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Involuntary musical imagery (INMI or “earworms”)— the spontaneous recall and repeating of a tune in one’s
mind—can be attributed to a wide range of triggers, including memory associations and recent musical
exposure. The present study examined whether a song’s popularity and melodic features might also help to
explain whether it becomes INMI, using a dataset of tunes that were named as INMI by 3,000 survey
participants. It was found that songs that had achieved greater success and more recent runs in the U.K. music
charts were reported more frequently as INMI. A set of 100 of these frequently named INMI tunes was then
matched to 100 tunes never named as INMI by the survey participants, in terms of popularity and song style.
These 2 groups of tunes were compared using 83 statistical summary and corpus-based melodic features and
automated classification techniques. INMI tunes were found to have more common global melodic contours
and less common average gradients between melodic turning points than non-INMI tunes, in relation to a large
pop music corpus. INMI tunes also displayed faster average tempi than non-INMI tunes. Results are discussed
in relation to literature on INMI, musical memory, and melodic “catchiness.”
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Why do certain songs always seem to get stuck in our heads?
Involuntary musical imagery (INMI, also known as “earworms”) is
the experience of a tune being spontaneously recalled and repeated
within the mind. A growing body of literature has described the
phenomenology of the INMI experience (Brown, 2006; William-
son & Jilka, 2013), explored the circumstances under which INMI
is likely to occur (Floridou & Müllensiefen, 2015; Hemming,
2009; Liikkanen, 2012a; Williamson et al., 2012) and investigated
traits that predispose an individual toward experiencing INMI

(Beaman & Williams, 2013; Beaty et al., 2013; Floridou, William-
son, & Müllensiefen, 2012; Müllensiefen, Jones, Jilka, Stewart, &
Williamson, 2014). In general, it has been found that INMI is a
fairly common, everyday experience and many different situa-
tional factors can trigger many different types of music to become
INMI (Beaman & Williams, 2010; Halpern & Bartlett, 2011;
Hyman et al., 2013; Liikkanen, 2012a; Williamson et al., 2012).
However, the initial question posed in this article of why certain
songs might get stuck in our heads over other songs is still not well
understood. The reason this question is so difficult to answer may
reside with the fact that the likelihood of a tune becoming INMI is
potentially influenced by a wide array of both intramusical (e.g.,
musical features and lyrics of a song) and extramusical factors
(e.g., radio play, context in which it appears as INMI, previous
personal associations with a song, and the individual cognitive
availability of a song). The present research examines some of
these previously unaddressed factors by examining the musical
features and popularity (e.g., chart position, recency of being
featured in the charts) of songs frequently reported as INMI.

Related Previous Research on INMI

Several researchers have examined extramusical features that
increase the likelihood that a song will become INMI. Lab-based
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studies have found that the song that has been heard aloud most
recently is more likely to become INMI than a song heard less
recently (Hyman et al., 2013; Liikkanen, 2012b), and recent ex-
posure to a tune is generally the most frequently reported trigger of
INMI experiences in diary and questionnaire studies (Bailes, 2015;
Floridou & Müllensiefen, 2015; Hemming, 2009; Jakubowski,
Farrugia, Halpern, Sankarpandi, & Stewart, 2015; Williamson et
al., 2012). Familiarity can also increase the likelihood that a song
will become INMI. Byron and Fowles (2013) found that partici-
pants who were exposed to a previously unfamiliar song six times
were more likely to experience that song as INMI than participants
who had only heard the song twice. It is also generally uncommon
to experience completely novel music as INMI, although a handful
of reports of self-composed music have been found in previous
work (Beaman & Williams, 2010; Beaty et al., 2013).

In terms of the features of a melody itself that increase its INMI
propensity, a pilot study first presented by Finkel, Jilka, William-
son, Stewart, and Müllensiefen (2010) and further developed by
Williamson and Müllensiefen (2012) represents the first empirical
investigation in this realm. In this study, 29 songs were collated
that had been frequently or recently experienced as INMI by more
than one participant in an online survey. Then, 29 non-INMI tunes
(songs that had never been named as INMI in the online survey)
that were similar in popularity and style to the 29 INMI tunes
(based on Gower’s similarity coefficient; Gower, 1971) were com-
pared to the INMI tunes in terms of melodic features. Statistical
melodic summary features of all 58 songs were computed using
the melody analysis software FANTASTIC (Feature ANalysis
Technology Accessing STatistics [In a Corpus]; Müllensiefen,
2009) and a binary logistic regression was used to predict INMI
versus non-INMI tunes based on these features. The results of this
analysis indicated that INMI tunes generally contained notes with
longer durations and smaller pitch intervals than non-INMI tunes.
Williamson and Müllensiefen (2012) suggest that these two fea-
tures might make songs easier to sing along with, which relates to
another result they reported—specifically, that people who sing
more often also report more frequent and longer INMI. The present
study will build on the initial findings of Finkel et al. (2010) and
Williamson and Müllensiefen (2012) and extend this work by
using (a) a larger sample of participants (N � 3,000) and songs
(200 songs) than Finkel et al. (2010) and Williamson and Müllen-
siefen (2012) (both studies used N � 1,014 and 58 songs), (b) a
larger set of melodic features (including features based on statistics
of a large corpus of music), and (c) more powerful statistical
modeling techniques for both matching of the INMI tunes to
non-INMI tunes and classifying INMI versus non-INMI tunes
based on their melodic features.

Although the present work is only the second study to examine
the INMI phenomenon from a computational, melodic feature-
based perspective, this type of approach has been employed suc-
cessfully by various other researchers to explain perception or
behavior in a variety of music-related tasks. For instance, Eerola
and colleagues have used melodic feature-based approaches to
explain cross-cultural similarity ratings (Eerola, Järvinen, Louhi-
vuori, & Toiviainen, 2001) and complexity ratings for melodies
(Eerola, Himberg, Toiviainen, & Louhivuori, 2006). The following
sections will review three specific areas in which feature-based
approaches have been used to explain aspects of melodic memory

and musical composition, which bear some inherent similarities to
the present work on INMI.

Research on Musical Catchiness

Some previous research has addressed the concepts of musical
“catchiness” and song “hooks.” Burgoyne, Bountouridis, Van
Balen, and Honing (2013) offer a definition of melodic catchiness
from a cognitive science perspective as “long-term musical sa-
lience, the degree to which a musical fragment remains memorable
after a period of time” (p. 1) and a definition of a song hook as “the
most salient, easiest-to-recall fragment of a piece of music” (p. 1).
These concepts are not entirely analogous to the INMI experience,
which is set apart particularly by its involuntary recall and repet-
itive nature. However, various parallels may be inherent; for
instance, the section of a tune that is recalled most easily as a hook
might also be the section that most easily comes to mind when
involuntarily retrieved from memory.

A variety of popular music books have provided advice from
successful musicians based on their own anecdotal experiences of
what rhythmic, melodic, and lyrical features contribute to the
composition of a good song hook (e.g., Bradford, 2005; Leikin,
2008; Perricone, 2000). One of the first musicological investiga-
tions of hooks was conducted by Burns (1987), who compiled
detailed qualitative descriptions of how hooks might be con-
structed using rhythmic, melodic, lyrical, timbral, temporal, dy-
namic, and recording-based features of a tune. A more recent,
large-scale empirical investigation of catchy tunes was distributed
in the form of an Internet-based game called Hooked, in which
participants were asked to judge whether they recognized different
sections of songs as quickly as possible. Results indicated that
different sections even within the same song differed significantly
in the amount of time required to recognize them, thus suggesting
some sections serve as better hooks than others (Burgoyne et al.,
2013). Additionally, the same research team has examined audio
and symbolic musical features of their song stimuli and revealed a
number of features related to melodic repetitiveness, melodic
“conventionality” in comparison to a corpus of pop music, and
prominence of the vocal line as predictors of musical catchiness
(Van Balen, Burgoyne, Bountouridis, Müllensiefen, & Veltkamp,
2015).

Research on Musical Features of Song Memorability

Another related area of research has examined the melodic
features that enhance recognition or recall of tunes from memory.
Müllensiefen and Halpern (2014) conducted a study in which
participants heard novel melodies in an encoding phase and were
then assessed on both explicit and implicit memory for these
melodies in a subsequent recognition task. This study used the
same feature extraction software that will be used in the present
research (FANTASTIC; Müllensiefen, 2009). A relevant feature of
Müllensiefen and Halpern’s study to the present work is that it
made use of both first- and second-order melodic features. First-
order features are features that are calculated based on the intrinsic
content of a melody itself, such as the average note duration,
average interval size, or pitch range of the melody. Second-order
features, also called corpus-based features, are features that com-
pare a melody to a larger collection or corpus of melodies (gen-
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erally comprised of music from the same genre or style as the
melodies that are being analyzed, such as pop songs or folk songs).
For instance, one example of a second-order feature might measure
to what degree the average interval size within a particular melody
is common or uncommon with respect to the distribution average
interval sizes within a large corpus of comparable melodies. The
use of second-order features allows one to determine whether
particular features of a melody are highly common or highly
distinctive in comparison to a corpus of music that is intended to
be representative of the genre from which the melody is taken.

Müllensiefen and Halpern (2014) conducted a number of anal-
yses using partial least squares regression and found somewhat
different patterns of results for predicting explicit and implicit
memory for tunes. Explicit memory was enhanced for tunes that
included melodic motives that were rare in terms of their occur-
rence in the corpus and that repeated all motives frequently. In
terms of implicit memory, the usage of unique motives in com-
parison to the corpus was also important, similar to the findings on
explicit memory. However less repetition of motives, a smaller
average interval size, simple contour, and complex rhythms were
also important to implicit memory recognition.

Although this study is relevant to the present research, several
differences are inherent. Müllensiefen and Halpern’s work tested
whether certain features of a melody can increase memorability for
previously unfamiliar tunes that had only been heard once before,
in terms of both explicit and implicit memory. In the case of INMI,
however, tunes that are often highly familiar to participants (and
have been heard aloud many times before) are retrieved in a
spontaneous fashion from memory. Therefore, although it is plau-
sible that some of these melodic features related to explicit and
implicit memory for previously unfamiliar music might be impli-
cated in INMI, it is also likely that other features might serve to
enhance the spontaneous recall of well-known tunes and looping
nature of the INMI experience.

Other studies have investigated the musical features that con-
tribute to memory for melodies through the use of paradigms that
seek to identify the point at which familiar songs are identified.
Schulkind, Posner, and Rubin (2003) conducted such a study in
which familiar songs were played to participants on a note-by-note
basis. The positions in a song in which participants were most
likely to identify the song correctly included notes located at
phrase boundaries, notes that completed alternating sequences of
rising and falling pitches, and metrically accented notes. Using a
similar paradigm, Bailes (2010) explained around 85% of the
variance in her participants’ data with second-order features that
measured timing distinctiveness and pitch distinctiveness in com-
parison to a large corpus of Western melodies. While different in
their primary research question and experimental paradigm to the
present work, the results of these studies nonetheless indicate that
assessing memory for melodies based on structural and melodic
features can be useful in modeling aspects of music cognition and
provide impetus for conducting similar research in the domain of
involuntarily retrieved musical memories.

Research on Musical Features of Hit Songs

A final relevant body of literature has investigated the commer-
cial success of songs, that is, whether certain musical features of a
song predispose it toward becoming a “hit.” This literature is

sometimes referred to as “hit song science.” One common ap-
proach in this research area has been to analyze the acoustic
features from recordings of songs in an attempt to predict hits
versus nonhits based on these features (Dhanaraj & Logan, 2005;
Ni, Santos-Rodríguez, Mcvicar, & De Bie, 2011). However, the
approach of predicting songs based solely on acoustic features has
received some criticism, due to the generally low prediction accu-
racy rates that have been reported (Pachet & Roy, 2008).

An alternative approach that has been employed is to investigate
features of the compositional structure of hit tunes. Kopiez and
Müllensiefen (2011) conducted a first exploration into this area by
attempting to predict the commercial success of cover versions of
songs from the Beatles’ album Revolver. They were able to
achieve a perfect (100%) classification accuracy using a logistic
regression model with just two melodic features as predictors—
pitch range and pitch entropy as implemented in the software
toolbox FANTASTIC (Müllensiefen, 2009)—thereby indicating
as a proof of concept that compositional features can be useful in
predicting hit song potential. In their specific dataset, the combi-
nation of a relatively large pitch range with relatively low pitch
entropy (measured by Shannon entropy and based on the number
of different pitches used among all notes in the melody) was
associated with the commercial success of cover versions of a tune.
However, as the sample of songs used in this study (only 14 songs
all composed by the same band) is very specific, it is unlikely that
such a simple classifier would be able to cope with the wide
diversity of styles and artists represented across all of the “popular
music” genres. A subsequent study by Frieler, Jakubowski, and
Müllensiefen (2015) investigated the contribution of composi-
tional features to the commercial success of a larger and more
diverse sample of 266 pop songs. The study used a wide range of
first-order melodic features to predict hits versus nonhits. The
three most predictive variables for hit songs all related to the
interval content of the melodies. However, the classifier used in
this work only achieved a classification accuracy rate of 52.6%.
This finding suggests that extramusical factors (such as artist
popularity) and audio features (such as timbre) may play a large
role in the commercial success of pop music, but also leaves open
the question as to whether second-order corpus-based features
might help to further capture the unexplained variance in the data.
Hence, the present research employed a similar approach for
predicting INMI tunes, but included second-order features in ad-
dition to simple first-order and summary features.

Aims of the Research

The main aims of the present work were to collate a large
number of frequently reported INMI tunes from an online ques-
tionnaire and use powerful statistical modeling techniques to ex-
amine features of their melodic structure. A preliminary investi-
gation also explored the extent to which the number of times a
song was named as INMI could be explained by the song’s
popularity and recency, measured using data from the U.K. music
charts. Based on the findings from this preliminary analysis, the
second part of the research examined the extent to which the
propensity of a song to become INMI could be predicted by
melodic features of the song, while controlling for relevant
popularity- and recency-related variables.
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Method

Participants

For the present project, responses from 3,000 participants who
had completed a preexisting online questionnaire on INMI expe-
riences were compiled (The Earwormery; Williamson et al., 2012).
These participants ranged in age from 12 to 81 years (M � 35.9,
SD � 13.1); 1,338 participants were male, 1,644 were female, and
18 did not provide gender information. The Earwormery question-
naire has been completed by 5,989 participants in total to date. The
decision to include only the responses of 3,000 of these partici-
pants in the present study was a purely pragmatic one, as manual
verification of each participant’s responses to two open text ques-
tions was needed to ensure that songs names were spelled correctly
and that each response was a genuine, existing song that had been
performed by the artist listed by the participant.

Ethics Statement

The present study and the online Earwormery questionnaire
were approved by the Ethics Committee of Goldsmiths, University
of London.

Materials and Data Preparation

The Earwormery questionnaire contained questions about the fea-
tures and phenomenology of participants’ INMI experiences, such as
how often they experienced INMI, whether they found INMI disturb-
ing or distracting, and their reactions and attitudes toward INMI (see
Williamson et al., 2012, 2014 and Williamson & Müllensiefen, 2012,
for additional publications related to this questionnaire). The survey
questions relevant to the current project were two open-ended ques-
tions: one that asked for the name, artist, and section of the tune (e.g.,
chorus, verse) experienced as the participant’s most recent INMI tune
and one that asked for the name, artist, and section of the participant’s
most frequent INMI tune.1

The first step in preparing the data for analysis involved com-
piling participant responses to the two relevant survey questions.
The analysis in the present project did not distinguish between
tunes listed as a “most frequent” and a “most recent” INMI tune,
as the aim was to include as many different pieces of music in one
sample as possible. Songs compiled within the dataset were also
limited to only “popular music” genres (e.g., pop, rock, rap,
rhythm and blues, etc.), while excluding such music types as
classical, children’s songs, and TV jingles. This is due to the fact
that the project utilized popularity and recency variables for each
of the songs that were measured in terms of data obtained from the
U.K. music charts. The exclusion of music types that would not
have been included in the U.K. music charts was conducted
manually by the researcher. Any tunes for which the genre was
unclear (e.g., the researcher was unfamiliar with the tune) were
obtained via Internet search (e.g., YouTube or iTunes recordings)
and categorized accordingly. Because the aim of this step was to
compile a list of all tunes that could have possibly appeared in the
music charts, only tunes that were clearly from nonpopular music
genres (e.g., classical music) were excluded at this point. Overall,
this data compilation process resulted in 3,806 usable responses. In
total, 410 of the 3,000 participants (13.67%) did not answer either

of the relevant survey questions; all other participants answered at
least one of the two questions.

Next, information on each INMI song’s popularity and recency
was acquired. These variables were measured in terms of the
number of weeks the song had spent in the U.K. music charts
(popularity measure), the highest position the song had attained in
the charts (popularity measure), and the date the song had exited
the charts (recency measure).2 Not all 3,806 songs from the first
round of data compilation had been in the charts; the resulting
number of songs from the original sample that had been listed in
the charts was 1,558. From this list, the most frequently mentioned
song was named 33 times as INMI (Lady Gaga’s “Bad Romance”).
The nine most frequently named INMI tunes are listed in Table 1.
In this reduced dataset, 1,144 songs were named once as INMI and
414 songs were named more than once (see Figure 1).

Preliminary Analysis: Predicting INMI Count Based
on Popularity and Recency

As a first step, an analysis was conducted to identify the degree to
which the popularity and recency of a song could affect the likelihood
of the song becoming stuck in the mind as INMI. The primary aim of
this analysis was to identify popularity-related variables that contrib-
ute to the INMI experience, to control for these variables in subse-
quent analyses of the musical features of INMI tunes.

The data for this analysis require a class of statistical techniques
that can model typical distributions of count data. Poisson regres-
sion is the most common method for modeling count data that
assume a distribution similar to that displayed in Figure 1 (Cam-
eron & Trivedi, 2013; Hilbe, 2011). In the present work, a Poisson
regression model was fitted, as well as several Poisson-related
models, which were tested as potentially better fits to the data due
to both the presence of overdispersion in the data and the large
number of INMI tunes that were named only one time within the
dataset.3 As the Poisson and related models are designed to address
data in which the count distribution begins at zero, the present data
was transformed by subtracting one from each song count (so that
the one-counts for the 1,144 songs named once became zeros, the
two-counts became ones, and so on).

As the two variables that described a song’s popularity (highest
chart entry and weeks in the charts) were highly correlated,
r(1,556) � �.51, p � .001, these two variables were subjected to
a one-component principal component analysis (PCA). The high-

1 Within the actual questionnaire, the term earworm was used in all
instructions and questions directed to participants, rather than INMI, as
earworm was deemed a more familiar and colloquial term.

2 This information was acquired via the U.K. music charts database at
polyhex.com. These records include songs that were listed in the charts
from 1952 to the present date. The exit date variable was converted from
a date to the number of days since exiting the charts for use in subsequent
analyses. This number of days was calculated from February 22, 2013—the
end date of data collection for the project.

3 One assumption of the Poisson distribution is that the observed mean
and the observed variance of the data are equal. However, the observed
variance of the present data (2.89) for the song counts is substantially
greater than the observed mean (1.55), which indicates overdispersion.
Overdispersion is a common problem in count data, and can be dealt with
by adopting a negative binomial regression model. Additionally, a related
family of models—the hurdle and zero-inflated models—were tested as
possible models for the data, due to their ability to account for excess
zero-counts (Mullahy, 1986; Zeileis, Kleiber, & Jackman, 2008).
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est chart entry variable loaded negatively onto this component and
the weeks in the charts variable loaded positively onto the com-
ponent. The component scores from this PCA were extracted for
use in subsequent regression models as a composite measure of the
two popularity variables. The recency variable (days since exiting
the charts) was subjected to a square root transformation due a
nonnormal distribution.

For each of four Poisson and Poisson-related models, a model
was fitted using the recency variable and the component scores
from the PCA of the popularity variables as predictors of the
number of times a song was named as INMI (INMI count). The
summaries of these four models are presented in Table 2.

The four models were then compared in terms of the Akaike
information criterion (AIC), the Bayesian information criterion
(BIC), and log-likelihood (see Table 3). These three values provide
measures of the goodness-of-fit of each model, with smaller values
of the AIC and BIC criteria and higher values of the log-likelihood
indicating better model fits. Note that the absolute values of these
three criteria do not have any meaningful interpretation but depend
on the sample size and complexity of the models. Rather, the
difference between the criterion values of different models should
be interpreted. A difference of at least 3 for the AIC and BIC is
often interpreted as meaningful or “positive” (see, e.g., Raftery,

1995) and larger differences indicate stronger empirical support
for the assumption that one model fits the data better than the
other. For models that are constructed as mixtures of individual
models (e.g., zero-inflated and hurdle model) there is ambiguity as
to how many free-parameters are contained in the model and hence
the information criteria are not defined without problems in these
cases (and thus are not applicable in these cases).

Table 1
Songs Most Frequently Named as Involuntary Musical Imagery (INMI)

Song title, artist
Number of times
named as INMI

Highest chart
position

Weeks in
charts

Days since
chart exit

(1) “Bad Romance,” Lady Gaga 33 1 47 1,322
(2) “Can’t Get You Out of My Head,” Kylie Minogue 24 1 25 4,164
(3) “Don’t Stop Believing,” Journey 21 6 59 1,399
(4) “Somebody That I Used to Know,” Gotye 19 1 46 398
(5) “Moves Like Jagger,” Maroon 5 17 2 52 545
(6) “California Gurls,” Katy Perry 15 1 26 1,083
(7) “Bohemian Rhapsody,” Queen 14 1 17 13,621
(8) “Alejandro,” Lady Gaga 12 7 10 1,175
(9) “Poker Face,” Lady Gaga 11 1 66 1,490

Figure 1. Count data for number of times a song was named as invol-
untary musical imagery (INMI) in the Earwormery questionnaire (songs
with chart data only, N � 1,558).

Table 2
Parameters and Model Summaries for the Four Statistical
Models Predicting the Number of Times a Song Was Named as
Involuntary Musical Imagery (INMI Count)

Model type & predictors Estimate SE z Value p Value

Poisson
Intercept .123 .082 1.493 .135
Popularity .548 .038 14.576 �.001��

Recency (sqrt) �.011 .000 �11.432 �.001��

Negative binomial
Intercept �.039 .149 �.262 .794
Popularity .467 .058 5.134 �.001��

Recency (sqrt) �.009 .002 �5.134 �.001��

Hurdle
Count component
Intercept �6.815 51.424 �.133 .895
Popularity .603 .103 5.845 �.001��

Recency (sqrt) �.013 .003 �4.681 �.001��

Log(�) �8.415 51.442 �.164 .870
Hurdle component
Intercept �.695 .158 �4.411 �.001
Popularity .310 .060 5.204 �.001��

Recency (sqrt) �.004 .002 �2.320 .020�

Zero-inflated
Count component
Intercept �.039 .140 �.280 .780
Popularity .467 .056 8.395 �.001��

Recency (sqrt) �.009 .002 �5.529 �.001��

Log(�) �1.015 .094 �10.826 �.001
Zero-inflated component
Intercept �9.750 105.684 �.092 .926
Popularity �.249 29.685 �.008 .993
Recency (sqrt) �.013 1.026 �.012 .990

Note. sqrt � square root. The variable named here as popularity repre-
sents the component scores from the principal component analysis of the
two popularity variables: highest chart entry and weeks in the charts.
Hurdle model � count component models positive counts only, hurdle
component models zeros versus positive counts. Zero-inflated model �
count component models all of the data, zero-inflated component models
zeros versus positive counts.
� p � .05. �� p � .001.
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The hurdle model appears on several levels to be the most
parsimonious solution for modeling the present data. It achieves
the lowest AIC value and highest log-likelihood and is able to
account for both the overdispersion and excess zero-counts present
in the data. This model includes both the popularity and recency
variables as significant predictors of the number of times a tune
was named as INMI. Specifically, songs that had attained higher
chart positions and longer runs in the charts and songs that had
exited the charts more recently were named as INMI more fre-
quently than less successful and less recent songs. These results
suggest a key contribution of features related to the commercial
success of a song to the generation of an INMI experience, thus
indicating the need to account for the effects of song popularity
and recency when investigating the role of features of melodic
structure in the occurrence of INMI experiences. More specifi-
cally, in subsequent analyses we take song popularity and recency
into account by matching INMI tunes to a “control group” of
non-INMI tunes in terms of both of these important factors.

Matching INMI and Non-INMI Tunes

A subset of the 1,558 songs with chart data was taken for
subsequent analyses that (a) were named as INMI by at least three
separate questionnaire participants and (b) had a corresponding
high-quality MIDI transcription available from the Geerdes MIDI
music database.4 Step (a) was included to ensure that the songs
included in the present sample had “INMI quality” that transferred
across multiple participants; this step reduced the song sample size
to 163. Step (b) was included as MIDI transcriptions were required
as input for the computational analysis of the melodic features of
each song. After this step, a dataset of 129 INMI tunes remained.

A “control group” of non-INMI tunes was compiled for match-
ing to the INMI tunes. To ensure that these tunes would provide
close matches to all or most INMI tunes, songs by the same or
similar performers to the 129 INMI tunes were purposely sought
out, as well as songs from similar time periods, chart positions, and
genres to the INMI tunes. The primary constraint imposed on this
non-INMI tune dataset was only tunes that had never been named
as INMI by any of the 3,000 questionnaire participants could be
included. This compilation process resulted in a dataset of 438
tunes that had never been named as INMI. The INMI and non-
INMI tunes were then subjected to a nonparametric multivariate
matching procedure based on a genetic search algorithm (Diamond
& Sekhon, 2005; Sekhon & Grieve, 2012), which was imple-
mented in the GenMatch function from the R package “Matching”
(Sekhon, 2011). A major benefit of using this automated matching
procedure (over more traditional, manual matching methods) was

that the two sets of songs could be matched on the basis of five
variables at once. The variables used for this matching procedure
were: highest chart entry, weeks in the charts, number of days
since exiting the charts, artist, and genre. Matching was performed
without replacement to provide one-to-one pairing of INMI and
non-INMI tunes. The caliper argument was set to 1.2 SD; that is,
the values for all of the continuous variables listed above for each
non-INMI tune were required to be within 1.2 SD of the values of
those same variables for its matched INMI tune. Overall, this
matching procedure was able to generate matches for 101 of
the INMI tunes, while 28 INMI tunes could not be matched to
suitable control tunes within the parameters specified above. Six of
the nine top-named INMI songs (66.67%) from Table 1 survived
the matching analysis, with no suitable match found for “Don’t
Stop Believing,” “Moves Like Jagger,” or “Poker Face.”

Melodic Feature Extraction

MIDI transcriptions for all 202 songs (INMI and non-INMI
tunes) were obtained from the Geerdes MIDI music database. The
Geerdes database contains high-quality MIDI transcriptions of
over 33,000 pieces of music, including the melody line and all
accompaniment/additional instrumentation. The melody line of the
section of the song (e.g., chorus, verse, instrumental) reported as
INMI by the participants in the Earwormery questionnaire was
extracted for all 101 INMI tunes. If more than one section was
reported by different participants, the section that was reported
most frequently was extracted. For cases in which no particular
song section was reported, the chorus was extracted, as this is the
section of a song that is most commonly reported to be experi-
enced as INMI (Beaman & Williams, 2010; Hyman et al., 2013).
The chorus of each of the 101 non-INMI tunes was extracted for
comparison to the INMI tune excerpts. The full melody line of
each of the 202 songs (including all verses, repetitions, etc.) was
also extracted for use in some of the subsequent analyses. During
this process, it was noted that one INMI tune (“Funky Cold
Medina”) was comprised primarily of spoken words rather than a
melody line. As such, this song and its matched non-INMI tune
were excluded from subsequent analysis, leaving a dataset of 100
INMI and 100 non-INMI tunes. All MIDI files were then con-
verted to a textual tabular file format that contains pitch and onset
information for each melodic event using the software MELCONV
(Frieler, 2005). The melodic data of all 200 songs was then
analyzed using the FANTASTIC melodic feature extraction soft-
ware (Müllensiefen, 2009; Müllensiefen & Halpern, 2014).

A total of 82 melodic structural features were computed for each
melody using FANTASTIC. These included both first-order and
second-order features of the melodies. Most first-order FANTASTIC
features have a second-order counterpart. For instance, p.range is a
first-order feature that calculates the pitch range of a melody. The
second-order counterpart of this feature is dens.p.range, which com-
pares the pitch range of the melody in question to the pitch ranges of
all melodies in the reference corpus and computes the probability
density of the pitch range value of a particular melody in comparison
to a reference corpus of melodies. The reference corpus used for
computing second-order features in the present study was a collection
of 14,063 MIDI transcriptions representative of commercially suc-

4 http://www.geerdes.com/.

Table 3
Goodness-of-Fit Measures for All Potential Models

Model type df AIC BIC Log-likelihood

Poisson 3 3,586.935 3,602.989 �1,790.468
Negative binomial 4 2,843.822 2,865.226 �1,417.911
Hurdle 7 2,834.526 N/A �1,410.263
Zero-inflated 7 2,849.822 N/A �1,417.911

Note. AIC � Akaike information criterion; BIC � Bayesian information
criterion; N/A � not applicable.
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cessful Western pop songs from the Geerdes MIDI music database
(Müllensiefen, Wiggins, & Lewis, 2008).

In addition to the distinction between first- and second-order
features, several of the features in FANTASTIC are classified as
“m-type features.” These are features that aim to capture the usage
and repetition of melodic motives in a phrase by taking account of
the note order. M-Types are calculated within FANTASTIC
through the use of a “moving window” that slides over small
sections of notes in a melody and records the content of each
position of the window, similar to n-gram models that are often
used in computational linguistics (e.g., Brown, deSouza, Mercer,
Della Pietra, & Lai, 1992). In the present analysis the window
was set to vary in size from containing two notes up to six notes
at a time (the default setting in FANTASTIC). Examples of
m-type features include mean m-type entropy (mean.entropy in
FANTASTIC), which calculates the average entropy value across
all computed m-types for a melody, and mean Yules K (mean.Yules.K
in FANTASTIC), which is a feature taken from linguistics that
measures the rate at which words are repeated in a text—or, in this
case, the rate at which musical m-types are repeated in the melody.

In the present analysis, all second-order m-type features were
computed using the full melody version of the INMI and non-
INMI tunes, to take account of the repetition of motives throughout
each song as a whole. All other FANTASTIC features were
computed using the song excerpts as input. Finally, the tempo of
each song excerpt was added to the dataset as an additional
predictor of interest, resulting in a total of 83 predictor variables
for the subsequent analyses. Tempo information, in beats per
minute (bpm), for each song excerpt was obtained from the
Geerdes MIDI music database.

Results

The main analysis was conducted using a data classification
method known as the random forest (Breiman, 2001), in which the
aim was to classify INMI versus non-INMI tunes based on their
melodic features. The random forest method has several advan-
tages over other data classification procedures, as it can handle a
large number of predictor variables and can cope with nonlinear
relationships between variables (see Hastie, Tibshirani, Friedman,
& Franklin, 2005 for a general description of random forests in
classification tasks and data mining, see Strobl, Malley, & Tutz,
2009 for applications of random forests in psychology, and Pawley
& Müllensiefen, 2012 for the use of random forests in music
psychology). This method also provides a measure of variable
importance for each of the predictor variables, which is useful for
selecting the most predictive of a large number of variables for
further evaluation. Additionally, random forests can model com-
plex higher order interactions between variables that may be
difficult to capture using traditional regression methods. The ran-
dom forest method was implemented in the present research with
the “party” package in R (Hothorn, Hornik, & Zeileis, 2006).

A random forest model was first fitted including all 83 predictor
variables and INMI versus non-INMI tune as a binary response
variable to select a subset of variables with the most predictive
power.5 A variable importance score was obtained for each melodic
feature variable, which describes how predictive this variable is in
comparison to the other variables. The variable importance scores for
the top 12 performing variables are visualized in Figure 2 (see

Appendix for a description of these 12 variables).
A “confidence interval” criterion was applied to select the top

performing variables for further analysis. This criterion specified
that only the variables whose (positive) variable importance scores
were greater than the absolute value of the lowest negative variable
importance score (from the worst performing predictor) would be
chosen (Strobl et al., 2009). Only the top three performing vari-
ables had a variable importance score that met this criterion
(dens.step.cont.glob.dir, tempo, and dens.int.cont.grad.mean). As
such, a reduced random forest model was fitted including only
these three predictor variables.

After fitting this reduced model with three predictors, a leave-one-
out cross-validation was performed to provide an unbiased assessment
of the model’s classification accuracy. The cross-validated classifica-
tion rate for classifying INMI versus non-INMI tunes was 62.5%.

Next, the directionality of the relationships between the three
variables included in the final random model forest and the de-
pendent variable were investigated, as this information is not
directly available from the random forest output. As such, these
three variables were entered into a classification tree (see Figure 3)
and a binary logistic regression analysis was performed (see Table
4). The classification tree indicated that tunes with a common global
melodic contour in comparison to the corpus of pop songs6 were more
likely to become INMI (dens.step.cont.glob.dir values greater than
0.326); approximately 80% of the tunes fulfilling this criterion were
named as INMI tunes by the participants. For tunes with a global
melodic contour value less than or equal to 0.326, the feature
dens.int.cont.grad.mean was then taken into account by the classifi-
cation tree. This feature measures the commonness of the average
gradient of the melodic lines between turning points within the con-
tour.7 Tunes that are less similar to the corpus in terms of this features
(those with dens.int.cont.grad.mean values less than or equal to
0.421) were more likely to become INMI than tunes that have a more
common average contour gradient (tunes with dens.int.cont.grad-
.mean greater than 0.421). Within this particular model tempo was not

5 Parameters were set using the cforest_unbiased() function in R to
ensure that the variable selection and variable importance values were
unbiased (Strobl, Boulesteix, Zeileis, & Hothorn, 2007). The total number
of trees to be grown was set to 1,000, the number of randomly selected
variables considered at each split was set to 20, and the minimum number
of observations per node necessary for splitting was set to 5.

6 See Figure 4 for examples of common and uncommon global melodic
contours.

7 See Figure 5 for examples of common and uncommon average gradient
between melodic turning points.

Figure 2. Variable importance scores for the 12 most important predictors in
the random forest model (see Appendix for descriptions of each predictor).
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selected as a deciding variable, however this single classification tree
should not be interpreted as representing the outcomes of the full
random forest, which averages across a large number of classification
trees. As such, the results of the binary logistic regression add further
clarity to the question of directionality of effects. This regression
model indicated that INMI tunes had faster tempi (M � 124.10 bpm,
SD � 28.73) than non-INMI tunes (M � 115.79 bpm, SD � 25.39)
and also indicated the same directionality of effects of the contour
variables as the classification tree, although only the dens.step.cont-
.glob.dir variable reached the conventional significance level of p �
.05. No significant two- or three-way interactions were found between
any of the predictor variables in the logistic regression analysis.

Predicting INMI From Both Melodic Features and
Chart Data

As a final step in exploring the factors that increase the likeli-
hood that a tune will be reported as INMI, a combined analysis was
conducted that included both the popularity and recency variables
from the U.K. music charts and the predictions generated by the
random forest model of the three most important melodic features.
This combined analysis was conducted using the dataset of 100
INMI and 100 matched non-INMI tunes.

As in the previous analysis, the highest U.K. chart entry and
weeks in the charts variables were highly correlated. These vari-
ables were thus subjected to a one-component principal component
analysis and the component scores were extracted for use as a
combined measure of these two variables. The highest chart entry
variable loaded negatively onto this component and the weeks in
the charts variable loaded positively onto the component. A square
root transformation was also applied to the recency variable (num-

ber of days since a song exited the charts). Thus, three predictor
variables were included in the subsequent analysis: the combined
measure of the two popularity variables, the square root-
transformed recency variable, and the binary predictions of the
final random forest model that made use of three melodic features
(tempo, dens.int.cont.grad.mean, and dens.step.cont.glob.dir). The
dependent variable of interest was the number of times a tune had
been named as INMI. Non-INMI tunes were coded as a value of 0
for this variable. As this dataset of 100 INMI tunes included only
INMI tunes that had been named at least three times by question-
naire participants, the count variable for each INMI tune was
transformed by subtracting two from each count, so that there was
no gap in the distribution between the zero-counts of the non-INMI
tunes and the count data for the INMI tunes.

A hurdle model again provided the best fit to the data, in
comparison to related models, based on several goodness-of-fit
criteria (see Table 5). The hurdle model resulting from the com-
bined analysis is presented in Table 6. The results indicate that the
popularity and recency variables were significant predictors in the
count component of the model, which models the positive (non-
zero) counts from the dataset, whereas the random forest predic-
tions were a significant predictor in the hurdle component, which
models the zero-counts against the larger (nonzero) counts. This
result can be interpreted to indicate that the melodic feature data
from the random forest significantly predicts whether a tune is
named as INMI (whether its INMI count is zero or nonzero), while
the popularity and recency of a song serves to predict how many
times a tune is named as INMI (for nonzero INMI counts).

A likelihood ratio test between the hurdle model presented in
Table 6 (log-likelihood � �262.61) and an analogous model that

Table 4
Binary Logistic Regression Analysis Using the Three Random
Forest Predictors

Predictors Estimate SE z Value p Value

Intercept �2.42 1.28 �1.89 .06
Tempo .01 .01 1.66 .10
dens.int.cont.grad.mean �1.93 1.07 �1.81 .07
dens.step.cont.glob.dir 7.08 3.31 2.14 .03�

� p � .05.

Table 5
Goodness-of-Fit Measures for All Potential Models:
Combined Analysis

Model type df AIC BIC Log-likelihood

Poisson 4 736.18 749.37 �364.09
Negative binomial 5 583.70 600.19 �286.85
Hurdle 9 543.22 N/A �262.61
Zero-inflated 9 568.51 N/A �275.26

Note. AIC � Akaike information criterion; BIC � Bayesian information
criterion; N/A � not applicable.

Figure 3. Classification tree resulting from the three predictors used in the random forest.
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includes only the popularity and recency variables (log-likelihood �
�290.37) revealed a significant difference between the two mod-
els, �2(2) � 55.52, p � .001, indicating that the inclusion of the
melodic feature-based predictor (predictions from the random for-
est) provides substantial explanatory power over the model includ-
ing only song popularity and recency measures. Thus, it appears
that both features of a melody and the song’s relative success in the
charts contribute to the likelihood that a tune is reported as INMI.

Discussion

The results of the present work indicate that features of a song’s
melodic structure, as well as measures of its popularity and re-
cency, can be useful in predicting whether a song becomes INMI.
These findings contribute to the growing literature on the INMI
experience and serve to increase our general understanding of why
certain songs are spontaneously recalled in the mind over others.

The final random forest model made use of only three melodic
features, specifically song tempo and two second-order features
that express how common the contour of a song is with respect to
the reference corpus. Tunes that were more likely to become INMI
were generally faster in tempo than non-INMI tunes, although this
predictor was only marginally significant in the logistic regression
analysis. Future research could investigate the related question of
whether tunes from tempo ranges that are more easily entrained to
are more likely to become INMI, particularly considering that a
large proportion of INMI episodes reported by participants in
previous diary studies occurred during repetitive movements, such
as walking or running (Jakubowski et al., 2015).8 A second key
FANTASTIC feature in the present work was dens.step.cont.glob-
.dir. The findings in relation to this feature indicate that tunes with
more common global melodic contour shapes (in terms of the
patterns of rising and falling of pitches) are more likely to become
INMI than those with less common pitch contours. Some examples
of tunes from the present dataset with the least and most common
global contour shapes with respect to the reference corpus are
provided in Figure 4. In these particular examples, the tunes with
more common global contours (section B of Figure 4) assume
fairly arch-shaped phrases. This is in line with previous research

citing the melodic arch as one of the most common contour shapes
in Western music traditions (Huron, 1996). Tunes in the present
dataset with less common global contours (Section A of Figure 4)
appear to take on contours other than arch shapes, such as ascend-
ing melodic lines that do not descend again. Finally, the findings
related to the feature dens.int.cont.grad.mean indicate that tunes
with a less common average gradient (slope) of the melodic lines
between contour turning points are more likely to become INMI.
Turning points in a melody occur when the pitch direction reverses
(e.g., pitches were ascending and then switch to a descending
pattern or vice versa); the gradient of each melodic line is calcu-
lated based on how far and how quickly the pitches ascend or
descend. Some examples of the extreme values of this particular
variable within the present dataset are presented in Figure 5. The
tunes with more common average contour gradients within this
sample appear to comprise mostly stepwise intervallic motion or
repetitions of the same note, whereas the tunes with less common
average contour gradients tend to contain many melodic leaps (as
in A1 of Figure 5) or unusually large melodic leaps (as in A2 of
Figure 5). However, further research is needed to examine whether
such contour patterns hold across other musical genres that are
experienced as INMI (e.g., classical music).

In sum, tunes that become INMI tend to be faster in tempo than
non-INMI tunes. If the melodic contour shape of a melody is
highly congruent with established norms, then it is more likely for
the tune to become INMI. If the melodic contour does not conform
with norms, then it should have a highly unusual pattern of contour
rises and falls to become an INMI tune.

The melodic features that were most predictive of the likelihood
of a tune to become INMI bear some relation to previous literature.
The “Hooked” project on musical catchiness has revealed audio
features related to melodic “conventionality” as positive predictors
of the long-term salience of a melody (Van Balen et al., 2015),
which bears some conceptual similarity to the finding in the
present work that INMI tunes generally comprised more common
global melodic contours than non-INMI tunes. Müllensiefen and
Halpern (2014) reported a variety of features that predicted explicit
and implicit memory for previously unfamiliar songs. Interest-
ingly, there is little overlap between the features revealed by their
research and the present study, with the possible exception of the
fact that they found simple contours to be predictive of implicit
melodic memory. However, as Müllensiefen and Halpern’s study
investigated recall of novel tunes after only a single exposure it is
not surprising that the melodic features implicated in their work
are rather different to the present findings on features that enhance
the spontaneous recall and repetition of (often highly) familiar
music within musical imagery. Additionally, the finding in the
present work that INMI tunes tended to be faster in tempo than
non-INMI tunes does not appear to have a previous precedent in

8 The mean tempo for INMI and non-INMI tunes from the present work
are both close to the average spontaneous motor tempo and preferred
perceptual tempo for adults of approximately 120 bpm (McAuley, Jones,
Holub, Johnston, & Miller, 2006; McKinney & Moelants, 2006). However,
future experimental research that attempts to induce INMI episodes using
songs from a wider tempo range could shed further light on the relationship
between INMI, preferred tempo, and concurrent movement.

Table 6
Hurdle Model With Extra- and Intramusical Predictors of
Involuntary Musical Imagery Likelihood

Predictors Estimate SE z Value p Value

Count component
Intercept .712 .697 1.021 .307
Popularity .629 .162 3.885 .0001��

Recency (sqrt) �.012 .005 �2.554 .011�

Random forest predictions �.101 .370 �.273 .785
Log(�) �1.037 .911 �1.138 .255

Hurdle component
Intercept �.932 .443 �2.105 .035
Popularity .111 .170 .651 .515
Recency (sqrt) �.001 .005 �.227 .820
Random forest predictions 2.302 .336 6.842 �.0001��

Note. sqrt � square root. The variable named here as popularity repre-
sents the component scores from the principal component analysis of the
two popularity variables: highest chart entry and weeks in the charts.
� p � .05. �� p � .001.
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existing literature. It is of interest to explore this finding further in
terms of potential relationships of this tempo variable to sensori-
motor and entrainment processes.

The present work did not replicate the findings of Finkel et al.
(2010) and Williamson and Müllensiefen (2012), who reported
that, on average, INMI tunes made use of longer note durations
and smaller pitch intervals than non-INMI tunes. The present
findings may be at least somewhat related to Williamson and
Müllensiefen’s interpretation that INMI tunes may be easier to

sing, as, for instance, common global contours may be easier to
sing than less common contours. However, the work of Finkel
et al. (2010) and Williamson and Müllensiefen (2012) did not
make use of second-order features that combine information
from the individual melodies analyzed with information from a
large reference corpus of melodies. In the present study, the two
melodic contour features selected by the random forest were
both second-order features. The fact that none of the first-order
features selected in previous studies with much smaller sample

Figure 4. Examples from the present dataset with the (A) lowest and (B) highest values of the variable
dens.step.cont.glob.dir. INMI � involuntary musical imagery.
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sizes were selected in the present study, which included both
first- and second-order features, seems to point to the impor-
tance of taking account of corpus information regarding the
distribution of features values, that is, their commonness/rarity.
In addition, the present results are likely more reliable than the
initial results reported in Finkel et al. (2010) and Williamson
and Müllensiefen (2012), as the present work used a larger
sample of tunes and a more controlled procedure for matching
INMI and non-INMI tunes. The use of the random forest

method also confers several advantages over the logistic regres-
sion method used in the previous studies. For instance, the
random forest can easily model interactions between multiple
variables and allows for different “earworm formulas” to be
modeled within the different trees of the forest that do not
have to have much in common with one another. Given the wide
diversity of tunes that are included within the genre of modern
“pop music”, this multiple formula hypothesis seems to be more
plausible than a single formula common to all INMI tunes.

Figure 5. Examples from the present dataset with the (A) lowest and (B) highest values of the variable
dens.int.cont.grad.mean. INMI � involuntary musical imagery.
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The present work has also revealed that features related to a
song’s popularity and recency—in particular, the song’s highest
U.K. chart entry, the number of weeks the song spent in the charts,
and the number of days since the song has exited the charts—can
play a significant role in predicting the number of times a song is
named as INMI by participants. These findings share some simi-
larities with previous work on extramusical features that influence
INMI occurrence. For instance, Byron and Fowles (2013) reported
that previously unfamiliar songs were more likely to become INMI
if participants were exposed to them six rather than two times,
thereby suggesting a role of familiarity in the INMI experience.
Additionally, recency of exposure can play a key role, such that
songs that have been heard aloud more recently are more likely to
become INMI than songs that were heard less recently (Hyman et
al., 2013; Liikkanen, 2012b). The U.K. chart variables used in the
present work are conceptually related to familiarity and recency
measures, as songs that achieve higher positions and longer runs in
the charts may be played more often on the radio and online
platforms such as YouTube and Spotify, thereby increasing their
familiarity in the listener. Songs that have more recently been in
the charts may also have a greater chance of having been recently
heard by participants than songs that were in the charts many years
ago. Future research might also consider the recency variable (days
since exiting the charts) in relation to the age of the participant
who reported a tune as INMI. This would allow for the exploration
of questions such as whether participants more frequently report
INMI for songs that were released during certain period of their
lives, such as the “reminiscence bump” (a period in late adoles-
cence/early adulthood from which autobiographical memories tend
to be disproportionately recalled; Rubin, Wetzler, & Nebes, 1986).

There are several potentially promising avenues for future in-
vestigation and expansion of the present research that should be
highlighted here. First, the present work comprises only symbolic
data analysis and does not include measures of audio features
derived from the actual song recordings, such as loudness, timbral
content, rhythmic clarity, and so forth. Additionally, there may be
other key compositional features not represented within the single-
line melodic analysis implemented in FANTASTIC, such as the
harmonic content or chord structure of the music, articulation, and
expressive timing, which could contribute to the INMI nature of a
tune. An expanded version of the present study that includes
analysis of audio features as well as other structural features of the
INMI tunes would be highly beneficial in terms of identifying
additional features that can increase the classification accuracy of
the models. It should also be noted that the reference pop music
corpus that was available for the analysis of second-order features
in FANTASTIC (Müllensiefen et al., 2008) comprises only songs
composed before 2007; as such, future efforts should be made to
update this reference corpus to include more recently composed
songs to capture any general stylistic changes that may have
occurred in the pop music genre since 2007. Finally, an analysis of
the lyrical content of INMI tunes could be beneficial, in terms of
investigating whether linguistic features, such as rhyme or alliter-
ation, play a role in increasing the likelihood of a song toward
becoming INMI. Future research should also compare the results
of the current study to data from music styles not included in the
present sample to identify whether the melodic features of INMI
revealed in the present work may be genre invariant.

To summarize, the outcomes of the present research indicate
that certain musical features of a tune, as well as measures of its
chart success, can be used to predict the likelihood that the song
will become INMI. The results of this work may be of interest to
researchers of musical and involuntary memory, as well as to
music composers and advertisers interested in writing music that
will continue to be spontaneously replayed in one’s head long after
the initial music exposure period. It is possible that the melodic
features revealed in this work as predictors of INMI might serve
more general functions in terms of increasing the ease with which
a tune can be retrieved from memory, although further research
needs to be conducted to test this possibility. As the present
findings indicate a role of both melodic features and popularity/
recency of a song in the genesis of an INMI experience, it would
be highly beneficial in future work to begin to construct models
that take account of not only acoustic, melodic, harmonic, and
lyrical features of melodies, but also participant-level factors such
as listening histories, personal associations with the music, and
endogenous states (e.g., mood), to provide a more comprehensive
account of the factors that contribute to the onset of an INMI
episode.

References

Bailes, F. (2010). Dynamic melody recognition: Distinctiveness and the
role of musical expertise. Memory & Cognition, 38, 641–650. http://dx
.doi.org/10.3758/MC.38.5.641

Bailes, F. (2015). Music in mind? An experience sampling study of what
and when, towards an understanding of why. Psychomusicology: Music,
Mind, and Brain, 25, 58–68. http://dx.doi.org/10.1037/pmu0000078

Beaman, C. P., & Williams, T. I. (2010). Earworms (stuck song syndrome):
Towards a natural history of intrusive thoughts. British Journal of
Psychology, 101, 637–653. http://dx.doi.org/10.1348/000712609X4
79636

Beaman, C. P., & Williams, T. I. (2013). Individual differences in mental
control predict involuntary musical imagery. Musicae Scientiae, 17,
398–409. http://dx.doi.org/10.1177/1029864913492530

Beaty, R. E., Burgin, C. J., Nusbaum, E. C., Kwapil, T. R., Hodges, D. A.,
& Silvia, P. J. (2013). Music to the inner ears: Exploring individual
differences in musical imagery. Consciousness and Cognition, 22,
1163–1173. http://dx.doi.org/10.1016/j.concog.2013.07.006

Bradford, C. (2005). Heart & soul: Revealing the craft of songwriting.
London, United Kingdom: Sanctuary Publishing Ltd.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. http://
dx.doi.org/10.1023/A:1010933404324

Brown, P. F., deSouza, P. V., Mercer, R. L., Della Pietra, V. J., & Lai, J. C.
(1992). Class-based n-gram models of natural language. Computational
Linguistics, 18, 467–479.

Brown, S. (2006). The perpetual music track: The phenomenon of constant
musical imagery. Journal of Consciousness Studies, 13, 43–62.

Burgoyne, J. A., Bountouridis, D., Van Balen, J., & Honing, H. (2013).
Hooked: A game for discovering what makes music catchy. Proceedings
of the 14th International Society for Music Information Retrieval (IS-
MIR) Conference (pp. 245–250).

Burns, G. (1987). A typology of “hooks” in popular records. Popular
Music, 6, 1–20. http://dx.doi.org/10.1017/S0261143000006577

Byron, T. P., & Fowles, L. C. (2013). Repetition and recency increases
involuntary musical imagery of previously unfamiliar songs. Psychology
of Music, 43, 375–389. http://dx.doi.org/10.1177/0305735613511506

Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data
(2nd ed.). Cambridge, United Kingdom: Cambridge University Press.
http://dx.doi.org/10.1017/CBO9781139013567

133INVOLUNTARY MUSICAL IMAGERY

http://dx.doi.org/10.3758/MC.38.5.641
http://dx.doi.org/10.3758/MC.38.5.641
http://dx.doi.org/10.1037/pmu0000078
http://dx.doi.org/10.1348/000712609X479636
http://dx.doi.org/10.1348/000712609X479636
http://dx.doi.org/10.1177/1029864913492530
http://dx.doi.org/10.1016/j.concog.2013.07.006
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1017/S0261143000006577
http://dx.doi.org/10.1177/0305735613511506
http://dx.doi.org/10.1017/CBO9781139013567


Dhanaraj, R., & Logan, B. (2005). Automatic prediction of hit songs. In
Proceedings of the International Symposium on Music Information
Retrieval (ISMIR, pp. 488–491).

Diamond, A., & Sekhon, J. S. (2005). Genetic matching for estimating
causal effects: A general multivariate matching method for achieving
balance in observational studies (Technical report). Department of Po-
litical Science, University of California, Berkeley, California. Retrieved
from http://sekhon.berkeley.edu/papers/GenMatch.pdf

Eerola, T., Himberg, T., Toiviainen, P., & Louhivuori, J. (2006). Perceived
complexity of western and African folk melodies by western and African
listeners. Psychology of Music, 34, 337–371. http://dx.doi.org/10.1177/
0305735606064842

Eerola, T., Järvinen, T., Louhivuori, J., & Toiviainen, P. (2001). Statistical
features and perceived similarity of folk melodies. Music Perception, 18,
275–296. http://dx.doi.org/10.1525/mp.2001.18.3.275

Finkel, S., Jilka, S. R., Williamson, V. J., Stewart, L., & Müllensiefen, D.
(2010). Involuntary musical imagery: Investigating musical features that
predict earworms. Paper presented at the Third International Conference
of Students of Systematic Musicology (SysMus10), University of Cam-
bridge, Cambridge, United Kingdom.

Floridou, G. A., & Müllensiefen, D. (2015). Environmental and mental
conditions predicting the experience of involuntary musical imagery: An
experience sampling method study. Consciousness and Cognition, 33,
472–486. http://dx.doi.org/10.1016/j.concog.2015.02.012

Floridou, G., Williamson, V. J., & Müllensiefen, D. (2012). Contracting
earworms: The roles of personality and musicality. In E. Cambouropou-
los, C. Tsougras, K. Mavromatis, K. Pastiadis (Eds.), Proceedings of
ICMPC-ESCOM 12 (pp. 302–310). Thessaloniki, Greece.

Frieler, K. (2005). Melody - csv file format (mcsv; Unpublished technical
documentation).

Frieler, K., Jakubowski, K., & Müllensiefen, D. (2015). Is it the song and
not the singer? Hit song prediction using structural features of melodies.
In W. Auhagen, C. Bullerjahn, & R. von Georgi (Eds.), Yearbook of
music psychology (pp. 41–54), Göttingen, Germany: Hogrefe-Verlag.

Gower, J. C. (1971). A General coefficient of similarity and some of its
properties. Biometrics, 27, 857–871. http://dx.doi.org/10.2307/2528823

Halpern, A. R., & Bartlett, J. C. (2011). The persistence of musical
memories: A descriptive study of earworms. Music Perception, 28,
425–432. http://dx.doi.org/10.1525/mp.2011.28.4.425

Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements
of statistical learning: Data mining, inference and prediction. The Math-
ematical Intelligencer, 27, 83– 85. http://dx.doi.org/10.1007/BF02
985802

Hemming, J. (2009). Zur Phänomenologie des ‘Ohrwurms’ [On the phe-
nomenology of the ‘earworm’]. In W. Auhagen, C. Bullerjahn, & H.
Höge (Eds.), Musikpsychologie - Musikalisches Gedächtnis und musika-
lisches Lernen: Jahrbuch der Deutschen Gesellschaft für Musikpsy-
chologie - Band 20 (pp. 184–207). Göttingen, Germany: Hogrefe.

Hilbe, J. M. (2011). Negative binomial regression (2nd ed.). Cambridge,
United Kingdom: Cambridge University Press. http://dx.doi.org/10
.1017/CBO9780511973420

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive parti-
tioning: A conditional inference framework. Journal of Computational
and Graphical Statistics, 15, 651– 674. http://dx.doi.org/10.1198/
106186006X133933

Huron, D. (1996). The melodic arch in Western folksongs. Computing in
Musicology, 10, 3–23.

Hyman, I. E., Jr., Burland, N. K., Duskin, H. M., Cook, M. C., Roy, C. M.,
McGrath, J. C., & Roundhill, R. F. (2013). Going Gaga: Investigating,
creating, and manipulating the song stuck in my head. Applied Cognitive
Psychology, 27, 204–215. http://dx.doi.org/10.1002/acp.2897

Jakubowski, K., Farrugia, N., Halpern, A. R., Sankarpandi, S. K., &
Stewart, L. (2015). The speed of our mental soundtracks: Tracking the
tempo of involuntary musical imagery in everyday life. Memory &

Cognition, 43, 1229 –1242. http://dx.doi.org/10.3758/s13421-015-
0531-5

Kopiez, R., & Müllensiefen, D. (2011). Auf der Suche nach den “Popu-
laritätsfaktoren” in den Song-Melodien des Beatles-Albums Revolver:
Eine computergestützte Feature-Analyse [In search of features explain-
ing the popularity of the tunes from the Beatles album Revolver: A
computer-assisted feature analysis]. In S. Meine & N. Noeske (Eds.),
Musik und Popularität. Beiträge zu einer Kulturgeschichte zwischen
1500 und heute (pp. 207–225). Münster, Germany: Waxmann Verlag.

Leikin, M. A. (2008). How to write a hit song. Milwaukee, WI: Hal
Leonard Books.

Liikkanen, L. A. (2012a). Musical activities predispose to involuntary
musical imagery. Psychology of Music, 40, 236–256. http://dx.doi.org/
10.1177/0305735611406578

Liikkanen, L. A. (2012b). Inducing involuntary musical imagery: An
experimental study. Musicae Scientiae, 16, 217–234. http://dx.doi.org/
10.1177/1029864912440770

McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M., & Miller, N. S.
(2006). The time of our lives: Life span development of timing and event
tracking. Journal of Experimental Psychology: General, 135, 348–367.
http://dx.doi.org/10.1037/0096-3445.135.3.348

McKinney, M. F., & Moelants, D. (2006). Ambiguity in tempo perception:
What draws listeners to different metrical levels? Music Perception, 24,
155–166. http://dx.doi.org/10.1525/mp.2006.24.2.155

Mullahy, J. (1986). Specification and testing of some modified count data
models. Journal of Econometrics, 33, 341–365. http://dx.doi.org/10
.1016/0304-4076(86)90002-3

Müllensiefen, D. (2009). FANTASTIC: Feature ANalysis Technology Ac-
cessing STatistics (In a Corpus; Technical report). Retrieved from http://
www.doc.gold.ac.uk/isms/m4s/FANTASTIC_docs.pdf

Müllensiefen, D., & Halpern, A. R. (2014). The role of features and context
in recognition of novel melodies. Music Perception, 31, 418–435.
http://dx.doi.org/10.1525/mp.2014.31.5.418

Müllensiefen, D., Jones, R., Jilka, S., Stewart, L., & Williamson, V. J.
(2014). Individual differences predict patterns in spontaneous involun-
tary musical imagery. Music Perception, 31, 323–338. http://dx.doi.org/
10.1525/mp.2014.31.4.323

Müllensiefen, D., Wiggins, G., & Lewis, D. (2008). High-level feature
descriptors and corpus-based musicology: Techniques for modelling
music cognition. In A. Schneider (Ed.), Systematic and comparative
musicology: Concepts, methods, findings (pp. 133–155). Frankfurt, Ger-
many: Peter Lang.

Ni, Y., Santos-Rodríguez, R., Mcvicar, M., & De Bie, T. (2011). Hit song
science once again a science? 4th International Workshop on Machine
Learning and Music: Learning from Musical Structure. Held in Con-
junction with the 25th Annual Conference on Neural Information Pro-
cessing Systems (NIPS 2011). Sierra Nevada, Spain. Retrieved from
https://sites.google.com/site/musicmachinelearning11/

Pachet, F., & Roy, P. (2008). Hit song science is not yet a science.
Proceedings of the International Symposium on Music Information
Retrieval (ISMIR), Philadelphia, USA, pp. 355–360.

Pawley, A., & Müllensiefen, D. (2012). The science of singing along: A
quantitative field study on sing-along behavior in the north of England.
Music Perception, 30, 129–146. http://dx.doi.org/10.1525/mp.2012.30
.2.129

Perricone, J. (2000). Melody in songwriting. Boston, MA: Berklee Press.
Raftery, A. E. (1995). Bayesian model selection in social research. Soci-

ological Methodology, 25, 111–163. http://dx.doi.org/10.2307/271063
Rubin, D. C., Wetzler, S. E., & Nebes, R. D. (1986). Autobiographical

memory across the adult lifespan. In D. C. Rubin (Ed.), Autobiograph-
ical memory (pp. 202–221). New York, NY: Cambridge University
Press. http://dx.doi.org/10.1017/CBO9780511558313.018

Schulkind, M. D., Posner, R. J., & Rubin, D. C. (2003). Musical features
that facilitate melody identification: How do you know it’s “your” song

134 JAKUBOWSKI, FINKEL, STEWART, AND MÜLLENSIEFEN
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Appendix

Descriptions of Each of the 12 FANTASTIC Features Selected in the Initial Random Forest Model
(See Figure 2)

FANTASTIC feature Description

dens.d.range Second-order measure of the range of note durationsa

dens.i.entropy Second-order measure of entropy within the set of pitch intervalsa

dens.int.cont.grad.mean Second-order measure of the mean of the absolute gradient of the melodic contour arising from interpolation lines between
contour turning pointsa

dens.int.contour.class Second-order measure of the overall direction of the interpolation contour; can assume five values (strong down, down,
flat, up, strong up)a

dens.p.range Second-order measure of pitch rangea

dens.step.cont.glob.dir Second-order measure of the overall direction of the step contoura

dens.tonal.clarity Second-order measure of tonal clarity; correlations are computed between the melody and every possible major/minor key;
this feature then computes the ratio of the highest key correlation to the second highest key correlationa

dens.tonal.spike Second-order measure of tonal clarity, similar to dens.tonal.clarity; computes the ratio of the highest key correlation to the
sum of all other key correlationsa

int.cont.grad.mean Mean of the absolute gradient of the interpolation contour; informs about the degree of inclination at which the
interpolation contour is rising or falling on average

mode Major or minor tonality
mtcf.mean.productivity Second-order measure of repetitiveness of m-types (segments of music two to six notes in length)a

tempo Tempo in beats per minute

Note. FANTASTIC � Feature Analysis Technology Accessing Statistics [in a Corpus]. For formal definitions and more detailed explanations of all
features, see Müllensiefen (2009).
a All second-order features compare the values of the feature computed for a single melody to the values of that same feature computed across the reference
corpus (14,063 pop songs).
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