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Lecture 6. Order Statistics

6.1 The Multinomial Formula

Suppose we pick a letter from {A, B, C}, with P (A) = p1 = .3, P (B) = p2 = .5, P (C) =
p3 = .2. If we do this independently 10 times, we will find the probability that the
resulting sequence contains exactly 4 A’s, 3 B’s and 3 C’s.

The probability of AAAABBBCCC, in that order, is p4
1p

3
2p

3
3. To generate all favorable

cases, select 4 positions out of 10 for the A’s, then 3 positions out of the remaining 6 for the
B’s. The positions for the C’s are then determined. One possibility is BCAABACCAB.
The number of favorable cases is(

10
4

)(
6
3

)
=

10!
4!6!

6!
3!3!

=
10!

4!3!3!
.

Therefore the probability of exactly 4 A’s,3 B’s and 3 C’s is

10!
4!3!3!

(.3)4(.5)3(.2)3.

In general, consider n independent trials such that on each trial, the result is ex-
actly one of the events A1, . . . , Ar, with probabilities p1, . . . , pr respectively. Then the
probability that A1 occurs exactly n1 times, . . . , Ar occurs exactly nr times, is

pn1
1 · · · pnr

r

(
n

n1

)(
n− n1

n2

)(
n− n1 − n2

n3

)
· · ·

(
n− n1 − · · · − nr−2

nr−1

)(
nr

nr

)
which reduces to the multinomial formula

n!
n1! · · ·nr!

pn1
1 · · · pnr

r

where the pi are nonnegative real numbers that sum to 1, and the ni are nonnegative
integers that sum to n.

Now let X1, . . . , Xn be iid, each with density f(x) and distribution function F (x).
Let Y1 < Y2 < · · · < Yn be the Xi’s arranged in increasing order, so that Yk is the k-th
smallest. In particular, Y1 = minXi and Yn = max Xi. The Yk’s are called the order
statistics of the Xi’s.s

The distributions of Y1 and Yn can be computed without developing any new ma-
chinery. The probability that Yn ≤ x is the probability that Xi ≤ x for all i, which is∏n

i=1 P{Xi ≤ x} by independence. But P{Xi ≤ x} is F (x) for all i, hence

FYn(x) = [F (x)]n and fYn(x) = n[F (x)]n−1f(x).

Similarly,

P{Y1 > x} =
n∏

i=1

P{Xi > x} = [1− F (x)]n.



2

Therefore

FY1(x) = 1− [1− F (x)]n and fY1(x) = n[1− F (x)]n−1f(x).

We compute fYk
(x) by asking how it can happen that x ≤ Yk ≤ x + dx (see Figure 6.1).

There must be k − 1 random variables less than x, one random variable between x and
x + dx, and n − k random variables greater than x. (We are taking dx so small that
the probability that more than one random variable falls in [x, x + dx] is negligible, and
P{Xi > x} is essentially the same as P{Xi > x + dx}. Not everyone is comfortable
with this reasoning, but the intuition is very strong and can be made precise.) By the
multinomial formula,

fYk
(x) dx =

n!
(k − 1)!1!(n− k)!

[F (x)]k−1f(x) dx[1− F (x)]n−k

so

fYk
(x) =

n!
(k − 1)!1!(n− k)!

[F (x)]k−1[1− F (x)]n−kf(x).

Similar reasoning (see Figure 6.2) allows us to write down the joint density fYjYk
(x, y) of

Yj and Yk for j < k, namely

n!
(j − 1)!(k − j − 1)!(n− k)!

[F (x)]j−1[F (y)− F (x)]k−j−1[1− F (y)]n−kf(x)f(y)

for x < y, and 0 elsewhere. [We drop the term 1! (=1), which we retained for emphasis
in the formula for fYk

(x).]

k-1 1 n-k

x x + dx
' '

Figure 6.1

1

x x + dx
' ' y y + dy

j-1 k-j-1 1 n-k
' '

Figure 6.2

Problems

1. Let Y1 < Y2 < Y3 be the order statistics of X1, X2 and X3, where the Xi are uniformly
distributed between 0 and 1. Find the density of Z = Y3 − Y1.

2. The formulas derived in this lecture assume that we are in the continuous case (the
distribution function F is continuous). The formulas do not apply if the Xi are discrete.
Why not?
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3. Consider order statistics where the Xi, i = 1, . . . , n, are uniformly distributed between
0 and 1. Show that Yk has a beta distribution, and express the parameters α and β in
terms of k and n.

4. In Problem 3, let 0 < p < 1, and express P{Yk > p} as the probability of an event
associated with a sequence of n Bernoulli trials with probability of success p on a given
trial. Write P{Yk > p} as a finite sum involving n, p and k.
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Lecture 7. The Weak Law of Large Numbers

7.1 Chebyshev’s Inequality

(a) If X ≥ 0 and a > 0, then P{X ≥ a} ≤ E(X)/a.
(b) If X is an arbitrary random variable, c any real number, and ε > 0, m > 0, then
P{|X − c| ≥ ε} ≤ E(|X − c|m)/εm.
(c) If X has finite mean µ and finite variance σ2, then P{|X − µ| ≥ kσ} ≤ 1/k2.

This is a universal bound, but it may be quite weak in a specific case. For example, if
X is normal (µ, σ2), abbreviated N(µ, σ2), then

P{|X − µ| ≥ 1.96σ} = P{|N(0, 1)| ≥ 1.96} = 2(1− Φ(1.96)) = .05

where Φ is the distribution function of a normal (0,1) random variable. But the Chebyshev
bound is 1/(1.96)2 = .26.
Proof.
(a) If X has density f , then

E(X) =
∫ ∞

0

xf(x) dx =
∫ a

0

xf(x) dx +
∫ ∞

a

xf(x) dx

so

E(X) ≥ 0 +
∫ ∞

a

af(x) dx = aP{X ≥ a}.

(b) P{|X − c| ≥ ε} = P{|X − c|m ≥ εm} ≤ E(|X − c|m)/εm by (a).
(c) By (b) with c = µ, ε = kσ, m = 2, we have

P{|X − µ| ≥ kσ} ≤ E[(X − µ)2]
k2σ2

=
1
k2

. ♣

7.2 Weak Law of Large Numbers

Let X1, . . . , Xn be iid with finite mean µ and finite variance σ2. For large n, the arithmetic
average of the observations is very likely to be very close to the true mean µ. Formally,
if Sn = X1 + · · ·+ Xn, then for any ε > 0,

P{
∣∣Sn

n
− µ

∣∣ ≥ ε} → 0 as n→∞.

Proof.

P{
∣∣Sn

n
− µ

∣∣ ≥ ε} = P{|Sn − nµ| ≥ nε} ≤ E[(Sn − nµ)2]
n2ε2

by Chebyshev (b). The term on the right is

VarSn

n2ε2
=

nσ2

n2ε2
=

σ2

nε2
→ 0. ♣
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7.3 Bernoulli Trials

Let Xi = 1 if there is a success on trial i, and Xi = 0 if there is a failure. Thus Xi is the
indicator of a success on trial i, often written as I[Success on trial i]. Then Sn/n is the
relative frequency of success, and for large n, this is very likely to be very close to the
true probability p of success.

7.4 Definitions and Comments

The convergence illustrated by the weak law of large numbers is called convergence in
probability. Explicitly, Sn/n converges in probability to µ. In general, Xn

P−→ X means
that for every ε > 0, P{|Xn −X| ≥ ε} → 0 as n→∞. Thus for large n, Xn is very likely
to be very close to X. If Xn converges in probability to X, then Xn converges to X in
distribution: If Fn is the distribution function of Xn and F is the distribution function
of X, then Fn(x) → F (x) at every x where F is continuous. We write Xn

d−→ X. To
see that the continuity requirement is needed, look at Figure 7.1. In this example, Xn

is uniformly distributed between 0 and 1/n, and X is identically 0. We have Xn
P−→ 0

because P{|Xn| ≥ ε} is actually 0 for large n. However, Fn(x)→ F (x) for x �= 0, but not
at x = 0.

To prove that convergence in probability implies convergence in distribution:

Fn(x) = P{Xn ≤ x} = P{Xn ≤ x, X > x + ε}+ P{Xn ≤ x, X ≤ x + ε}
≤ P{|Xn −X| ≥ ε}+ P{X ≤ x + ε}
= P{|Xn −X| ≥ ε}+ F (x + ε)

F (x− ε) = P{X ≤ x− ε} = P{X ≤ x− ε, Xn > x}+ P{X ≤ x− ε, Xn ≤ x}
≤ P{|Xn −X| ≥ ε}+ P{Xn ≤ x}
= P{|Xn −X| ≥ ε}+ Fn(x).

Therefore

F (x− ε)− P{|Xn −X| ≥ ε} ≤ Fn(x) ≤ P{|Xn −X| ≥ ε}+ F (x + ε).

Since Xn converges in probability to X, we have P{|Xn−X| ≥ ε} → 0 as n→∞. If F is
continuous at x, then F (x−ε) and F (x+ε) approach F (x) as ε→ 0. Thus Fn(x) is boxed
between two quantities that can be made arbitrarily close to F (x), so Fn(x)→ F (x). ♣

7.5 Some Sufficient Conditions

In practice, P{|Xn−X| ≥ ε} may be difficult to compute, and it is useful to have sufficient
conditions for convergence in probability that can often be easily checked.

(1) If E[(Xn −X)2]→ 0 as n→∞, then Xn
P−→ X.

(2) If E(Xn)→ E(X) and Var(Xn −X)→ 0, then Xn
P−→ X.

Proof. The first statement follows from Chebyshev (b):

P{|Xn −X| ≥ ε} ≤ E[(Xn −X)2]
ε2

→ 0.
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To prove (2), note that

E[(Xn −X)2] = Var(Xn −X) + [E(Xn)− E(X)]2 → 0. ♣

In this result, if X is identically equal to a constant c, then Var(Xn − X) is simply
VarXn. Condition (2) then becomes E(Xn)→ c and VarXn → 0, which implies that Xn

converges in probability to c.

7.6 An Application

In normal sampling, let S2
n be the sample variance based on n observations. Let’s show

that S2
n is a consistent estimate of the true variance σ2, that is, S2

n
P−→ σ2. Since nS2

n/σ2

is χ2(n− 1), we have E(nS2
n/σ2) = (n− 1) and Var(nS2

n/σ2) = 2(n− 1). Thus E(S2
n) =

(n− 1)σ2/n→ σ2 and Var(S2
n) = 2(n− 1)σ4/n2 → 0, and the result follows.

1/n

F (x)n

x x

F (x)nlim
n→ ∞ 1

o

x

1

o

F(x)

' .

.

Figure 7.1

Problems

1. Let X1, . . . , Xn be independent, not necessarily identically distributed random vari-
ables. Assume that the Xi have finite means µi and finite variances σ2

i , and the
variances are uniformly bounded, i.e., for some positive number M we have σ2

i ≤ M
for all i. Show that (Sn − E(Sn))/n converges in probability to 0. This is a general-
ization of the weak law of large numbers. For if µi = µ and σ2

i = σ2 for all i, then
E(Sn) = nµ, so (Sn/n)− µ

P−→ 0, i.e., Sn/n
P−→ µ.
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2. Toss an unbiased coin once. If heads, write down the sequence 10101010 . . . , and if
tails, write down the sequence 01010101 . . . . If Xn is the n-th term of the sequence
and X = X1, show that Xn converges to X in distribution but not in probability.

3. Let X1, . . . , Xn be iid with finite mean µ and finite variance σ2. Let Xn be the sample
mean (X1 + · · · + Xn)/n. Find the limiting distribution of Xn, i.e., find a random
variable X such that Xn

d−→ X.

4. Let Xn be uniformly distributed between n and n + 1. Show that Xn does not have a
limiting distribution. Intuitively, the probability has “run away” to infinity.
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Lecture 8. The Central Limit Theorem

Intuitively, any random variable that can be regarded as the sum of a large number
of small independent components is approximately normal. To formalize, we need the
following result, stated without proof.

8.1 Theorem

If Yn has moment-generating function Mn, Y has moment-generating function M , and
Mn(t) → M(t) as n → ∞ for all t in some open interval containing the origin, then
Yn

d−→ Y .

8.2 Central Limit Theorem

Let X1, X2, . . . be iid, each with finite mean µ, finite variance σ2, and moment-generating
function M . Then

Yn =
∑n

i=1 Xi − nµ√
nσ

converges in distribution to a random variable that is normal (0,1). Thus for large n,∑n
i=1 Xi is approximately normal.
We will give an informal sketch of the proof. The numerator of Yn is

∑n
i=1(Xi − µ),

and the random variables Xi − µ are iid with mean 0 and variance σ2. Thus we may
assume without loss of generality that µ = 0. We have

MYn
(t) = E[etYn ] = E

[
exp

(
t√
nσ

n∑
i=1

Xi

)]
.

The moment-generating function of
∑n

i=1 Xi is [M(t)]n, so

MYn
(t) =

[
M

( t√
nσ

)]n
.

Now if the density of the Xi is f(x), then

M
( t√

nσ

)
=

∫ ∞
−∞

exp
( tx√

nσ

)
f(x) dx

=
∫ ∞
−∞

[
1 +

tx√
nσ

+
t2x2

2!nσ2
+

t3x3

3!n3/2σ3
+ · · ·

]
f(x) dx

= 1 + 0 +
t2

2n
+

t3µ3

6n3/2σ3
+

t4µ4

24n2σ4
+ · · ·

where µk = E[(Xi)k]. If we neglect the terms after t2/2n we have, approximately,

MYn
(t) =

(
1 +

t2

2n

)n
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which approaches the normal (0,1) moment-generating function et2/2 as n → ∞. This
argument is very loose but it can be made precise by some estimates based on Taylor’s
formula with remainder.

We proved that if Xn converges in probability to X, then Xn convergence in distribu-
tion to X. There is a partial converse.

8.3 Theorem

If Xn converges in distribution to a constant c, then Xn also converges in probability to
c.
Proof. We estimate the probability that |Xn −X| ≥ ε, as follows.

P{|Xn −X| ≥ ε} = P{Xn ≥ c + ε}+ P{Xn ≤ c− ε}

= 1− P{Xn < c + ε}+ P{Xn ≤ c− ε}.

Now P{Xn ≤ c + (ε/2)} ≤ P{Xn < c + ε}, so

P{|Xn − c| ≥ ε} ≤ 1− P{Xn ≤ c + (ε/2)}+ P{Xn ≤ c− ε}

= 1− Fn(c + (ε/2)) + Fn(c− ε).

where Fn is the distribution function of Xn. But as long as x �= c, Fn(x) converges to the
distribution function of the constant c, so Fn(x) → 1 if x > c, and Fn(x) → 0 if x < c.
Therefore P{|Xn − c| ≥ ε} → 1− 1 + 0 = 0 as n→∞. ♣

8.4 Remarks

If Y is binomial (n, p), the normal approximation to the binomial allows us to regard Y
as approximately normal with mean np and variance npq (with q = 1 − p). According
to Box, Hunter and Hunter, “Statistics for Experimenters”, page 130, the approximation
works well in practice if n > 5 and

1√
n

∣∣∣∣√q

p
−

√
p

q

∣∣∣∣ < .3

If, for example, we wish to estimate the probability that Y = 50 or 51 or 52, we may
write this probability as P{49.5 < Y < 52.5}, and then evaluate as if Y were normal with
mean np and variance np(1− p). This turns out to be slightly more accurate in practice
than using P{50 ≤ Y ≤ 52}.

8.5 Simulation

Most computers can simulate a random variable that is uniformly distributed between 0
and 1. But what if we need a random variable with an arbitrary distribution function F?
For example, how would we simulate the random variable with the distribution function
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of Figure 8.1? The basic idea is illustrated in Figure 8.2. If Y = F (X) where X has the
continuous distribution function F , then Y is uniformly distributed on [0,1]. (In Figure
8.2 we have, for 0 ≤ y ≤ 1, P{Y ≤ y} = P{X ≤ x} = F (x) = y.)

Thus if X is uniformly distributed on [0,1] and we want Y to have distribution function
F , we set X = F (Y ), Y = “F−1(X)”.

In Figure 8.1 we must be more precise:
Case 1. 0 ≤ X ≤ .3. Let X = (3/70)Y + (15/70), Y = (70X − 15)/3.
Case 2. .3 ≤ X ≤ .8. Let Y = 4, so P{Y = 4} = .5 as required.
Case 3. .8 ≤ X ≤ 1. Let X = (1/10)Y + (4/10), Y = 10X − 4.

In Figure 8.1, replace the F (y)-axis by an x-axis to visualize X versus Y . If y = y0

corresponds to x = x0 [i.e., x0 = F (y0)], then

P{Y ≤ y0} = P{X ≤ x0} = x0 = F (y0)

as desired.

1
10
 y
 +
 
4
10

1

o

' ' '-5 2 4 6

-
-

.8

.3

y

F(y)

3
70
 y 

+ 
15

70
.

Figure 8.1

Y = F(X)

X

y

x

1

Figure 8.2

Problems

1. Let Xn be gamma (n, β), i.e., Xn has the gamma distribution with parameters n and
β. Show that Xn is a sum of n independent exponential random variables, and from
this derive the limiting distribution of Xn/n.

2. Show that χ2(n) is approximately normal for large n (with mean n and variance 2n).



11

3. Let X1, . . . , Xn be iid with density f . Let Yn be the number of observations that
fall into the interval (a, b). Indicate how to use a normal approximation to calculate
probabilities involving Yn.

4. If we have 3 observations 6.45, 3.14, 4.93, and we round off to the nearest integer, we
get 6, 3, 5. The sum of integers is 14, but the actual sum is 14.52. Let Xi, i = 1, . . . , n
be the round-off error of the i-th observation, and assume that the Xi are iid and
uniformly distributed on (−1/2, 1/2). Indicate how to use a normal approximation to
calculate probabilities involving the total round-off error Yn =

∑n
i=1 Xi.

5. Let X1, . . . , Xn be iid with continuous distribution function F , and let Y1 < · · · < Yn

be the order statistics of the Xi. Then F (X1), . . . , F (Xn) are iid and uniformly dis-
tributed on [0,1] (see the discussion of simulation), with order statistics F (Y1), . . . , F (Yn).
Show that n(1− F (Yn)) converges in distribution to an exponential random variable.
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Lecture 9. Estimation

9.1 Introduction

In effect the statistician plays a game against nature, who first chooses the “state of
nature” θ (a number or k-tuple of numbers in the usual case) and performs a random
experiment. We do not know θ but we are allowed to observe the value of a random
variable (or random vector) X, called the observable, with density fθ(x).

After observing X = x we estimate θ by δ(x), which is called a point estimate because
it produces a single number which we hope is close to θ. The main alternative is an
interval estimate or confidence interval, which will be discussed in Lectures 10 and 11.

For a point estimate δ(x) to make sense physically, it must depend only on x, not on
the unknown parameter θ. There are many possible estimates, and there are no general
rules for choosing a best estimate. Some practical considerations are:

(a) How much does it cost to collect the data?

(b) Is the performance of the estimate easy to measure, for example, can we compute
P{|δ(x)− θ| < ε}?
(c) Are the advantages of the estimate appropriate for the problem at hand?

We will study several estimation methods:

1. Maximum likelihood estimates.

These estimates usually have highly desirable theoretical properties (consistency), and
are frequently not difficult to compute.

2. Confidence intervals.

These estimates have a very useful practical feature. We construct an interval from
the data, and we will know the probability that our (random) interval actually contains
the unknown (but fixed) parameter.

3. Uniformly minimum variance unbiased estimates (UMVUE’s).

Mathematical theory generates a large number of examples of these, but as we know,
a biased estimate can sometimes be superior.

4. Bayes estimates.

These estimates are appropriate if it is reasonable to assume that the state of nature
θ is a random variable with a known density.

In general, statistical theory produces many reasonable candidates, and practical ex-
perience will dictate the choice in a given physical situation.

9.2 Maximum Likelihood Estimates

We choose δ(x) = θ̂, a value of θ that makes what we have observed as likely as possible.
In other words, let θ̂ maximize the likelihood function L(θ) = fθ(x), with x fixed. This
corresponds to basic statistical philosophy: if what we have observed is more likely under
θ2 than under θ1, we prefer θ2 to θ1.
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9.3 Example

Let X be binomial (n, θ). Then the probability that X = x when the true parameter is θ
is

fθ(x) =
(

n

x

)
θx(1− θ)n−x, x = 0, 1, . . . , n.

Maximizing fθ(x) is equivalent to maximizing ln fθ(x):

∂

∂θ
ln fθ(x) =

∂

∂θ
[x ln θ + (n− x) ln(1− θ)] =

x

θ
− n− x

1− θ
= 0.

Thus x− θx− θn + θx = 0, so θ̂ = X/n, the relative frequency of success.

Notation: θ̂ will be written in terms of random variables, in this case X/n rather than
x/n. Thus θ̂ is itself a random variable.

We have E(θ̂) = nθ/n = θ, so θ̂ is unbiased. By the weak law of large numbers, θ̂
P−→ θ,

i.e., θ̂ is consistent.

9.4 Example

Let X1, . . . , Xn be iid, normal (µ, σ2), θ = (µ, σ2). Then, with x = (x1, . . . , xn),

fθ(x) =
(

1√
2πσ

)n

exp
[
−

n∑
i=1

(xi − µ)2

2σ2

]
and

ln fθ(x) = −n

2
ln 2π − n lnσ − 1

2σ2

n∑
i=1

(xi − µ)2;

∂

∂µ
ln fθ(x) =

1
σ2

n∑
i=1

(xi − µ) = 0,

n∑
i=1

xi − nµ = 0, µ = x;

∂

∂σ
ln fθ(x) = −n

σ
+

1
σ3

n∑
i=1

(xi − µ)2 =
n

σ3

[
− σ2 +

1
n

n∑
i=1

(xi − µ)2
]

= 0

with µ = x. Thus

σ2 =
1
n

n∑
i=1

(xi − x)2 = s2.

Case 1. µ and σ are both unknown. Then θ̂ = (X, S2).

Case 2. σ2 is known. Then θ = µ and θ̂ = X as above. (Differentiation with respect to
σ is omitted.)



14

Case 3. µ is known. Then θ = σ2 and the equation (∂/∂σ) ln fθ(x) = 0 becomes

σ2 =
1
n

n∑
i=1

(xi − µ)2

so

θ̂ =
1
n

n∑
i=1

(Xi − µ)2.

The sample mean X is an unbiased and (by the weak law of large numbers) consistent
estimate of µ. The sample variance S2 is a biased but consistent estimate of σ2 (see
Lectures 4 and 7).
Notation: We will abbreviate maximum likelihood estimate by MLE.

9.5 The MLE of a Function of Theta

Suppose that for a fixed x, fθ(x) is a maximum when θ = θ0. Then the value of θ2 when
fθ(x) is a maximum is θ2

0. Thus to get the MLE of θ2, we simply square the MLE of θ.
In general, if h is any function, then

ĥ(θ) = h(θ̂).

If h is continuous, then consistency is preserved, in other words:

If h is continuous and θ̂
P−→ θ, then h(θ̂) P−→ h(θ).

Proof. Given ε > 0, there exists δ > 0 such that if |θ̂ − θ| < δ, then |h(θ̂) − h(θ)| < ε.
Consequently,

P{|h(θ̂)− h(θ)| ≥ ε} ≤ P{|θ̂ − θ| ≥ δ} → 0 as n→∞. ♣

(To justify the above inequality, note that if the occurrence of an event A implies the
occurrence of an event B, then P (A) ≤ P (B).)

9.6 The Method of Moments

This is sometimes a quick way to obtain reasonable estimates. We set the observed k-th
moment n−1

∑n
i=1 xk

i equal to the theoretical k-th moment E(Xk
i ) (which will depend on

the unknown parameter θ). Or we set the observed k-th central moment n−1
∑n

i=1(xi−µ)k

equal to the theoretical k-th central moment E[(Xi − µ)k]. For example, let X1, . . . , Xn

be iid, gamma with α = θ1, β = θ2, with θ1, θ2 > 0. Then E(Xi) = αβ = θ1θ2 and
VarXi = αβ2 = θ1θ

2
2 (see Lecture 3). We set

X = θ1θ2, S2 = θ1θ
2
2

and solve to get estimates θ∗i of θi, i = 1, 2, namely

θ∗2 =
S2

X
, θ∗1 =

X

θ∗2
=

X
2

S2
.
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Problems

1. In this problem, X1, . . . , Xn are iid with density fθ(x) or probability function pθ(x),
and you are asked to find the MLE of θ.

(a) Poisson (θ), θ > 0.

(b) fθ(x) = θxθ−1, 0 < x < 1, where θ > 0. The probability is concentrated near the
origin when θ < 1, and near 1 when θ > 1.

(c) Exponential with parameter θ, i.e., fθ(x) = (1/θ)e−x/θ, x > 0, where θ > 0.

(d) fθ(x) = (1/2)e−|x−θ|, where θ and x are arbitrary real numbers.

(e) Translated exponential, i.e., fθ(x) = e−(x−θ), where θ is an arbitrary real number
and x ≥ θ.

2. let X1, . . . , Xn be iid, each uniformly distributed between θ − (1/2) and θ + (1/2).
Find more than one MLE of θ (so MLE’s are not necessarily unique).

3. In each part of Problem 1, calculate E(Xi) and derive an estimate based on the method
of moments by setting the sample mean equal to the true mean. In each case, show
that the estimate is consistent.

4. Let X be exponential with parameter θ, as in Problem 1(c). If r > 0, find the MLE of
P{X ≤ r}.

5. If X is binomial (n, θ) and a and b are integers with 0 ≤ a ≤ b ≤ n, find the MLE of
P{a ≤ X ≤ b}.
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Lecture 10. Confidence Intervals

10.1 Predicting an Election

There are two candidates A and B. If a voter is selected at random, the probability that
the voter favors A is p, where p is fixed but unknown. We select n voters independently
and ask their preference.

The number Yn of A voters is binomial (n, p), which (for sufficiently large n), is
approximately normal with µ = np and σ2 = np(1 − p). The relative frequency of A
voters is Yn/n. We wish to estimate the minimum value of n such that we can predict
A’s percentage of the vote within 1 percent, with 95 percent confidence. Thus we want

P
{∣∣Yn

n
− p

∣∣ < .01
}

> .95.

Note that |(Yn/n) − p| < .01 means that p is within .01 of Yn/n. So this inequality can
be written as

Yn

n
− .01 < p <

Yn

n
+ .01.

Thus the probability that the random interval In = ((Yn/n)− .01, (Yn/n) + .01) contains
the true probability p is greater than .95. We say that In is a 95 percent confidence
interval for p.

In general, we find confidence intervals by calculating or estimating the probability of
the event that is to occur with the desired level of confidence. In this case,

P

{∣∣∣∣Yn

n
− p

∣∣∣∣ < .01
}

= P{|Yn − np| < .01n} = P

{∣∣∣∣ Yn − np√
np(1− p)

∣∣∣∣ <
.01
√

n√
p(1− p)

}
and this is approximately

Φ
(

.01
√

n√
p(1− p)

)
− Φ

( −.01
√

n√
p(1− p)

)
= 2Φ

(
.01
√

n√
p(1− p)

)
− 1 > .95

where Φ is the normal (0,1) distribution function. Since 1.95/2 = .975 and Φ(1.96) = .975,
we have

.01
√

n√
p(1− p)

> 1.96, n > (196)2p(1− p).

But (by calculus) p(1 − p) is maximized when 1 − 2p = 0, p = 1/2, p(1 − p) = 1/4.
Thus n > (196)2/4 = (98)2 = (100− 2)2 = 10000− 400 + 4 = 9604.

If we want to get within one tenth of one percent (.001) of p with 99 percent confidence,
we repeat the above analysis with .01 replaced by .001, 1.99/2=.995 and Φ(2.6) = .995.
Thus

.001
√

n√
p(1− p)

> 2.6, n > (2600)2/4 = (1300)2 = 1, 690, 000.
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To get within 3 percent with 95 percent confidence, we have

.03
√

n√
p(1− p)

> 1.96, n >

(
196
3

)2

× 1
4

= 1067.

If the experiment is repeated independently a large number of times, it is very likely that
our result will be within .03 of the true probability p at least 95 percent of the time. The
usual statement “The margin of error of this poll is ±3%” does not capture this idea.

Note that the accuracy of the prediction depends only on the number of voters polled
and not on the total number of voters in the population. But the model assumes sampling
with replacement. (Theoretically, the same voter can be polled more than once since the
voters are selected independently.) In practice, sampling is done without replacement,
but if the number n of voters polled is small relative to the population size N , the error
is very small.

The normal approximation to the binomial (based on the central limit theorem) is
quite reliable, and is used in practice even for modest values of n; see (8.4).

10.2 Estimating the Mean of a Normal Population

Let X1, . . . , Xn be iid, each normal (µ, σ2). We will find a confidence interval for µ.
Case 1. The variance σ2 is known. Then X is normal (µ, σ2/n), so

X − µ

σ/
√

n
is normal (0,1),

hence

P{−b <
√

n

(
X − µ

σ

)
< b} = Φ(b)− Φ(−b) = 2Φ(b)− 1

and the inequality defining the confidence interval can be written as

X − bσ√
n

< µ < X +
bσ√
n

.

We choose a symmetrical interval to minimize the length, because the normal density
with zero mean is symmetric about 0. The desired confidence level determines b, which
then determines the confidence interval.
Case 2. The variance σ2 is unknown. Recall from (5.1) that

X − µ

S/
√

n− 1
is T (n− 1)

hence

P{−b <
X − µ

S/
√

n− 1
< b} = 2FT (b)− 1

and the inequality defining the confidence interval can be written as

X − bS√
n− 1

< µ < X +
bS√
n− 1

.
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10.3 A Correction Factor When Sampling Without Replacement

The following results will not be used and may be omitted, but it is interesting to measure
quantitatively the effect of sampling without replacement. In the election prediction
problem, let Xi be the indicator of success (i.e., selecting an A voter) on trial i. Then
P{Xi = 1} = p and P{Xi = 0} = 1− p. If sampling is done with replacement, then the
Xi are independent and the total number X = X1 + · · ·+Xn of A voters in the sample is
binomial (n, p). Thus the variance of X is np(1−p). However, if sampling is done without
replacement, then in effect we are drawing n balls from an urn containing N balls (where
N is the size of the population), with Np balls labeled A and N(1− p) labeled B. Recall
from basic probability theory that

VarX =
n∑

i=1

VarXi + 2
∑
i<j

Cov(Xi, Xj)

whee Cov stands for covariance. (We will prove this in a later lecture.) If i �= j, then

E(XiXj) = P{Xi = Xj = 1} = P{X1X2 = 1} =
Np

N
× Np− 1

N − 1

and

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) = p

(
Np− 1
N − 1

)
− p2

which reduces to −p(1− p)/(N − 1). Now VarXi = p(1− p), so

VarX = np(1− p)− 2
(

n

2

)
p(1− p)
N − 1

which reduces to

np(1− p)
[
1− n− 1

N − 1

]
= np(1− p)

[
N − n

N − 1

]
.

Thus if SE is the standard error (the standard deviation of X), then SE (without replace-
ment) = SE (with replacement) times a correction factor, where the correction factor
is √

N − n

N − 1
=

√
1− (n/N)
1− (1/N)

.

The correction factor is less than 1, and approaches 1 as N →∞, as long as n/N → 0.
Note also that in sampling without replacement, the probability of getting exactly k

A’s in n trials is (
Np
k

)(
N(1−p)

n−k

)(
N
n

)
with the standard pattern Np + N(1− p) = N and k + (n− k) = n.
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Problems

1. In the normal case [see (10.2)], assume that σ2 is known. Explain how to compute the
length of the confidence interval for µ.

2. Continuing Problem 1, assume that σ2 is unknown. Explain how to compute the length
of the confidence interval for µ, in terms of the sample standard deviation S.

3. Continuing Problem 2, explain how to compute the expected length of the confidence
interval for µ, in terms of the unknown standard deviation σ. (Note that when σ is
unknown, we expect a larger interval since we have less information.)

4. Let X1, . . . , Xn be iid, each gamma with parameters α and β. If α is known, explain
how to compute a confidence interval for the mean µ = αβ.

5. In the binomial case [see (10.1)], suppose we specify the level of confidence and the
length of the confidence interval. Explain how to compute the minimum value of n.


