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Lecture 21. The Multivariate Normal Distribution

21.1 Definitions and Comments

The joint moment-generating function of X1, . . . , Xn [also called the moment-generating
function of the random vector (X1, . . . , Xn)] is defined by

M(t1, . . . , tn) = E[exp(t1X1 + · · ·+ tnXn)].

Just as in the one-dimensional case, the moment-generating function determines the den-
sity uniquely. The random variables X1, . . . , Xn are said to have the multivariate normal
distribution or to be jointly Gaussian (we also say that the random vector (X1, . . . , Xn)
is Gaussian) if

M(t1, . . . , tn) = exp(t1µ1 + · · ·+ tnµn) exp


1

2

n∑
i,j=1

tiaijtj




where the ti and µj are arbitrary real numbers, and the matrix A is symmetric and
positive definite.

Before we do anything else, let us indicate the notational scheme we will be using.
Vectors will be written with an underbar, and are assumed to be column vectors unless
otherwise specified. If t is a column vector with components t1, . . . , tn, then to save space
we write t = (t1, . . . , tn)′. The row vector with these components is the transpose of t,
written t′. The moment-generating function of jointly Gaussian random variables has the
form

M(t1, . . . , tn) = exp(t′µ) exp
(

1
2
t′At

)
.

We can describe Gaussian random vectors much more concretely.

21.2 Theorem

Joint Gaussian random variables arise from nonsingular linear transformations on inde-
pendent normal random variables.

Proof. Let X1, . . . , Xn be independent, with Xi normal (0,λi), and let X = (X1, . . . , Xn)′.
Let Y = BX+µ where B is nonsingular. Then Y is Gaussian, as can be seen by computing
the moment-generating function of Y :

MY (t) = E[exp(t′Y )] = E[exp(t′BX)] exp(t′µ).

But

E[exp(u′X)] =
n∏

i=1

E[exp(uiXi)] = exp
( n∑

i=1

λiu
2
i /2

)
= exp

(1
2
u′Du

)
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where D is a diagonal matrix with λi’s down the main diagonal. Set u = B′t, u′ = t′B;
then

MY (t) = exp(t′µ) exp(
1
2
t′BDB′t)

and BDB′ is symmetric since D is symmetric. Since t′BDB′t = u′Du, which is greater
than 0 except when u = 0 (equivalently when t = 0 because B is nonsingular), BDB′ is
positive definite, and consequently Y is Gaussian.

Conversely, suppose that the moment-generating function of Y is exp(t′µ) exp[(1/2)t′At)]
where A is symmetric and positive definite. Let L be an orthogonal matrix such that
L′AL = D, where D is the diagonal matrix of eigenvalues of A. Set X = L′(Y − µ), so
that Y = µ + LX. The moment-generating function of X is

E[exp(t′X)] = exp(−t′L′µ)E[exp(t′L′Y )].

The last term is the moment-generating function of Y with t′ replaced by t′L′, or equiv-
alently, t replaced by Lt. Thus the moment-generating function of X becomes

exp(−t′L′µ) exp(t′L′µ) exp
(1
2
t′L′ALt

)

This reduces to

exp
(1
2
t′Dt

)
= exp

(1
2

n∑
i=1

λit
2
i

)
.

Therefore the Xi are independent, with Xi normal (0, λi). ♣

21.3 A Geometric Interpretation

Assume for simplicity that the random variables Xi have zero mean. If E(U) = E(V ) = 0
then the covariance of U and V is E(UV ), which can be regarded as an inner product.
Then Y1−µ1, . . . , Yn−µn span an n-dimensional space, and X1, . . . , Xn is an orthogonal
basis for that space. We will see later in the lecture that orthogonality is equivalent to
independence. (Orthogonality means that the Xi are uncorrelated, i.e., E(XiXj) = 0 for
i �= j.)

21.4 Theorem

Let Y = µ + LX as in the proof of (21.2), and let A be the symmetric, positive definite
matrix appearing in the moment-generating function of the Gaussian random vector Y .
Then E(Yi) = µi for all i, and furthermore, A is the covariance matrix of the Yi, in other
words, aij = Cov(Yi, Yj) (and aii = Cov(Yi, Yi) = VarYi).

It follows that the means of the Yi and their covariance matrix determine the moment-
generating function, and therefore the density.
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Proof. Since the Xi have zero mean, we have E(Yi) = µi. Let K be the covariance matrix
of the Yi. Then K can be written in the following peculiar way:

K = E







Y1 − µ1

...
Yn − µn


 (Y1 − µ1, . . . , Yn − µn)


 .

Note that if a matrix M is n by 1 and a matrix N is 1 by n, then MN is n by n. In this
case, the ij entry is E[(Yi − µi)(Yj − µj)] = Cov(Yi, Yj). Thus

K = E[(Y − µ)(Y − µ)′] = E(LXX ′L′) = LE(XX ′)L′

since expectation is linear. [For example, E(MX) = ME(X) because E(
∑

j mijXj) =∑
j mijE(Xj).] But E(XX ′) is the covariance matrix of the Xi, which is D. Therefore

K = LDL′ = A (because L′AL = D). ♣

21.5 Finding the Density

From Y = µ+LX we can calculate the density of Y . The Jacobian of the transformation
from X to Y is det L = ±1, and

fX(x1, . . . , xn) =
1

(
√

2π)n

1√
λ1 · · ·λn

exp
(
−

n∑
i=1

x2
i /2λi

)
.

We have λ1 · · ·λn = detD = detK because det L = detL′ = ±1. Thus

fX(x1, . . . , xn) =
1

(
√

2π)n
√

det K
exp

(
− 1

2
x′D−1x

)
.

But y = µ + Lx, x = L′(y − µ), x′D−1x = (y − µ)′LD−1L′(y − µ), and [see the end
of (21.4)] K = LDL′, K−1 = LD−1L′. The density of Y is

fY (y1, . . . , yn) =
1

(
√

2π)n
√

detK
exp

[
− 1

2
(y − µ)′K−1(y − µ

)
].

21.6 Individually Gaussian Versus Jointly Gaussian

If X1, . . . , Xn are jointly Gaussian, then each Xi is normally distributed (see Problem 4),
but not conversely. For example, let X be normal (0,1) and flip an unbiased coin. If the
coin shows heads, set Y = X, and if tails, set Y = −X. Then Y is also normal (0,1) since

P{Y ≤ y} =
1
2
P{X ≤ y}+

1
2
P{−X ≤ y} = P{X ≤ y}

because −X is also normal (0,1). Thus FX = FY . But with probability 1/2, X +Y = 2X,
and with probability 1/2, X + Y = 0. Therefore P{X + Y = 0} = 1/2. If X and Y were
jointly Gaussian, then X + Y would be normal (Problem 4). We conclude that X and Y
are individually Gaussian but not jointly Gaussian.
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21.7 Theorem

If X1, . . . , Xn are jointly Gaussian and uncorrelated (Cov(Xi, Xj) = 0 for all i �= j), then
the Xi are independent.
Proof. The moment-generating function of X = (X1, . . . , Xn) is

MX(t) = exp(t′µ) exp
(1
2
t′Kt

)

where K is a diagonal matrix with entries σ2
1 , σ2

2 , . . . , σ2
n down the main diagonal, and 0’s

elsewhere. Thus

MX(t) =
n∏

i=1

exp(tiµi) exp
(1
2
σ2

i t2i
)

which is the joint moment-generating function of independent random variables X1, . . . , Xn,
whee Xi is normal (µi, σ

2
i ). ♣

21.8 A Conditional Density

Let X1, . . . , Xn be jointly Gaussian. We find the conditional density of Xn given X1, . . . , Xn−1:

f(xn|x1, . . . , xn−1) =
f(x1, . . . , xn)

f(x1, . . . , xn−1)

with

f(x1, . . . , xn) = (2π)−n/2(detK)−1/2 exp
[
− 1

2

n∑
i,j=1

yiqijyj

]

where Q = K−1 = [qij ], yi = xi − µi. Also,

f(x1, . . . , xn−1) =
∫ ∞
−∞

f(x1, . . . , xn−1, xn) dxn = B(y1, . . . , yn−1).

Now
n∑

i,j=1

yiqijyj =
n−1∑
i,j=1

yiqijyj + yn

n−1∑
j=1

qnjyj + yn

n−1∑
i=1

qinyi + qnny2
n.

Thus the conditional density has the form

A(y1, . . . , yn−1)
B(y1, . . . , yn−1)

exp[−(Cy2
n + D(y1, . . . , yn−1)yn]

with C = (1/2)qnn, D =
∑n−1

j=1 qnjyj =
∑n−1

i=1 qinyi since Q = K−1 is symmetric. The
conditional density may now be expressed as

A

B
exp

(D2

4C

)
exp

[
− C(yn +

D

2C
)2

]
.
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We conclude that

given X1, . . . , Xn−1, Xn is normal.

The conditional variance of Xn (the same as the conditional variance of Yn = Xn−µn) is

1
2C

=
1

qnn
because

1
2σ2

= C, σ2 =
1

2C
.

Thus

Var(Xn|X1, . . . , Xn−1) =
1

qnn

and the conditional mean of Yn is

− D

2C
= − 1

qnn

n−1∑
j=1

qnjYj

so the conditional mean of Xn is

E(Xn|X1, . . . , Xn−1) = µn −
1

qnn

n−1∑
j=1

qnj(Xj − µj).

Recall from Lecture 18 that E(Y |X) is the best estimate of Y based on X, in the sense
that the mean square error is minimized. In the joint Gaussian case, the best estimate of
Xn based on X1, . . . , Xn−1 is linear, and it follows that the best linear estimate is in fact
the best overall estimate. This has important practical applications, since linear systems
are usually much easier than nonlinear systems to implement and analyze.

Problems

1. Let K be the covariance matrix of arbitrary random variables X1, . . . , Xn. Assume
that K is nonsingular to avoid degenerate cases. Show that K is symmetric and positive
definite. What can you conclude if K is singular?

2. If X is a Gaussian n-vector and Y = AX with A nonsingular, show that Y is Gaussian.

3. If X1, . . . , Xn are jointly Gaussian, show that X1, . . . , Xm are jointly Gaussian for
m ≤ n.

4. If X1, . . . , Xn are jointly Gaussian, show that c1X1 + · · ·+ cnXn is a normal random
variable (assuming it is nondegenerate, i.e., not identically constant).
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Lecture 22. The Bivariate Normal Distribution

22.1 Formulas

The general formula for the n-dimensional normal density is

fX(x1, . . . , xn) =
1

(
√

2π)n

1√
detK

exp
[
− 1

2
(x− µ)′K−1(x− µ)

]

where E(X) = µ and K is the covariance matrix of X. We specialize to the case n = 2:

K =
[

σ2
1 σ12

σ12 σ2
2

]
=

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
, σ12 = Cov(X1, X2);

K−1 =
1

σ2
1σ2

2(1− ρ2)

[
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

]
=

1
1− ρ2

[
1/σ2

1 −ρ/σ1σ2

−ρ/σ1σ2 1/σ2
2

]
.

Thus the joint density of X1 and X2 is

1

2πσ1σ2

√
1− ρ2

exp
{
− 1

2(1− ρ2)

[(x1 − µ1

σ1

)2 − 2ρ
(x1 − µ1

σ1

)(x2 − µ2

σ2

)
+

(x2 − µ2

σ2

)2
]}

.

The moment-generating function of X is

MX(t1, t2) = exp(t′µ) exp
(1
2
t′Kt

)

= exp
[
t1µ1 + t2µ2 +

1
2
(
σ2

1t21 + 2ρσ1σ2t1t2 + σ2
2t22

)]
.

If X1 and X2 are jointly Gaussian and uncorrelated, then ρ = 0, so that f(x1, x2) is the
product of a function g(x1) of x1 alone and a function h(x2) of x2 alone. It follows that
X1 and X2 are independent. (We proved independence in the general n-dimensional case
in Lecture 21.)

From the results at the end of Lecture 21, the conditional distribution of X2 given X1

is normal, with

E(X2|X1 = x1) = µ2 −
q21

q22
(x1 − µ1)

where
q21

q22
= −ρ/σ1σ2

1/σ2
2

= −ρσ2

σ1
.

Thus

E(X2|X1 = x1) = µ2 +
ρσ2

σ1
(x1 − µ1)

and

Var(X2|X1 = x1) =
1

q22
= σ2

2(1− ρ2).

For E(X1|X2 = x2) and Var(X1|X2 = x2), interchange µ1 and µ2, and interchange σ1

and σ2.
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22.2 Example

Let X be the height of the father, Y the height of the son, in a sample of father-son pairs.
Assume X and Y bivariate normal, as found by Karl Pearson around 1900. Assume
E(X) = 68 (inches), E(Y ) = 69, σX = σY = 2, ρ = .5. (We expect ρ to be positive
because on the average, the taller the father, the taller the son.)

Given X = 80 (6 feet 8 inches), Y is normal with mean

µY +
ρσY

σX
(x− µX) = 69 + .5(80− 68) = 75

which is 6 feet 3 inches. The variance of Y given X = 80 is

σ2
Y (1− ρ2) = 4(3/4) = 3.

Thus the son will tend to be of above average height, but not as tall as the father. This
phenomenon is often called regression, and the line y = µY + (ρσY /σX)(x−µX) is called
the line of regression or the regression line.

Problems

1. Let X and Y have the bivariate normal distribution. The following facts are known:
µX = −1, σX = 2, and the best estimate of Y based on X, i.e., the estimate that
minimizes the mean square error, is given by 3X +7. The minimum mean square error
is 28. Find µX , σY and the correlation coefficient ρ between X and Y .

2. Show that the bivariate normal density belongs to the exponential class, and find the
corresponding complete sufficient statistic.
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Lecture 23. Cramér-Rao Inequality

23.1 A Strange Random Variable

Given a density fθ(x),−∞ < x < ∞, a < θ < b. We have found maximum likelihood
estimates by computing ∂

∂θ ln fθ(x). If we replace x by X, we have a random variable. To
see what is going on, let’s look at a discrete example. If X takes on values x1, x2, x3, x4

with p(x1) = .5, p(x2) = p(x3) = .2, p(x4) = .1, then p(X) is a random variable with the
following distribution:

P{p(X) = .5} = .5, P{p(X) = .2} = .4, P{p(X) = .1} = .1

For example, if X = x2 then p(X) = p(x2) = .2, and if X = x3 then p(X) = p(x3) = .2.
The total probability that p(X) = .2 is .4.

The continuous case is, at first sight, easier to handle. If X has density f and X = x,
then f(X) = f(x). But what is the density of f(X)? We will not need the result, but the
question is interesting and is considered in Problem 1.

The following two lemmas will be needed to prove the Cramér-Rao inequality, which
can be used to compute uniformly minimum variance unbiased estimates. In the calcu-
lations to follow, we are going to assume that all differentiations under the integral sign
are legal.

23.2 Lemma

Eθ

[ ∂

∂θ
ln fθ(X)

]
= 0.

Proof. The expectation is
∫ ∞
−∞

[ ∂

∂θ
ln fθ(x)

]
fθ(x) dx =

∫ ∞
−∞

1
fθ(x)

∂fθ(x)
∂θ

fθ(x) dx

which reduces to

∂

∂θ

∫ ∞
−∞

fθ(x) dx =
∂

∂θ
(1) = 0. ♣

23.3 Lemma

Let Y = g(X) and assume Eθ(Y ) = k(θ). If k′(θ) = dk(θ)/dθ, then

k′(θ) = Eθ

[
Y

∂

∂θ
ln fθ(X)

]
.

Proof. We have

k′(θ) =
∂

∂θ
Eθ[g(X)] =

∂

∂θ

∫ ∞
−∞

g(x)fθ(x) dx =
∫ ∞
−∞

g(x)
∂fθ(x)

∂θ
dx
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=
∫ ∞
−∞

g(x)
∂fθ(x)

∂θ

1
fθ(x)

fθ(x) dx =
∫ ∞
−∞

g(x)
[ ∂

∂θ
ln fθ(x)

]
fθ(x) dx

= Eθ[g(X)
∂

∂θ
ln fθ(X)] = Eθ[Y

∂

∂θ
ln fθ(X)]. ♣

23.4 Cramér-Rao Inequality

Under the assumptions of (23.3), we have

Varθ Y ≥ [k′(θ)]2

Eθ

[(
∂
∂θ ln fθ(X)

)2] .

Proof. By the Cauchy-Schwarz inequality,

[Cov(V, W )]2 = (E[(V − µV )(W − µW )])2 ≤ VarV VarW

hence

[Covθ(Y,
∂

∂θ
ln fθ(X))]2 ≤ Varθ Y Varθ

∂

∂θ
ln fθ(X).

Since Eθ[(∂/∂θ) ln fθ(X)] = 0 by (23.2), this becomes

(Eθ[Y
∂

∂θ
ln fθ(X)])2 ≤ Varθ Y Eθ[(

∂

∂θ
ln fθ(X))2].

By (23.3), the left side is [k′(θ)]2, and the result follows. ♣

23.5 A Special Case

Let X1, . . . , Xn be iid, each with density fθ(x), and take X = (X1, . . . , Xn). Then
fθ(x1, . . . , xn) =

∏n
i=1 fθ(xi) and by (23.2),

Eθ

[( ∂

∂θ
ln fθ(X)

)2] = Varθ
∂

∂θ
ln fθ(X) = Varθ

n∑
i=1

∂

∂θ
ln fθ(Xi)

= n Varθ
∂

∂θ
ln fθ(Xi) = nEθ

[( ∂

∂θ
ln fθ(Xi)

)2]
.

23.6 Theorem

Let X1, . . . , Xn be iid, each with density fθ(x). If Y = g(X1, . . . , Xn) is an unbiased
estimate of θ, then

Varθ Y ≥ 1

nEθ

[(
∂
∂θ ln fθ(Xi)

)2] .
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Proof. Applying (23.5), we have a special case of the Cramér-Rao inequality (23.4) with
k(θ) = θ, k′(θ) = 1. ♣

The lower bound in (23.6) is 1/nI(θ), where

I(θ) = Eθ

[( ∂

∂θ
ln fθ(Xi)

)2]

is called the Fisher information.
It follows from (23.6) that if Y is an unbiased estimate that meets the Cramér-Rao

inequality for all θ (an efficient estimate), then Y must be a UMVUE of θ.

23.7 A Computational Simplification

From (23.2) we have
∫ ∞
−∞

( ∂

∂θ
ln fθ(x)

)
fθ(x) dx = 0.

Differentiate again to obtain
∫ ∞
−∞

∂2 ln fθ(x)
∂θ2

fθ(x) dx +
∫ ∞
−∞

∂ ln fθ(x)
∂θ

∂fθ(x)
∂θ

dx = 0.

Thus
∫ ∞
−∞

∂2 ln fθ(x)
∂θ2

fθ(x) dx +
∫ ∞
−∞

∂ ln fθ(x)
∂θ

[∂fθ(x)
∂θ

1
fθ(x)

]
fθ(x) dx = 0.

But the term in brackets on the right is ∂ ln fθ(x)/∂θ, so we have
∫ ∞
−∞

∂2 ln fθ(x)
∂θ2

fθ(x) dx +
∫ ∞
−∞

( ∂

∂θ
ln fθ(x)

)2
fθ(x) dx = 0.

Therefore

I(θ) = Eθ

[( ∂

∂θ
ln fθ(Xi)

)2] = −Eθ

[∂2 ln fθ(Xi)
∂θ2

]
.

Problems

1. If X is a random variable with density f(x), explain how to find the distribution of
the random variable f(X).

2. Use the Cramér-Rao inequality to show that the sample mean is a UMVUE of the true
mean in the Bernoulli, normal (with σ2 known) and Poisson cases.
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Lecture 24. Nonparametric Statistics

We wish to make a statistical inference about a random variable X even though we know
nothing at all about its underlying distribution.

24.1 Percentiles

Assume F continuous and strictly increasing. If 0 < p < 1, then the equation F (x) = p
has a unique solution ξp, so that P{X ≤ ξp} = p. When p = 1/2, ξp is the median; when
p = .3, ξp is the 30-th percentile, and so on.

Let X1, . . . , Xn be iid, each with distribution function F , and let Y1, . . . , Yn be the
order statistics. We will consider the problem of estimating ξp.

24.2 Point Estimates

On the average, np of the observations will be less than ξp. (We have n Bernoulli trials,
with probability of success P{Xi < ξp} = F (ξp) = p.) It seems reasonable to use Yk as an
estimate of ξp, where k is approximately np. We can be a bit more precise. The random
variables F (X1), . . . , F (Xn) are iid, uniform on (0,1) [see (8.5)]. Thus F (Y1), . . . , F (Yn)
are the order statistics from a uniform (0,1) sample. We know from Lecture 6 that the
density of F (Yk) is

n!
(k − 1)!(n− k)!

xk−1(1− x)n−k, 0 < x < 1.

Therefore

E[F (Yk)] =
∫ 1

0

n!
(k − 1)!(n− k)!

xk(1− x)n−k dx =
n!

(k − 1)!(n− k)!
β(k + 1, n− k + 1).

Now β(k + 1, n − k + 1) = Γ(k + 1)Γ(n − k + 1)/Γ(n + 2) = k!(n − k)!/(n + 1)!, and
consequently

E[F (Yk)] =
k

n + 1
, 1 ≤ k ≤ n.

Define Y0 = −∞ and Yn+1 =∞, so that

E[F (Yk+1)− F (Yk)] =
1

n + 1
, 0 ≤ k ≤ n.

(Note that when k = n, the expectation is 1− [n/(n + 1)] = 1/(n + 1), as asserted.)
The key point is that on the average, each [Yk, Yk+1] produces area 1/(n + 1) under

the density f of the Xi. This is true because
∫ Yk+1

Yk

f(x) dx = F (Yk+1)− F (Yk)

and we have just seen that the expectation of this quantity is 1/(n+1), k = 0, 1, . . . , n.
If we want to accumulate area p, set k/(n + 1) = p, that is, k = (n + 1)p.



12

Conclusion: If (n + 1)p is an integer, estimate ξp by Y(n+1)p.
If (n + 1)p is not an integer, we can use a weighted average. For example, if p = .6 and
n = 13 then (n + 1)p = 14 × .6 = 8.4. Now if (n + 1)p were 8, we would use Y8, and if
(n + 1)p were 9 we would use Y9. If (n + 1)p = 8 + λ, we use (1 − λ)Y8 + λY9. In the
present case, λ = .4, so we use .6Y8 + .4Y9 = Y8 + .4(Y9 − Y8).

24.3 Confidence Intervals

Select order statistics Yi and Yj , where i and j are (approximately) symmetrical about
(n + 1)p. Then P{Yi < ξp < Yj} is the probability that the number of observations less
than ξp is at least i but less than j, i.e., between i and j − 1, inclusive. The probability
that exactly k observations will be less than ξp is

(
n
k

)
pk(1− p)n−k, hence

P{Yi < ξp < Yj} =
j−1∑
k=i

(
n

k

)
pk(1− p)n−k.

Thus (Yi, Yj) is a confidence interval for ξp, and we can find the confidence level by
evaluating the above sum, possibly with the aid of the normal approximation to the
binomial.

24.4 Hypothesis Testing

First let’s look at a numerical example. The 30-th percentile ξ.3 will be less than 68
precisely when F (ξ.3) < F (68), because F is continuous and strictly increasing. Therefore
ξ.3 < 68 iff F (68) > .3. Similarly, ξ.3 > 68 iff F (68) < .3, and ξ.3 = 68 iff F (68) = .3. In
general,

ξp0 < ξ ⇐⇒ F (ξ) > p0, ξp0 > ξ ⇐⇒ F (ξ) < p0

and

ξp0 = ξ ⇐⇒ F (ξ) = p0.

In our numerical example, if F (68) were actually .4, then on the average, 40 percent of
the observations will be 68 or less, as opposed to 30 percent if F (68) = .3. Thus a larger
than expected number of observations less than or equal to 68 will tend to make us reject
the hypothesis that the 30-th percentile is exactly 68. In general, our problem will be

H0 : ξp0 = ξ (⇐⇒ F (ξ) = p0)

H1 : ξp0 < ξ (⇐⇒ F (ξ) > p0)

where p0 and ξ are specified. If Y is the number of observations less than or equal to ξ,
we propose to reject H0 if Y ≥ c. (If H1 is ξp0 > ξ, i.e., F (ξ) < p0, we reject if Y ≤ c.)
Note that Y is the number of nonpositive signs in the sequence X1 − ξ, . . . , Xn − ξ, and
for this reason, the terminology sign test is used.
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Since we are trying to determine whether F (ξ) is equal to p0 or greater than p0, we
may regard θ = F (ξ) as the unknown state of nature. The power function of the test is

K(θ) = Pθ{Y ≥ c} =
n∑

k=c

(
n

k

)
θk(1− θ)n−k

and in particular, the significance level (probability of a type 1 error) is α = K(p0).
The above confidence interval estimates and the sign test are distribution free, that is,

independent of the underlying distribution function F .
Problems are deferred to Lecture 25.
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Lecture 25. The Wilcoxon Test

We will need two formulas:

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6
,

n∑
k=1

k3 =
[
n(n + 1)

2

]2

.

For a derivation via the calculus of finite differences, see my on-line text “A Course in
Commutative Algebra”, Section 5.1.

The hypothesis testing problem addressed by the Wilcoxon test is the same as that
considered by the sign test, except that:

(1) We are restricted to testing the median ξ.5.

(2) We assume that X1, . . . , Xn are iid and the underlying density is symmetric about
the median (so we are not quite nonparametric). There are many situations where we
suspect an underlying normal distribution but are not sure. In such cases, the symmetry
assumption may be reasonable.

(3) We use the magnitudes as well as the signs of the deviations Xi− ξ.5, so the Wilcoxon
test should be more accurate than the sign test.

25.1 How The Test Works

Suppose we are testing H0 : ξ.5 = m vs. H1 : ξ.5 > m based on observations X1, . . . , Xn.
We rank the absolute values |Xi −m| from smallest to largest. For example, let n = 5
and X1 −m = 2.7, X2 −m = −1.3, X3 −m = −0.3, X4 −m = −3.2, X5 −m = 2.4. Then

|X3 −m| < |X2 −m| < |X5 −m| < |X1 −m| < |X4 −m|.

Let Ri be the rank of |Xi−m|, so that R3 = 1, R2 = 2, R5 = 3, R1 = 4, R4 = 5. Let Zi be
the sign of Xi −m, so that Zi = ±1. Then Z3 = −1, Z2 = −1, Z5 = 1, Z1 = 1, Z4 = −1.
The Wilcoxon statistic is

W =
n∑

i=1

ZiRi.

In this case, W = −1 − 2 + 3 + 4 − 5 = −1. Because the density is symmetric about
the median, if Ri is given then Zi is still equally likely to be ±1, so (R1, . . . , Rn) and
(Z1, . . . , Zn) are independent. (Note that if Rj is given, the odds about Zi(i �= j) are
unaffected since the observations X1, . . . , Xn are independent.) Now the Ri are simply a
permutation of (1, 2, . . . , n), so

W is a sum of independent random variables Vi where Vi = ±i with equal probability.
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25.2 Properties Of The Wilcoxon Statistic

Under H0, E(Vi) = 0 and VarVi = E(V 2
i ) = i2, so

E(W ) =
n∑

i=1

E(Vi) = 0, VarW =
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

The Vi do not have the same distribution, but the central limit theorem still applies
because Liapounov’s condition is satisfied:

∑n
i=1 E[|Vi − µi|3]
(
∑n

i=1 σ2
i )3/2

→ 0 as n→∞.

Now the Vi have mean µi = 0, so |Vi − µi|3 = |Vi|3 = i3 and σ2
i = VarVi = i2. Thus the

Liapounov fraction is the sum of the first n cubes divided by the 3/2 power of the sum of
the first n squares, which is

n2(n + 1)2/4
[n(n + 1)(2n + 1)/6]3/2

.

For large n, the numerator is of the order of n4 and the denominator is of the order of
(n3)3/2 = n9/2. Therefore the fraction is of the order of 1/

√
n → 0 as n → ∞. By the

central limit theorem, [W −E(W )]/σ(W ) is approximately normal (0,1) for large n, with
E(W ) = 0 and σ2(W ) = n(n + 1)(2n + 1)/6.

If the median is larger than its value m under H0, we expect W to have a positive
bias. Thus we reject H0 if W ≥ c. (If H1 were ξ.5 < m), we would reject if W ≤ c.) The
value of c is determined by our choice of the significance level α.

Problems

1. Suppose we are using a sign test with n = 12 observations to decide between the null
hypothesis H0 : m = 40 and the alternative H1 : m > 40, whee m is the median. We
use the statistic Y = the number of observations that are less than or equal to 40.
We reject H0 if and only if Y ≤ c. Find the power function K(p) in terms of c and
p = F (40), and the probability α of a type 1 error for c = 2.

2. Let m be the median of a random variable with density symmetric about m. Using
the Wilcoxon test, we are testing H0 : m = 160 vs. H1 : m > 160 based on n = 16
observations, which are as follows: 176.9, 158.3, 152.1, 158.8, 172.4, 169.8, 159.7, 162.7,
156.6, 174.5, 184.4, 165.2, 147.8, 177.8, 160.1, 160.5. Compute the Wilcoxon statistic
and determine whether H0 is rejected at the .05 significance level, i.e., the probability
of a type 1 error is .05.

3. When n is small, the distribution of W can be found explicitly. Do it for n = 1, 2, 3.


