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Lecture 16. Lehmann-Scheffé Theorem

16.1 Definition

Suppose that Y is a sufficient statistic for θ. We say that Y is complete if there are
no nontrivial unbiased estimates of 0 based on Y , i.e., if E[g(Y )] = 0 for all θ, then
Pθ{g(Y ) = 0} = 1 for all θ. Thus if we have two unbiased estimates of θ based on Y , say
ϕ(Y ) and ψ(Y ), then Eθ[ϕ(Y ) − ψ(Y )] = 0 for all θ, so that regardless of θ, ϕ(Y ) and
ψ(Y ) coincide (with probability 1). So if we find one unbiased estimate of θ based on Y ,
we have essentially found all of them.

16.2 Theorem (Lehmann-Scheffé)

Suppose that Y1 = u1(X1, . . . , Xn) is a complete sufficient statistic for θ. If ϕ(Y1) is
an unbiased estimate of θ based on Y1, then among all possible unbiased estimates of
θ (whether based on Y1 or not), ϕ(Y1) has minimum variance. We say that ϕ(Y1) is
a uniformly minimum variance unbiased estimate of θ, abbreviated UMVUE. The term
“uniformly” is used because the result holds for all possible values of θ.
Proof. By Rao-Blackwell, if Y2 is any unbiased estimate of θ, then E[Y2|Y1] is an unbiased
estimate of θ with Var[E(Y2|Y1)] ≤ VarY2. But E(Y2|Y1) is a function of Y1, so by
completeness it must coincide with ϕ(Y1). Thus regardless of the particular value of θ,
Varθ[ϕ(Y1)] ≤ Varθ(Y2). ♣.

Note that just as in the Rao-Blackwell theorem, the Lehmann-Scheffé result holds
equally well if we are seeking a UMVUE of a function of θ. Thus we look for an unbiased
estimate of r(θ) based on the complete sufficient statistic Y1.

16.3 Definition and Remarks

There are many situations in which complete sufficient statistics can be found quickly.
The exponential class (or exponential family) consists of densities of the form

fθ(x) = a(θ)b(x) exp
[ m∑

j=1

pj(θ)Kj(x)
]

where a(θ) > 0, b(x) > 0, α < x < β, θ = (θ1, . . . , θk) with γj < θj < δj , 1 ≤ j ≤ k
(α, β, γj , δj are constants).

There are certain regularity conditions that are assumed, but they will always be
satisfied in the examples we consider, so we will omit the details. In all our examples, k
and m will be equal. This is needed in the proof of completeness of the statistic to be
discussed in Lecture 17. (It is not needed for sufficiency.)

16.4 Examples

1. Binomial(n, θ) where n is known. We have fθ(x) =
(
n
x

)
θx(1 − θ)n−x, x = 0, 1, . . . , n,

where 0 < θ < 1. Take a(θ) = (1−θ)n, b(x) =
(
n
x

)
, p1(θ) = ln θ− ln(1−θ), K1(x) = x.

Note that k = m = 1.
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2. Poisson(θ). The probability function is fθ(x) = e−θθx/x!, x = 0, 1, . . . , where θ > 0.
We can take a(θ) = e−θ, b(x) = 1/x!, p1(θ) = ln θ, K1(x) = x, and k = m = 1.

3. Normal(µ, σ2). The density is

fθ(x) =
1√
2πσ

exp[−(x− µ)2/2σ2], −∞ < x <∞, θ = (µ, σ2).

Take a(θ) = [1/
√

2πσ] exp[−µ2/2σ2], b(x) = 1, p1(θ) = −1/2σ2, K1(x) = x2, p2(θ) =
µ/σ2, K2(x) = x, and k = m = 2.

4. Gamma(α, β). The density is xα−1e−x/β/[Γ(α)βα], x > 0, θ = (α, β). Take a(θ) =
1/[Γ(α)βα], b(x) = 1, p1(θ) = α − 1, K1(x) = lnx, p2(θ) = −1/β, K2(x) = x,
and k = m = 2.

5. Beta(a, b). The density is [Γ(a + b)/Γ(a)Γ(b)]xa−1(1−x)b−1, 0 < x < 1, θ = (a, b).
Take a(θ) = [Γ(a + b)/Γ(a)Γ(b)], b(x) = 1, p1(θ) = a − 1, K1(x) = lnx, p2(θ) =
b− 1, K2(x) = ln(1− x), and k = m = 2.

6. Negative Binomial
First we derive some properties of this distribution. In a possibly infinite sequence of

Bernoulli trials, let Yr be the number of trials required to obtain the r-th success (assume
r is a known positive integer). Then P{Y1 = k} is the probability of k−1 failures followed
by a success, which is qk−1p where q = 1 − p and k = 1, 2, . . . . The moment-generating
function of Y1 is

MY1(t) = E[etY1 ] =
∞∑

k=1

qk−1petk.

Write etk as et(k−1)et. We get

MY1(t) = pet(1 + qet + (qet)2 + · · · ) =
pet

1− qet
, |qet| < 1.

The random variable Y1 is said to have the geometric distribution. (The slightly different
random variable appearing in Problem 3 of Lecture 14 is also frequently referred to as
geometric.) Now Yr (the negative binomial random variable) is the sum of r independent
random variables, each geometric, so

MYr (t) =
(

pet

1− qet

)r

.

The event {Yr = k} occurs iff there are r − 1 successes in the first k − 1 trials, followed
by a success on trial k. Therefore

P{Yr = k} =
(

k − 1
r − 1

)
pr−1qk−rp, k = r, r + 1, r + 2, . . . .
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We can calculate the mean and variance of Yr from the moment-generating function,
but the differentiation is not quite as messy if we introduce another random variable.
Let Xr be the number of failures preceding the r-th success. Then Xr plus the number
of successes preceding the r-th success is the total number of trials preceding the r-th
success. Thus

Xr + (r − 1) = Yr − 1, so Xr = Yr − r

and

MXr
(t) = e−rtMYr

(t) =
(

p

1− qet

)r

.

When r = 1 we have

MX1(t) =
p

1− qet
, E(X1) =

pqet

(1− qet)2

∣∣∣∣
t=0

=
q

p
.

Since Y1 = X1 + 1 we have E(Y1) = 1 + (q/p) = 1/p and E(Yr) = r/p. Differentiating
the moment-generating function of X1 again, we find that

E(X2
1 ) =

(1− q)2pq + pq22(1− q)
(1− q)4

=
pq(1− q)[1− q + 2q]

(1− q)4
=

pq(1 + q)
p3

=
q(1 + q)

p2
.

Thus VarX1 = VarY1 = [q(1 + q)/p2]− [q2/p2] = q/p2, hence Var Yr = rq/p2.
Now to show that the negative binomial distribution belongs to the exponential class:

P{Yr = x} =
(

x− 1
r − 1

)
θr(1− θ)x−r, x = r, r + 1, r + 2, . . . , θ = p.

Take

a(θ) =
(

θ

1− θ

)r

, b(x) =
(

x− 1
r − 1

)
, p1(θ) = ln(1− θ), K1(x) = x, k = m = 1.

Here is the reason for the terminology “negative binomial”:

MYr
(t) =

(
pet

1− qet

)r

= prert(1− qet)−r.

To expand the moment-generating function, we use the binomial theorem with a negative
exponent:

(1 + x)−r =
∞∑

k=0

(−r

k

)
xk

where (−r

k

)
=
−r(−r − 1 · · · (−r − k + 1)

k!
.

Problems are deferred to Lecture 17.
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Lecture 17. Complete Sufficient Statistics For The Ex-
ponential Class

17.1 Deriving the Complete Sufficient Statistic

The density of a member of the exponential class is

fθ(x) = a(θ)b(x) exp
[ m∑

j=1

pj(θ)Kj(x)
]

so the joint density of n independent observations is

fθ(x1, . . . , xn) = (a(θ))n
n∏

i=1

b(xi) exp
[ m∑

j=1

pj(θ)Kj(x1)
]
· · · exp

[ m∑
j=1

pj(θ)Kj(xn)
]
.

Since ereset = er+s+t, it follows that pj(θ) appears in the exponent multiplied by the
factor Kj(x1) + Kj(x2) + · · ·+ Kj(xn), so by the factorization theorem,

( n∑
i=1

K1(xi), . . . ,

n∑
i=1

Km(xi)
)

is sufficient for θ. This statistic is also complete. First consider m = 1:

fθ(x1, . . . , xn) =
(
a(θ)

)n
n∏

i=1

b(xi) exp
[
p(θ)

n∑
i=1

K(xi)
]
.

Let Y1 =
∑n

i=1 K(Xi); then Eθ[g(Y1)] is given by

∫ ∞
−∞
· · ·

∫ ∞
−∞

g
( n∑

i=1

K(xi)
)
fθ(x1, . . . , xn) dx1 · · · dxn.

It is plausable that if Eθ[g(Y1)] = 0 for all θ, then for all θ, g(Y1) = 0 with probability 1.

What we have here is analogous to a result from Laplace or Fourier transform theory:
If for all t between a and b we have∫ ∞

−∞
g(y)ety dy = 0

then g = 0. It is also analogous to the result that the moment-generating function
determines the density uniquely.

When m > 1, the exponent in the formula for fθ(x1, . . . , xn) becomes

p1(θ)
n∑

i=1

K1(xi) + · · ·+ pm(θ)
n∑

i=1

Km(xi)
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and the argument is essentially the same as in the one-dimensional case. The transform
result is as follows: If∫ ∞

−∞
· · ·

∫ ∞
−∞

exp[t1y1 + · · ·+ tmym]g(y1, . . . , yn) dy1 · · · dym = 0

when ai < ti < bi, i = 1, . . . , m, then g = 0. The above integral defines a joint moment-
generating function, which will appear again in connection with the multivariate normal
distribution.

17.2 Example

Let X1, . . . , Xn be iid, each normal(θ, σ2) where σ2 is known. The normal distribu-
tion belongs to the exponential class (see (16.4), Example 3), but in this case the term
exp[−x2/2σ2] can be absorbed in b(x), so only K2(x) = x is relevant. Thus

∑n
i=1 Xi,

equivalently X, is sufficient (as found in Lecture 14) and complete. Since E(X) = θ, it
follows that X is a UMVUE of θ.

Let’s find a UMVUE of θ2. The natural conjecture that it is (X)2 is not quite correct.
Since X = n−1

∑n
i=1 Xi, we have Var X = σ2/n. Thus

σ2

n
= E[(X)2]− (EX)2 = E[(X)2]− θ2,

hence

E
[
(X)2 − σ2

n

]
= θ2

and we have an unbiased estimate of θ2 based on the complete sufficient statistic X.
Therefore (X)2 − [σ2/n] is a UMVUE of θ2.

17.3 A Cautionary Tale

Restricting to unbiased estimates is not always a good idea. Let X be Poisson(θ), and
take n = 1, i.e., only one observation is made. From (16.4), Example 2, X is a complete
sufficient statistic for θ. Now

E[(−1)X ] =
∞∑

k=0

(−1)k e−θθk

k!
= e−θ

∞∑
k=0

(−θ)k

k!
= e−θe−θ = e−2θ.

Thus (−1)X is a UMVUE of e−2θ. But Y ≡ 1 is certainly a better estimate, since 1 is
closer to e−2θ than is −1. Estimating a positive quantity e−2θ by a random variable which
can be negative is not sensible.

Note also that the maximum likelihood estimate of θ is X (Lecture 9, Problem 1a), so
the MLE of e−2θ is e−2X , which looks better than Y .
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Problems

1. Let X be a random variable that has zero mean for all possible values of θ. For
example, X can be uniformly distributed between −θ and θ, or normal with mean 0
and variance θ. Give an example of a sufficient statistic for θ that is not complete.

2. Let fθ(x) = exp[−(x − θ)], θ < x < ∞, and 0 elsewhere. Show that the first order
statistic Y1 = minXi is a complete sufficient statistic for θ, and find a UMVUE of θ.

3. Let fθ(x) = θxθ−1, 0 < x < 1, where θ > 0. Show that u(X1, . . . , Xn) =
[∏n

i=1 Xi

]1/n

is a complete sufficient statistic for θ, and that the maximum likelihood estimate θ̂ is
a function of u(X1, . . . , Xn).

4. The density fθ(x) = θ2x exp[−θx], x > 0, where θ > 0, belongs to the exponential class,
and Y =

∑n
i=1 Xi is a complete sufficient statistic for θ. Compute the expectation of

1/Y under θ, and from the result find the UMVUE of θ.

5. Let Y1 be binomial (n, θ), so that Y1 =
∑n

i=1 Xi, where Xi is the indicator of a success
on trial i. [Thus each Xi is binomial (1, θ).] By Example 1 of (16.4), the Xi, as well
as Y1, belong to the exponential class, and Y1 is a complete sufficient statistic for θ.
Since E(Y1) = nθ, Y1/n is a UMVUE of θ.

Let Y2 = (X1 + X2)/2. In an effortless manner, find E(Y2|Y1).

6. Let X be normal with mean 0 and variance θ, so that by Example 3 of (16.4), Y =∑n
i=1 X2

i is a complete sufficient statistic for θ. Find the distribution of Y/θ, and from
this find the UMVUE of θ2.

7. Let X1, . . . , Xn be iid, each Poisson (θ), where θ > 0. (Then Y =
∑n

i=1 Xi is a
complete sufficient statistic for θ.) Let I be the indicator of {X1 ≤ 1}.
(a) Show that E(I|Y ) is the UMVUE of P{X1 ≤ 1} = (1 + θ) exp(−θ). Thus we need
to evaluate P{X1 = 0|Y = y} + P{X1 = 1|Y = y}. When y = 0, the first term is 1
and the second term is 0.
(b) Show that if y > 0, the conditional distribution of X1 (or equally well, of any Xi)
is binomial (y, 1/n).
(c) Show that

E(I|Y ) =
(

n− 1
n

)Y [
1 +

Y

n− 1

]

8. Let θ = (θ1, θ2) and fθ(x) = (1/θ2) exp[(x− θ1)/θ2], x > θ1 (and 0 elsewhere) where θ1

is an arbitrary real number and θ2 > 0. Show that the statistic (mini Xi,
∑n

i=1 Xi) is
sufficient for θ.



7

Lecture 18. Bayes Estimates

18.1 Basic Assumptions

Suppose we are trying to estimate the state of nature θ. We observe X = x, where X has
density fθ(x), and make decision δ(x) = our estimate of θ when x is observed. We incur
a loss L(θ, δ(x)), assumed nonnegative. We now assume that θ is random with density
h(θ). The Bayes solution minimizes the Bayes risk or average loss

B(δ) =
∫ ∞
−∞

∫ ∞
−∞

h(θ)fθ(x)L(θ, δ(x)) dθ dx.

Note that h(θ)fθ(x) = h(θ)f(x|θ) is the joint density of θ and x, which can also be
expressed as f(x)f(θ|x). Thus

B(δ) =
∫ ∞
−∞

f(x)
[ ∫ ∞
−∞

L(θ, δ(x))f(θ|x) dθ

]
dx.

Since f(x) is nonnegative, it is sufficient to minimize
∫∞
−∞ L(θ, δ(x))f(θ|x) dθ for each x.

The resulting δ is called the Bayes estimate of θ. Similarly, to estimate a function of θ,
say γ(θ), we minimize

∫∞
−∞ L(γ(θ), δ(x))f(θ|x) dθ.

We can jettison a lot of terminology by recognizing that our problem is to observe
a random variable X and estimate a random variable Y by g(X). We must minimize
E[L(Y, g(X)].

18.2 Quadratic Loss Function

We now assume that L(Y, g(X)) = (Y − g(X))2. By the theorem of total expectation,

E(Y − g(X))2 =
∫ ∞
−∞

E[(Y − g(X))2|X = x]f(x) dx

and as above, it suffices to minimize the quantity in brackets for each x. If we let z = g(x),
we are minimizing z2−2E(Y |X = x)z+E(Y 2|X = x) by choice of z. Now Az2−2Bz+C
is a minimum when z = B/A = E(Y |X = x)/1, and we conclude that

E[(Y − g(X))2] is minimized when g(x) = E(Y |X = x).

What we are doing here is minimizing E[(W −c)2] = c2−2E(W )c+E(W 2) by our choice
of c, and the minimum occurs when c = E(W ).

18.3 A Different Loss Function

Suppose that we want to minimize E(|W − c|). We have

E(|W − c|) =
∫ c

−∞
(c− w)f(w) dw +

∫ ∞
c

(w − c)f(w) dw
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= c

∫ c

−∞
f(w) dw −

∫ c

−∞
wf(w) dw +

∫ ∞
c

wf(w) dw − c

∫ ∞
c

f(w) dw.

Differentiating with respect to c, we get

cf(c) +
∫ c

−∞
f(w) dw − cf(c)− cf(c) + cf(c)−

∫ ∞
c

f(w) dw

which is 0 when
∫ c

−∞ f(w) dw =
∫∞

c
f(w) dw, in other words when c is a median of W .

Thus E(|Y − g(X)|) is minimized when g(x) is a median of the conditional distribution
of Y given X = x.

18.4 Back To Quadratic Loss

In the statistical decision problem with quadratic loss, the Bayes estimate is

δ(x) = E[θ|X = x] =
∫ ∞
−∞

θf(θ|x) dθ

and

f(θ|x) =
f(θ, x)
f(x)

=
h(θ)f(x|θ)

f(x)
.

Thus

δ(x) =

∫∞
−∞ θh(θ)fθ(x) dθ∫∞
−∞ h(θ)fθ(x) dθ

If we are estimating a function of θ, say γ(θ), replace θ by γ(θ) in the integral in the
numerator.

Problems

1. Let X be binomial(n, θ), and let the density of θ be

h(θ) =
θr−1(1− θ)s−1

β(r, s)
[beta(r, s)].

Show that the Bayes estimate with quadratic loss is

δ(x) =
r + x

r + s + n
, x = 0, 1, . . . , n.

2. For this estimate, show that the risk function Rδ(θ), defined as the average loss using
δ when the parameter is θ, is

1
(r + s + n)2

[((r + s)2 − n)θ2 + (n− 2r(r + s))θ + r2].

3. Show that if r = s =
√

n/2, then Rδ(θ) is a constant, independent of θ.
4. Show that a Bayes estimate δ with constant risk (as in Problem 3) is minimax, that

is, δ minimizes maxθ Rδ(θ).
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Lecture 19. Linear Algebra Review

19.1 Introduction

We will assume for the moment that matrices have complex numbers as entries, but the
complex numbers will soon disappear. If A is a matrix, the conjugate transpose of A will
be denoted by A∗. Thus if

A =
[
a + bi c + di
e + fi g + hi

]
then A∗ =

[
a− bi e− fi
c− di g − hi

]
.

The transpose is

A′ =
[
a + bi e + fi
c + di g + hi

]
.

Vectors X, Y , etc., will be regarded as column vectors. The inner product (dot product)
of n-vectors X and Y is

< X, Y >= x1y1 + · · ·+ xnyn

where the overbar indicates complex conjugate. Thus < X, Y >= Y ∗X. If c is any
complex number, then < cX, Y >= c < X, Y > and < X, cY >= c < X, Y >. The
vectors X and Y are said to be orthogonal (perpendicular) if < X, Y >= 0. For an
arbitrary n by n matrix B,

< BX, Y >=< X, B∗Y >

because < X, B∗Y >= (B∗Y )∗X = Y ∗B∗∗X = Y ∗BX =< BX, Y >.
Our interest is in real symmetric matrices, and “symmetric” will always mean “real

symmetric”. If A is symmetric then

< AX, Y >=< X, A∗Y >=< X, AY > .

The eigenvalue problem is AX = λX, or (A− λI)X = 0, where I is the identity matrix,
i.e., the matrix with 1’s down the main diagonal and 0’s elsewhere. A nontrivial solution
(X �= 0) exists iff det(A − λI) = 0. In this case, λ is called an eigenvalue of A and a
nonzero solution is called an eigenvector. Eigenvectors of a symmetric matrix are always
assumed to have real entries.

19.2 Theorem

If A is symmetric then A has real eigenvalues.
Proof. Suppose AX = λX with X �= 0. then < AX, Y >=< X, AY > with Y = X gives
< λX, X >=< X, λX >, so (λ− λ) < X, X >= 0. But < X, X >=

∑n
i=1 |xi|2 �= 0, and

therefore λ = λ, so λ is real. ♣
The important conclusion is that for a symmetric matrix, the eigenvalue problem can

be solved using only real numbers.
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19.3 Theorem

If A is symmetric, then eigenvectors of distinct eigenvalues are orthogonal.

Proof. Suppose AX1 = λ1X1 and AX2 = λ2X2. Then < AX1, X2 >=< X1, AX2 >, so
< λ1X1, X2 >=< X1, λ2X2 >. Since λ2 is real we have (λ1 − λ2) < X1, X2 >= 0. But
we are assuming that we have two distinct eigenvalues, so that λ1 �= λ2. Therefore we
must have < X1, X2 >= 0. ♣

19.4 Orthogonal Decomposition Of Symmetric Matrices

Assume A symmetric with distinct eigenvalues λ1, . . . , λn. The assumption that the λi

are distinct means that the equation det(A − λI) = 0, a polynomial equation in λ of
degree n, has no repeated roots. This assumption is actually unnecessary, but it makes
the analysis much easier.

Let AXi = λiXi with Xi �= 0, i = 1, . . . , n. Normalize the eigenvectors so that ‖Xi‖,
the length of Xi, is 1 for all i. (The length of the vector x = (x1, . . . , xn) is

‖x‖ =
( n∑

i=1

|xi|2
)1/2

hence ‖x‖2 =< x, x >.) Thus we have AL = LD, where

L = [X1|X2| · · · |Xn] and D =




λ1 0
. . .

0 λn


 .

To verify this, note that multiplying L on the right by a diagonal matrix with entries
λ1, . . . , λn multiplies column i of L (namely Xi) by λi. (Multiplying on the left by D
would multiply row i by λi.) Therefore

LD = [λ1X1|λ2X2| · · · |λnXn] = AL.

The columns of the square matrix L are mutually perpendicular unit vectors; such a
matrix is said to be orthogonal. The transpose of L can be pictured as follows:

L′ =




X ′1
X ′2
...

X ′n




Consequently L′L = I. Since L is nonsingular (det I = 1 = detL′ det L), L has an inverse,
which must be L′. to see this, multiply the equation L′L = I on the right by L−1 to get
L′I = L−1, i.e., L′ = L−1. Thus LL′ = I.

Since a matrix and its transpose have the same determinant, (detL)2 = 1, so the
determinant of L is ±1.
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Finally, from AL = LD we get

L′AL = D

We have shown that every symmetric matrix (with distinct eigenvalues) can be orthogo-
nally diagonalized.

19.5 Application To Quadratic Forms

Consider a quadratic form

X ′AX =
n∑

i,j=1

ai,jxixj .

If we change variables by X = LY , then

X ′AX = Y ′L′ALY = Y ′DY =
n∑

i=1

λiy
2
i .

The symmetric matrix A is said to be nonnegative definite if X ′AX ≥ 0 for all X.
Equivalently,

∑n
i=1 λiy

2
i ≥ 0 for all Y . Set yi = 1, yj = 0 for all j �= i to conclude that A

is nonnegative definite if and only if all eigenvalues of A are nonnegative. The symmetric
matrix is said to be positive definite if X ′AX > 0 except when all xi = 0. Equivalently,
all eigenvalues of A are strictly positive.

19.6 Example

Consider the quadratic form

q = 3x2 + 2xy + 3y2 = (x, y)
[
3 1
1 3

] (
x
y

)
.

Then

A =
[
3 1
1 3

]
, det(A− λI) =

∣∣∣∣3− λ 1
1 3− λ

∣∣∣∣ = λ2 − 6λ + 8 = 0

and the eigenvalues are λ = 2 and λ = 4. When λ = 2, the equation A(x, y)′ = λ(x, y)′

reduces to x+y = 0. Thus (1,−1)′ is an eigenvector. Normalize it to get (1/
√

2,−1/
√

2)′.
When λ = 4 we get −x + y = 0 and the normalized eigenvector is (1/

√
2, 1/
√

2)′. Conse-
quently,

L =
[

1/
√

2 1/
√

2
−1/
√

2 1/
√

2

]

and a direct matrix computation yields

L′AL =
[
2 0
0 4

]
= D
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as expected. If (x, y)′ = L(v, w)′, i.e., x = (1/
√

2)v + (1/
√

2)w, y = (−1/
√

2)v +
(1/
√

2)w, then

q = 3
[
v2

2
+

w2

2
+ vw

]
+ 2

[
− v2

2
+

w2

2

]
+ 3

[
v2

2
+

w2

2
− vw

]
.

Thus q = 2v2 + 4w2 = (v, w)D(v, w)′, as expected.
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Lecture 20. Correlation

20.1 Definitions and Comments

Let X and Y be random variables with finite mean and variance. Denote the mean of X
by µ1 and the mean of Y by µ2, and let σ2

1 = VarX and σ2
2 = VarY . Note that E(XY )

must be finite also, because −X2 − Y 2 ≤ 2XY ≤ X2 + Y 2. The covariance of X and Y
is defined by

Cov(X, Y ) = E[(X − µ1)(Y − µ2)]

and it follows that

Cov(X, Y ) = E(XY )− µ1E(Y )− µ2E(X) + µ1µ2 = E(XY )− E(X)E(Y ).

Thus Cov(X, Y ) = Cov(Y, X). Since expectation is linear, we have Cov(aX, bY ) =
abCov(X, Y ), Cov(X, Y + Z) = Cov(X, Y ) + Cov(X, Z), Cov(X + Y, Z) = Cov(X, Z) +
Cov(Y, Z), and Cov(X + a, Y + b) = Cov(X, Y ). Also, Cov(X, X) = E(X2) − (EX)2 =
VarX.

The correlation coefficient is a normalized covariance:

ρ =
Cov(X, Y )

σ1σ2
.

The correlation coefficient is a measure of linear dependence between X and Y . To see
this, estimate Y by aX + b, equivalently (to simplify the calculation) estimate Y − µ2 by
c(X − µ1) + d, choosing c and d to minimize

E[(Y − µ2 − (c(X − µ1) + d))2] = σ2
2 − 2cCov(X, Y ) + c2σ2

1 + d2.

Note that E[2cd(X − µ1)] = 0 since E(X) = µ1, and similarly E[2d(Y − µ2)] = 0. We
can’t do any better than to take d = 0, so we need to minimize σ2

2 − 2cρσ1σ2 + c2σ2
1 by

choice of c. Differentiating with respect to c, we have −2ρσ1σ2 + 2cσ2
1 , hence

c = ρ
σ2

σ1

The minimum expectation is

σ2
2 − 2ρ

σ2

σ1
ρσ1σ2 + ρ2 σ2

2

σ2
1

σ2
1 = σ2

2(1− ρ2)

The expectation of a nonnegative random variable is nonnegative, so

−1 ≤ ρ ≤ 1

For a fixed σ2, the closer |ρ| is to 1, the better the estimate of Y by aX + b. If |ρ| = 1
then the minimum expectation is 0, so (with probability 1)

Y − µ2 = c(X − µ1) = ρ
σ2

σ1
(X − µ1) with ρ = ±1.
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20.2 Theorem

If X and Y are independent then X and Y are uncorrelated (ρ = 0) but not conversely.
Proof. Assume X and Y are independent. Then

E[(X − µ1)(Y − µ2)] = E(X − µ1)E(Y − µ2) = 0.

For the counterexample to the converse, let X = cos θ, Y = sin θ, where θ is uniformly
distributed on (0, 2π). Then

E(X) =
1
2π

∫ 2π

0

cos θ dθ = 0, E(Y ) =
1
2π

∫ 2π

0

sin θ dθ = 0,

and

E(XY ) = E[(1/2) sin 2θ] =
1
4π

∫ 2π

0

sin 2θ dθ = 0,

so ρ = 0. But X2 + Y 2 = 1, so X and Y are not independent. ♣

20.3 The Cauchy-Schwarz Inequality

This result, namely

|E(XY )|2 ≤ E(X2)E(Y 2)

is closely related to −1 ≤ ρ ≤ 1. Indeed, if we replace X by X − µ1 and Y by Y − µ2,
the inequality says that [Cov(X, Y )]2 ≤ σ2

1σ2
2 , i.e., (ρσ1σ2)2 ≤ σ2

1σ2
2 , which gives ρ2 ≤ 1.

Thus Cauchy-Schwarz implies −1 ≤ ρ ≤ 1.
Proof. Let h(λ) = E[(λX + Y )2] = λ2E(X2) + 2λE(XY ) + E(Y 2). Since h(λ) ≥ 0 for
all λ, the quadratic equation h(λ) = 0 has no real roots or at worst a real repeated root.
Therefore the discriminant is negative or at worst 0. Thus [2E(XY )]2−4E(X2)E(Y 2) ≤ 0,
and the result follows. ♣

As a special case, let P{X = xi} = 1/n, 1 ≤ i ≤ n. If X = xi, take Y = yi. (The xi

and yi are arbitrary real numbers.) Then the Cauchy-Schwarz inequality becomes(
n∑

i=1

xiyi

)2

≤
(

n∑
i=1

x2
i

) (
n∑

i=1

y2
i

)
.

(There will be a factor of 1/n2 on each side of the inequality, which will cancel.) This is the
result originally proved by Cauchy. Schwarz proved the analogous formula for integrals:(∫ b

a

f(x)g(x) dx

)2

≤
∫ b

a

[f(x)]2 dx

∫ b

a

[g(x)]2 dx.

Since an integral can be regarded as the limit of a sum, the integral result can be proved
from the result for sums.

We know that if X1, . . . , Xn are independent, then the variance of the sum of the Xi

is the sum of the variances. If we drop the assumption of independence, we can still say
something.
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20.4 Theorem

Let X1, . . . , Xn be arbitrary random variables (with finite mean and variance). Then

Var(X1 + · · ·+ Xn) =
n∑

i=1

VarXi + 2
n∑

i,j=1
i<j

Cov(Xi, Xj).

For example, the variance of X1 + X2 + X3 + X4 is
4∑

i=1

VarXi + 2[Cov(X1, X2) + Cov(X1, X3) + Cov(X1, X4)

+ Cov(X2, X3) + Cov(X2, X4) + Cov(X3, X4)].

Proof. We have

E[(X1 − µ1) + · · ·+ (Xn − µn)]2 = E

[ n∑
i=1

(Xi − µi)2
]

+2E

[∑
i<j

(Xi − µi)(Xj − µj)
]

as asserted. ♣
The reason for the i < j restriction in the summation can be seen from an expansion

such as

(x + y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz.

It is correct, although a bit inefficient, to replace i < j by i �= j and drop the factor of 2.
This amounts to writing 2xy as xy + yx.

20.5 Least Squares

Let (x1, y1), . . . , (xn, yn) be points in the plane. The problem is to find the line y = ax+b
that minimizes

∑n
i=1[yi − (axi + b)]2. (The numbers a and b are to be determined.)

Consider the following random experiment. Choose X with P{X = xi} = 1/n for
i = 1, . . . , xn. If X = xi, set Y = yi. [This is the same setup as in the special case of the
Cauchy-Schwarz inequality in (20.3).] Then

E[(Y − (aX + b))2] =
1
n

n∑
i=1

[yi − (axi + b)]2

so the least squares problem is equivalent to finding the best estimate of Y of the form
aX + b, where “best” means that the mean square error is to be minimized. This is the
problem that we solved in (20.1). The least squares line is

y − µY = ρ
σY

σX
(x− µX)
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To evaluate µX , µY , σX , σY , ρ:

µX =
1
n

n∑
i=1

xi = x, µY =
1
n

n∑
i=1

yi = y,

σ2
X = E[(X − µX)2] =

1
n

n∑
i=1

(xi − x)2 = s2
x, σ2

Y =
1
n

n∑
i=1

(yi − y)2 = s2
y,

ρ =
E[(X − µX)(Y − µY )]

σXσY
, ρ

σY

σX
=

E[(X − µX)(Y − µY )]
σ2

X

.

The last entry is the slope of the least squares line, which after cancellation of 1/n in
numerator and denominator, becomes∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

.

If ρ > 0, then the least squares line has positive slope, and y tends to increase with x. If
ρ < 0, then the least squares line has negative slope and y tends to decrease as x increases.

Problems

In Problems 1 and 3-5, assume that X and Y are independent random variables, and that
we know µX = E(X), µY = E(Y ), σ2

X = VarX, and σ2
Y = VarY . In Problem 2, we also

know ρ, the correlation coefficient between X and Y .

1. Find the variance of XY .

2. Find the variance of aX + bY , where a and b are arbitrary real numbers.

3. Find the covariance of X and X + Y .

4. Find the correlation coefficient between X and X + Y .

5. Find the covariance of XY and X.

6. Under what conditions will there be equality in the Cauchy-Schwarz inequality?


