Let A be a torsion abelian group, that is, each element of A has finite order. If x ∈ A
and y ∈ Q, then nx = 0 for some positive integer n. Thus x ⊗ y = n(x ⊗ (y/n)) =
nx ⊗ (y/n) = 0 ⊗ (y/n) = 0.

4. We have h = g′h′ = g′gh and h′ = gh = gg′h′. But if P = T and f = h, then
g = 1T makes the diagram commute, as does g′g. By the uniqueness requirement in
the universal mapping property, we must have g′g = 1T , and similarly gg′ = 1T ′ . Thus
T and T ′ are isomorphic.

5. n ⊗ x = n(1 ⊗ x) = 1 ⊗ nx = 1 ⊗ 0 = 0.

6. nZ ⊗ Zn
∼= Z⊗ Zn

∼= Zn by (8.7.6), with n ⊗ x → 1 ⊗ x → x, and since x �= 0, n ⊗ x
cannot be 0.

7. We have a bilinear map (f, g) → f ⊗ g from HomR(M, M ′) × HomR(N, N ′) to
HomR(M⊗RN, M ′⊗RN ′), and the result follows from the universal mapping property
of tensor products.

8. In terms of matrices, we are to prove that Mm(R) ⊗ Mn(R) ∼= Mmn(R). This follows
because Mt(R) is a free R-module of rank t2.

Section 8.8

1. y1 · · · (yi +yj) · · · (yi +yj) · · · yp = y1 · · · yi · · · yi · · · yp +y1 · · · yi · · · yj · · · yp +y1 · · · yj · · ·
yi · · · yp + y1 · · · yj · · · yj · · · yp. The left side, as well as the first and last terms on the
right, are zero by definition of N . Thus y1 · · · yi · · · yj · · · yp = −y1 · · · yj · · · yi · · · yp, as
asserted.

2. If π is any permutation of {a, . . . , b}, then by Problem 1,

xπ(a) · · ·xπ(b) = (sgnπ)xa · · ·xb.

The left side will be ±xa · · ·xb, regardless of the particular permutation π, and the
result follows.

3. The multilinear map f induces a unique h : M⊗p → Q such that h(y1 ⊗ · · · ⊗ yp) =
f(y1, . . . , yp). Since f is alternating, the kernel of h contains N , so the existence and
uniqueness of the map g follows from the factor theorem.

4. By Problem 3, there is a unique R-homomorphism g : ΛnM → R such that
g(y1 · · · yn) = f(y1, . . . , yn). In particular, g(x1 · · ·xn) = f(x1, . . . , xn) = 1 �= 0. Thus
x1 · · ·xn �=0. If r is any nonzero element of R, then g(rx1x2 · · ·xn)=f(rx1, . . . , xn)=r,
so rx1 · · ·xn �= 0. By Problem 2, {x1 · · ·xn} is a basis for ΛnM .

5. Fix the set of indices I0 and its complementary set J0. If
∑

I aIxI = 0, xI ∈ R,
multiply both sides on the right by xJ0 . If I �= I0, then xIxJ0 = 0 by definition of N .
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Thus aI0xI0xJ0 = ±aI0x1 · · ·xn = 0. By Problem 4, aI0 = 0. Since I0 is arbitrary, the
result follows.

6. We have R0 ⊆ S by definition of S. Assume that Rm ⊆ S for m = 0, 1, . . . , n− 1, and
let a ∈ Rn (n > 0). Then a ∈ I, so a =

∑r
i=1 cixi where (since xi ∈ Rni

and R is the
direct sum of the Rm) ci ∈ Rn−ni

. By induction hypothesis, ci ∈ S, and since xi ∈ S
by definition of S, we have a ∈ S, completing the induction.

7. The “if” part follows from Section 8.2, Problem 5, so assume R Noetherian. Since
R0

∼= R/I, it follows that R0 is Noetherian. Since R is Noetherian, I is finitely
generated, so by Problem 6, R = S, a finitely generated R0-algebra.

Section 9.1

1. Assume R is simple, and let x ∈ R, x �= 0. Then Rx coincides with R, so 1 ∈ Rx. Thus
there is an element y ∈ R such that yx = 1. Similarly, there is an element z ∈ R such
that zy = 1. Therefore

z = z1 = zyx = 1x = x, so xy = zy = 1

and y is a two-sided inverse of x. Conversely, assume that R is a division ring, and
let x be a nonzero element of the left ideal I. If y is the inverse of x, then 1 = yx ∈ I,
so I = R and R is simple.

2. I is proper because f(1) = x �= 0, and R/I ∼= Rx by the first isomorphism theorem.
3. The “if” part follows from the correspondence theorem, so assume that M is simple.

If x is a nonzero element of M , then M = Rx by simplicity. If I = ker f as in
Problem 2, then M ∼= R/I, and I is maximal by the correspondence theorem.

4. The “only if” part was done in Problem 3, so assume that M is not simple. Let N be a
submodule of M with 0 < N < M . If x is a nonzero element of N , then Rx ≤ N < M ,
so x cannot generate M .

5. By Problem 3, a simple Z-module is isomorphic to Z/I, where I is a maximal ideal
of Z. By Section 2.4, Problems 1 and 2, I = (p) where p is prime.

6. As in Problem 5, a simple F [X]-module is isomorphic to F [X]/(f), where f is an
irreducible polynomial in F [X]. (See Section 3.1, Problem 8.)

7. If x is a nonzero element of V and y an arbitrary element of V , there is an endomor-
phism f such that f(x) = y. Therefore V = (Endk V )x. By Problem 4, V is a simple
Endk(V )-module.

8. By (4.7.4), every such short exact sequence splits iff for any submodule N ≤ M ,
M ∼= N ⊕ P , where the map N → M can be identified with inclusion and the map
M → P can be identified with projection. In other words, every submodule of M is a
direct summand. Equivalently, by (9.1.2), M is semisimple.

Section 9.2

1. Unfortunately, multiplication by r is not necessarily an R-endomorphism of M , since
r(sx) = (rs)x, which need not equal s(rx) = (sr)x.
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2. Let x be a generator of M , and define f : R → M by f(r) = rx. By the first isomor-
phism theorem, M ∼= R/ annM . The result follows from the correspondence theorem.

3. Let M = Zp⊕Zp where p is prime. Then M is not a simple Z-module, but ann M = pZ
is a maximal ideal of Z.

4. The computation given in the statement of the problem shows that (1,0) is a generator
of V , hence V is cyclic. But N = {(0, b) : b ∈ F} is a nontrivial proper submodule of
V . (Note that T (0, b) = (0, 0) ∈ N .) Therefore V is not simple.

5. Since F is algebraically closed, f has an eigenvalue λ ∈ F . Thus the kernel of f − λI
is not zero, so it must be all of M . Therefore f(m) = λm for all m ∈ M .

6. If r ∈ I and s+I ∈ R/I, then r(s+I) = rs+I. But if I is not a right ideal, we cannot
guarantee that rs belongs to I.

Section 9.3

1. For each j = 1, . . . , n, there is a finite subset I(j) of I such that xj belongs to the
direct sum of the Mi, i ∈ I(j). If J is the union of the I(j), then M ⊆

⊕
i∈J Mi ⊆ M ,

so M is the direct sum of the Mi, i ∈ J .

2. Each simple module Mi, i = 1, . . . , n, is cyclic (Section 9.1, Problem 4), and therefore
can be generated by a single element xi. Thus M is generated by x1, . . . , xn.

3. A left ideal is simple iff it is minimal, so the result follows from (9.1.2).

4. No. If it were, then by Section 9.1, Problem 5, Z would be a direct sum of cyclic groups
of prime order. Thus each element of Z would have finite order, a contradiction.

5. By (4.6.4), every finite abelian group is the direct sum of various Zp, p prime. If p and
q are distinct primes, then Zp ⊕Zq

∼= Zpq by the Chinese remainder theorem. Thus Zn

can be assembled from cyclic groups of prime order as long as no prime appears more
than once in the factorization of n. (If Zp ⊕Zp is part of the decomposition, the group
cannot be cyclic.) Consequently, Zn is semisimple if and only if n is square-free.

6. This follows from Section 9.1, Problem 8. (In the first case, B is semisimple by hy-
pothesis, and in the second case A is semisimple. The degenerate case M = 0 can be
handled directly.)

7. Conditions (a) and (b) are equivalent by (9.3.2) and the definition of semisimple ring.
By Problem 6, (b) implies both (c) and (d). To show that (c) implies (b) and (d)
implies (b), let M be a nonzero R-module, with N a submodule of M . By hypothesis,
the sequence 0 → N → M → M/N → 0 splits. (By hypothesis, M/N is projective in
the first case and N is injective in the second case.) By Section 9.1, Problem 8, M is
semisimple.

Section 9.4

1. If there is an infinite descending sequence I1 ⊃ I2 ⊃ · · · of left ideals, we can proceed
exactly as in (9.4.7) to reach a contradiction.
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2. Let I1 be any nonzero left ideal. If I1 is simple, we are finished. If not, there is
a nonzero left ideal I2 such that I1 ⊃ I2. If we continue inductively, the Artinian
hypothesis implies that the process must terminate in a simple left ideal It.

3. By Problem 2, the ring R has a simple R-module M . The hypothesis that R has no
nontrivial two-sided ideals implies that we can proceed exactly as in (9.4.6) to show
that M is faithful.

4. If V is infinite-dimensional over D, then exactly as in (9.4.7), we find an infinite
descending chain of left ideals, contradicting the assumption that R is Artinian.

5. By Problem 4, V is a finite-dimensional vector space over D, so we can reproduce the
discussion preceding (9.4.7) to show that R ∼= EndD(V ) ∼= Mn(Do).

6. The following is a composition series:

0 < M1 < M1 ⊕ M2 < · · · < M1 ⊕ M2 ⊕ · · · ⊕ Mn = M.

7. By (9.1.2), M is a direct sum of simple modules. If the direct sum is infinite, then we
can proceed as in Problem 6 to construct an infinite ascending (or descending) chain
of submodules of M , contradicting the hypothesis that M is Artinian and Noetherian.

Section 9.5

1. If g ∈ ker ρ, then gv = v for every v ∈ V . Take v = 1G to get g1G = 1G, so g = 1G

and ρ is injective.
2. (gh)(v(i)) = v(g(h(i))) and g(h(v(i))) = g(v(h(i))) = v(g(h(i))). Also, 1G(v(i)) =

v(1G(i)) = v(i).
3. We have g(v(1)) = v(4), g(v(2)) = v(2), g(v(3)) = v(1), g(v(4)) = v(3), so

[g] =




0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0


 .

4. We have gv1 = v2, gv2 = v3 = −v1 − v2; hv1 = v1, hv2 = v3 = −v1 − v2. Thus

[g] =
[
0 −1
1 −1

]
, [h] =

[
1 −1
0 −1

]
.

5. We have v1 = e1 and v2 = − 1
2e1 + 1

2

√
3e2. Thus

P−1 =


1 − 1

2

0 1
2

√
3


 , P =


1 1

3

√
3

0 2
3

√
3




and

[g]′ = P−1[g]P =


 − 1

2 − 1
2

√
3

1
2

√
3 − 1

2


 ,
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[h]′ = P−1[h]P =
[
1 0
0 −1

]
.

6. Check by direct computation that the matrices A and B satisfy the defining relations
of D8: A4 = I, B2 = I, AB = BA−1. (See Section 5.8.)

7. Yes. Again, check by direct computation that the matrices AiBj , i = 0, 1, 2, 3, j = 0, 1,
are distinct. Thus if g ∈ D8 and ρ(g) = I, then g is the identity element of D8.

Section 9.6

1. Let W be the one-dimensional subspace spanned by v1+v2+v3. Since any permutation
in S3 permutes the vi, v ∈ W implies gv ∈ W .

2. Multiplying [ar] by
[
1
0

]
and

[
0
1

]
, we have arv1 = v1 and arv2 = rv1 + v2. Since W is

spanned by v1, it is closed under the action of G and is therefore a kG-submodule.

3. If

[ar]
[
x
y

]
= c

[
x
y

]

then x + ry = cx and y = cy. If y �= 0 then c = 1, so ry, hence y, must be 0. Thus
c = 1 and x is arbitrary, so that any one-dimensional kG-submodule must coincide
with W .

4. If V = W ⊕ U , where U is a kG-submodule, then U must be one-dimensional. By
Problem 3, W = U , and since W �= 0, this is impossible.

5. If M is semisimple and either Noetherian or Artinian, then M is the direct sum of
finitely many simple modules. These simple modules are the factors of a composition
series, and the result follows from (7.5.12).

6. Let e be the natural projection on M1. Then e is an idempotent, e �= 0 since M1 �= 0,
and e �= 1 since e = 0 on M2 and M2 �= 0.

7. Let e be a nontrivial idempotent, and define e1 = e, e2 = 1−e. By direct computation,
e1 and e2 are nontrivial idempotents that are orthogonal. Take M1 = e1(M), M2 =
e2(M). Then M1 and M2 are nonzero submodules with M = M1 + M2. To show that
the sum is direct, let z = e1x = e2y ∈ M1 ∩M2, with x, y ∈ M . Then e1z = e1e2y = 0,
and similarly e2z = 0. Thus z = 1z = e1z + e2z = 0.

Section 9.7

1. If M = Rx, define f : R → M by f(r) = rx. By the first isomorphism theorem,
M ∼= R/ ker f . Moreover, ker f = ann(M). Conversely, R/I is cyclic since it is
generated by 1 + I.

2. If N is a maximal submodule of M , then N is the kernel of the canonical map of M
onto the simple module M/N . Conversely, if f : M → S, S simple, then f(M) is 0



26

or S, so f = 0 or S ∼= M/ ker f . Thus ker f is either M or a maximal submodule of M .
The intersection of all kernels therefore coincides with the intersection of all maximal
submodules. [If there are no maximal submodules, then the intersection of all kernels
is M .]

3. By the correspondence theorem, the intersection of all maximal left ideals of R/I is 0.
This follows because the intersection of all maximal left ideals of R containing I is
the intersection of all maximal left ideals of R. [Note that J(R) is contained in every
maximal left ideal, and I = J(R).]

4. Let g be an R-module homomorphism from N to the simple R-module S. Then
gf : M → S, so by Problem 2, J(M) ⊆ ker(gf). But then f(J(M)) ⊆ ker g. Take the
intersection over all g to get f(J(M)) ⊆ J(N).

5. Suppose a ∈ J(R). If 1+ab is a nonunit, then it belongs to some maximal ideal M . But
then a belongs to M as well, and therefore so does ab. Thus 1 ∈ M , a contradiction.
Now assume a /∈ J(R), so that for some maximal ideal M , a /∈ M . By maximality,
M + Ra = R, so 1 = x + ra for some x ∈ M and r ∈ R. Since x belongs to M , it
cannot be a unit, so if we set b = −r, it follows that 1 + ab is a nonunit.

6. By the correspondence theorem, there is a bijection, given by ψ(A) = A/N , between
maximal submodules of M containing N and maximal submodules of M/N . Since
N ≤ J(M) by hypothesis, a maximal submodule of M containing N is the same
thing as a maximal submodule of M . Thus J(M) corresponds to J(M/N), that is,
ψ(J(M)) = J(M/N). Since ψ(J(M)) = J(M)/N , the result follows.

Section 9.8

1. at ∈ (at+1), so there exists b ∈ R such that at = bat+1. Since R is an integral domain
we have 1 = ba.

2. Let a be a nonzero element of the Artinian integral domain R. The sequence (a) ⊇
(a2) ⊇ . . . stabilizes, so for some t we have (at) = (at+1). By Problem 1, a has an
inverse, proving that R is a field.

3. If P is a prime ideal of R, then R/P is an Artinian integral domain by (7.5.7) and
(2.4.5). By Problem 2, R/P is a field, so by (2.4.3), P is maximal.

4. We have P ∩ I ∈ S and P ∩ I ⊆ I, so by minimality of I, P ∩ I = I. Thus
P ⊇ I = ∩n

j=1Ij , so by (7.6.2), P ⊇ Ij for some j. But P and Ij are maximal ideals,
hence P = Ij .

5. If z ∈ F , with z = x + y, x ∈ M , y ∈ N , define h : F → M/JM ⊕ N/JN by
h(z) = (x+JM)+(y+JN). Then h is an epimorphism with kernel JM +JN = JF ,
and the result follows from the first isomorphism theorem.

6. By (9.8.5), M/JM is an n-dimensional vector space over the residue field k. Since F ,
hence F/JF , is generated by n elements, F/JF has dimension at most n over k.
Thus N/JN must have dimension zero, and the result follows.

7. Multiplication of an element of I on the right by a polynomial f(X, Y ) amounts to
multiplication by the constant term of f . Thus I is finitely generated as a right R-
module iff it is finitely generated as an abelian group. This is a contradiction, because
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as an abelian group,

I = ⊕∞n=0ZXnY.

8. By the Hilbert basis theorem, Z[X] is a Noetherian ring and therefore a Noetherian
left Z[X]-module. The isomorphic copy Z[X]Y is also a Noetherian left Z[X]-module,
hence so is R, by (7.5.8). A left ideal of R that is finitely generated as a Z[X]-module
is finitely generated as an R-module, so R is left-Noetherian.

9. The set {x1, . . . , xn} spans V , and therefore contains a basis. If the containment is
proper, then by (9.8.5) part (ii), {x1, . . . , xn} cannot be a minimal generating set, a
contradiction.

10. In vector-matrix notation we have y = Ax and therefore y = Ax, where aij = aij +J .
By Problem 9, x and y are bases, so that det A �= 0. But under the canonical map of
R onto k, det A maps to det A, and therefore det A cannot belong to the kernel of
the map, namely J . But by (8.5.9), J is the ideal of nonunits of R, so det A is a unit.

Section 10.1

1. This is exactly the same as the proof for groups in (1.1.1).
2. Any ring homomorphism on Q is determined by its values on Z (write m = (m/n)n

and apply the homomorphism g to get g(m/n) = g(m)/g(n). Thus if gi = hi, then g
coincides with h on Z, so g = h, proving that i is epic.

3. Let AZB be a shorthand notation for the composition of the unique morphism from
A to the zero object Z, followed by the unique morphism from Z to B. If Z ′ is another
zero object, then AZB = (AZ ′Z)B = A(Z ′ZB) = A(Z ′B) = AZ ′B, as claimed.

4. If is = it, then fis = fit = 0, so is(= it) = ih where h is unique. Thus s and t must
coincide with h, hence i is monic.

5. A kernel of a monic f : A → B is 0, realized as the zero map from a zero object Z
to A. For f0 = 0, and if fg = 0, then fg = f0; since f is monic, g = 0. But then g
can be factored through 0ZA. Similarly, a cokernel of the epic f : A → B is the zero
map from B to a zero object.

6. If j = ih and i = jh′, then i = ihh′, so by uniqueness in part (2) of the definition of
kernel (applied when g = i), hh′, and similarly h′h, must be the identity.

7. Define h : K → A by h(x) = 1 for all x. Since K is nontrivial, h cannot be injective,
so that g �= h. But fg = fh, since both maps take everything in K to the identity
of B.

8. The kernel of a ring homomorphism is an ideal, but not a subring (since it does not
contains the multiplicative identity).

9. Let f : A → B be a noninjective ring homomorphism. Let C be the set of pairs (x, y)
in the direct product A × A such that f(x) = f(y). Since f is not injective, there is
an element (x, y) of C with x �= y. Thus if D = {(x, x) : x ∈ A}, then D ⊂ C. If g is
the projection of A×A on the first coordinate, and h is the projection on the second
coordinate, then f(g(x, y)) = f(x) and f(h(x, y)) = f(y), so fg = fh on the ring C.
But g and h disagree on the nonempty set C \ D, so f is not monic.
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10. Let g be the canonical map of N onto N/f(M), and let h : N → N/f(M) be identically
zero. Since gf sends everything to 0, we have gf = hf with g �= h. Thus f is not epic.

Section 10.2

1. Suppose that y is the product of the xi. By definition of product, if fi : x → xi for
all i, there is a unique f : x → y such that pif = fi. Since pi : y → xi, we have y ≤ xi.
Moreover, if x ≤ xi for all i, then x ≤ y. Therefore y is a greatest lower bound of
the xi.

2. No. For example, consider the usual ordering on the integers.

3. By duality, a coproduct of the xi, if it exists, is a least upper bound.

4. If x has order r and y has order s, then rs(x + y) = s(rx) + r(sy) = 0. Thus the sum
of two elements of finite order also has finite order, and the result follows.

5. The key point is that if f is a homomorphism of a torsion abelian group S, then f(S)
is a also torsion [since nf(x) = f(nx)]. Thus in diagram (1) with A =

∏
Ai, we have

f(S) ⊆ T (A). Since
∏

Ai is the product in the category of abelian groups, it follows
that T (A) satisfies the universal mapping property and is therefore the product in the
category of torsion abelian groups.

6. Given homomorphisms fj : Gj → H, we must lift the fj to a homomorphism from
the free product to H. This is done via f(a1 · · · an) = f1(a1) · · · fn(an). If ij is the
inclusion map from Gj to ∗iGi, then f(ij(aj)) = f(aj) = fj(aj), as required.

7. We have pif = fi, where fi : G → Ci. The fi can be chosen to be surjective (e.g., take
G to be the direct product of the Ci), and it follows that the pi are surjective.

8. Since f : C1 → C, we have f(a1) = na for some positive integer n. Thus

a1 = f1(a1) = p1f(a1) = p1(na) = np1(a) = na1;
0 = f2(a1) = p2f(a1) = p2(na) = np2(a) = na2.

9. By Problem 8, the order of C1 divides n− 1, and the order of C2 divides n. There are
many choices of C1 and C2 for which this is impossible. For example, let C1 and C2

be nontrivial p-groups for a fixed prime p.

Section 10.3

1. If f : x → y, then Ff : Fx → Fy. By definition of the category of preordered sets, this
statement is equivalent to x ≤ y =⇒ Fx ≤ Fy. Thus functors are order-preserving
maps.

2. F must take the morphism associated with xy to the composition of the morphism
associated with Fx and the morphism associated with Fy. In other words, F (xy) =
F (x)F (y), that is, F is a homomorphism.

3. If β ∈ X∗, then (gf)∗(β) = βgf and f∗g∗(β) = f∗(βg) = βgf .
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4. To verify the functorial property, note that

(gf)∗∗(v∗∗) = v∗∗(gf)∗ = v∗∗f∗g∗ (by Problem 3)

and

g∗∗f∗∗v∗∗ = g∗∗(v∗∗f∗) = v∗∗f∗g∗.

Thus (gf)∗∗ = g∗∗f∗∗. If f is the identity, then so is f∗, and consequently so is f∗∗.

5. f∗∗tV (v) = f∗∗(v) = vf∗, and if β ∈ W ∗, then (vf∗)(β) = v(f∗β) = (f∗β)(v) = βf(v).
But tW f(v) = f(v) where f(v)(β) = βf(v).

6. Groups form a subcategory because every group is a monoid and every group homo-
morphism is, in particular, a monoid homomorphism. The subcategory is full because
every monoid homomorphism from one group to another is also a group homomor-
phism.

7. (a) If two group homomorphisms are the same as set mappings, they are identical as
homomorphisms as well. Thus the forgetful functor is faithful. But not every map
of sets is a homomorphism, so the forgetful functor is not full.

(b) Since (f, g) is mapped to f for arbitrary g, the projection functor is full but not
faithful (except in some degenerate cases).

Section 10.4

1. If a homomorphism from Z2 to Q takes 1 to x, then 0 = 1 + 1 → x + x = 2x. But 0
must be mapped to 0, so x = 0.

2. A nonzero homomorphism can be constructed with 0 → 0, 1 → 1
2 . Then 1 + 1 →

1
2 + 1

2 = 1 = 0 in Q/Z.

3. Since a trivial group cannot be mapped onto a nontrivial group, there is no way that
Fg can be surjective.

4. Let f be a homomorphism from Q to Z. If r is any rational number and m is a positive
integer, then

f(r) = f
( r

m
+ · · · + r

m

)
= mf

( r

m

)
so

f
( r

m

)
=

f(r)
m

.

But if f(r) �= 0, we can choose m such that f(r)/m is not an integer, a contradiction.
Therefore f = 0.

5. By Problem 4, Hom(Q,Z) = 0. But Hom(Z,Z) �= 0, so as in Problem 3, Gf cannot be
surjective.
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6. We have Z2 ⊗ Z ∼= Z2 and Z2 ⊗Q = 0
[
1 ⊗ m

n
= 1 ⊗ 2m

2n
= 2 ⊗ m

2n
= 0 ⊗ m

2n
= 0.

]

Thus the map Hf cannot be injective.

7. Since f∗ = Ff is injective, fα = 0 implies α = 0, so f is monic and hence injective.
Since g∗f∗ = 0, we have gfα = 0 for all α ∈ Hom(M, A). Take M = A and α = 1A to
conclude that gf = 0, so that im f ⊆ ker g. Finally, take M = ker g and α : M → B
the inclusion map. Then g∗α = gα = 0, so α ∈ ker g∗ = im f∗. Thus α = fβ for some
β ∈ Hom(M, A). Thus ker g = M = im α ⊆ im f .

8. If (3) is exact for all possible R-modules N , then (1) is exact. This is dual to the result
of Problem 7, and the proof amounts to interchanging injective and surjective, monic
and epic, inclusion map and canonical map, kernel and cokernel.

Section 10.5

1. If x ∈ P , then f(x) can be expressed as
∑

i tiei (a finite sum), and we define fi(x) = ti
and xi = π(ei). Then

x = π(f(x)) = π(
∑

i

tiei) =
∑

i

tiπ(ei) =
∑

i

fi(x)xi.

2. π(f(x)) =
∑

i fi(x)π(ei) =
∑

i fi(x)xi = x.

3. By Problem 2, the exact sequence 0 → ker π → F → P → 0 (with π : F → P ) splits,
and therefore P is a direct summand of the free module F and hence projective.

4. Since Rn is free, the “if” part follows from (10.5.3), part (4). If P is projective, then
by the proof of (3) implies (4) in (10.5.3), P is a direct summand of a free module of
rank n. [The free module can be taken to have a basis whose size is the same as that
of a set of generators for P .]

5. This follows from Problem 1 with F = Rn.

6. If P is projective and isomorphic to M/N , we have an exact sequence 0 → N →
M → P → 0. Since P is projective, the sequence splits by (10.5.3), part (3), so P is
isomorphic to a direct summand of M . Conversely, assume that P is a direct summand
of every module of which it is a quotient. Since P is a quotient of a free module F , it
follows that P is a direct summand of F . By (10.5.3) part (4), P is projective.

7. In the diagram above (10.5.1), take M = R1 ⊕ R2, with R1 = R2 = R. Take P =
N = R1, f = 1R1 , and let g be the natural projection of M on N . Then we can take
h(r) = r + s, r ∈ R1, s ∈ R2, where s is either 0 or r. By replacing M by an arbitrary
direct sum of copies of R, we can produce two choices for the component of h(r) in each
Ri, i = 2, 3, . . . (with the restriction that only finitely many components are nonzero).
Thus there will be infinitely many possible choices for h altogether.



31

Section 10.6

1. f ′g(a) = (g(a), 0) + W and g′f(a) = (0, f(a)) + W , with (g(a), 0) − (0, f(a)) =
(g(a),−f(a)) ∈ W . Thus f ′g = g′f .

2. If (b, c) ∈ W , then b = g(a), c = −f(a) for some a ∈ A. Therefore

g′′(c) + f ′′(b) = −g′′f(a) + f ′′g(a) = 0

and h is well-defined.

3. hg′(c) = h((0, c) + W ) = g′′(c) + 0 = g′′(c) and hf ′(b) = h((b, 0) + W ) = 0 + f ′′(b) =
f ′′(b).

4. h′((b, c) + W ) = h′((0, c) + W + (b, 0) + W ) = h′(g′(c) + f ′(b)) = h′g′(c) + h′f ′(b) =
g′′(c) + f ′′(b) = h((b, c) + W ).

5. If f ′(b) = 0, then by definition of f ′, (b, 0) ∈ W , so for some a ∈ A we have b = g(a)
and f(a) = 0. Since f is injective, a = 0, hence b = 0 and f ′ is injective.

6. If b ∈ B, c ∈ C, then surjectivity of f gives c = f(a) for some a ∈ A. Thus
f ′(b + g(a)) = (b + g(a), 0) + W = (b + g(a), 0) + W + (−g(a), f(a)) + W [note
that (−g(a), f(a)) ∈ W ] = (b, f(a)) + W = (b, c) + W , proving that f ′ is surjective.

7. If (a, c) ∈ D, then f(a) = g(c) and fg′(a, c) = f(a), gf ′(a, c) = g(c). Thus fg′ = gf ′.

8. If x ∈ E, then fg′′(x) = gf ′′(x), so (g′′(x), f ′′(x)) ∈ D. Take h(x) = (g′′(x), f ′′(x)),
which is the only possible choice that satisfies g′h = g′′ and f ′h = f ′′.

9. If (a, c) ∈ D and f ′(a, c) = 0, then c = 0, so f(a) = g(c) = 0. Since f is injective,
a = 0. Consequently, (a, c) = 0 and f ′ is injective.

10. If c ∈ C, then there exists a ∈ A such that f(a) = g(c). Thus (a, c) ∈ D and
f ′(a, c) = c, proving that f ′ is surjective.

11. If x, y ∈ I, then f(xy) = xf(y) and f(xy) = f(yx) = yf(x). Thus xf(y) = yf(x),
and if x and y are nonzero, the result follows upon division by xy.

12. We must extend f : I → Q to h : R → Q. Let z be the common value f(x)/x, x ∈ I,
x �= 0. Define h(r) = rz, r ∈ R. Then h is an R-homomorphism, and if x ∈ I, x �= 0,
then h(x) = xz = xf(x)/x = f(x). Since h(0) = f(0) = 0, h is an extension of f and
the result follows from (10.6.4).

Section 10.7

1. The only nonroutine verification is the check that sf ∈ HomR(M, N):

(sf)(rm) = f(rms) = rf(ms) = r[(sf)(m)].

2. (fr)(ms) = f(r(ms)) = f((rm)s) = f(rm)s = [(fr)(m)]s.

3. (sf)(mr) = s(f(mr)) = s(f(m)r) = (sf(m)r = [(sf)(m)]r.

4. (fr)(sm) = (f(sm))r = (sf(m))r = s(f(m)r) = s[(fr)(m)].
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5. In Problem 2, M and N are right S-modules, so we write f on the left: (fr)m =
f(rm). In Problem 3, M and N are right R-modules, and we write f on the left:
(sf)m = s(fm). In Problem 4, M and N are left S-modules, and we write f on the
right: m(fr) = (mf)r.

6. Let y ∈ M , r ∈ R with r �= 0. By hypothesis, x = 1
r y ∈ M , so we have x ∈ M such

that y = rx, proving M divisible.
7. If y ∈ M , r ∈ R with r �= 0, we must define 1

r y. Since M is divisible, there exists x ∈ M
such that y = rx, and we take 1

r y = x. If x′ ∈ M and y = rx′, then r(x − x′) = 0,
and since M is torsion-free, x = x′. Thus x is unique and scalar multiplication is
well-defined.

8. Let f be a nonzero R-homomorphism from Q to R. Then f(u) = 1 for some u ∈ Q. [If
f(x) = r �= 0, then rf(x/r) = f(rx/r) = f(x) = r, so we can take u = x/r.] Now if s
is a nonzero element of R, then sf(u/s) = f(su/s) = f(u) = 1, so f(u/s) is an inverse
of s. Consequently, R is a field, contradicting the hypothesis.

Section 10.8

1. Let A = R[X] where R is any commutative ring. As an R-algebra, A is generated
by X, but A is not finitely generated as an R-module since it contains polynomials of
arbitrarily high degree.

2. The bilinear map determined by (Xi, Y j) → XiY j induces an R-homomorphism of
R[X] ⊗R R[Y ] onto R[X, Y ], with inverse determined by XiY j → Xi ⊗ Y j .

3. Abbreviate X1, . . . , Xn by X and Y1, . . . , Ym by Y . Let A be a homomorphic image
of R[X] under f , and B a homomorphic image of R[Y ] under g. Then A ⊗R B is a
homomorphic image of R[X] ⊗ R[Y ](∼= R[X, Y ] by Problem 2) under f ⊗ g.

4. If f : A → B is an injective R-module homomorphism, then by hypothesis, (1⊗f) : S⊗R

A → S ⊗R B is injective. Also by hypothesis,

(1 ⊗ (1 ⊗ f)) : M ⊗S S ⊗R A → M ⊗S S ⊗R B

is injective. Since M ⊗S S ∼= M , the result follows.
5. Let f : A → B be injective. Since A ⊗S S ∼= A and B ⊗S S ∼= B, it follows from the

hypothesis that (f ⊗ 1) : A⊗S (S ⊗R M) → B ⊗S (S ⊗R M) is injective. Thus S ⊗R M
is a flat S-module.

6. α is derived from the bilinear map S−1R×M → S−1M given by (r/s, x) → rx/s. We
must also show that β is well-defined. If x/s = y/t, then there exists u ∈ S such that
utx = usy. Thus

1
s
⊗ x =

ut

sut
⊗ x =

1
sut

⊗ utx =
1

sut
⊗ usy =

1
t
⊗ y

as required. By construction, α and β are inverses of each other and yield the desired
isomorphism.

7. We must show that S−1R ⊗R is an exact functor. But in view of Problem 6, an
equivalent statement is the localization functor S−1 is exact, and this has already been
proved in Section 8.5, Problem 5.
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Section 10.9

1. The proof of (10.9.4) uses the fact that we are working in the category of modules. To
simply say “duality” and reverse all the arrows, we would need an argument that did
not depend on the particular category.

2. Let N be the direct limit of the Ni. The direct system {Ni, h(i, j)} induces a direct
system {M ⊗Ni, 1⊗h(i, j)}. Compatibility in the new system reduces to compatibility
in the old system; tensoring with 1 is harmless. Since compatible maps fi : Ni → B
can be lifted to f : N → B, it follows that compatible maps gi : M ⊗ Ni → B can be
lifted to g : M ⊗ N → B. Thus M ⊗ N satisfies the universal mapping property for
{M ⊗ Ni}.

3. The direct limit is A = ∪∞n=1An, with αn : An → A the inclusion map

5. Each R-homomorphism f from the direct sum of the Ai to B induces an
R-homomorphism fi : Ai → B. [fi is the injection of Ai into the direct sum, fol-
lowed by f ]. Take α(f) = (fi, i ∈ I) ∈

∏
i HomR(Ai, B). Conversely, given such a

family (fi, i ∈ I), the fi can be lifted uniquely to β(fi, i ∈ I) = f . Since α and β are
inverse R-homomorphisms, the result follows.

6. If f : A →
∏

i Bi, define α(f) = (pif, i ∈ I) ∈
∏

i HomR(A, Bi), where pi is the
projection of the direct product onto the ith factor. Conversely, given (gi, i ∈ I), where
gi : A → Bi, the gi can be lifted to a unique g : A →

∏
i Bi such that pig = gi for all i.

If we take β(gi, i ∈ I) = g, then α and β are inverse R-homomorphisms, and the result
follows.

7. There is a free module F such that F = M ⊕M ′, and since F is torsion-free, so is M .
Since M is injective, it is divisible, so by Problem 7 of Section 10.7, M is a vector
space over the quotient field Q, hence a direct sum of copies of Q. Therefore, using
Problem 5 above and Problem 8 of Section 10.7,

HomR(M, R) = HomR(⊕Q, R) ∼=
∏

Hom(Q, R) = 0.

8. By Problem 7, HomR(M, R) = 0. Let M be a direct summand of the free module F
with basis {ri, i ∈ I}. If x is a nonzero element of M , then x has some nonzero
coordinate with respect to the basis, say coordinate j. If pj is the projection of F on
coordinate j (the jth copy of R), then pj restricted to M is a nonzero R-homomorphism
from M to R. (Note that x does not belong to the kernel of pj .) Thus the assumption
that M �= 0 leads to a contradiction.


