Optical Imaging for Neuroscience and Developmental Biology

Chao Zhou, PhD Electrical and Computer Engineering Bioengineering Lehigh University

Outline

Introduction

- Biomedical Imaging Modalities
- Why Optical Imaging?
- Optical Biopsy with Optical Coherence Tomography (OCT) and Microscopy (OCM)
- •Applications in Neuroscience and Developmental Biology
 - > 3D imaging of brain slices
 - Evaluate heart function in fruit flies

Summary

Outline

Introduction

- Biomedical Imaging Modalities
- Why Optical Imaging?
- Optical Biopsy with Optical Coherence Tomography (OCT) and Microscopy (OCM)
- Applications in Neuroscience and Developmental Biology
 - > 3D imaging of brain slices
 - Evaluate heart function in fruit flies
- Summary

BIOMEDICAL IMAGING MODALITIES

- ✓X-Ray
- Computed Tomography (CT)
- Positron Emission Tomography (PET)
- Magnetic Resonance Imaging (MRI)
- Ultrasonography (US)
- Optical Imaging

X-RAY

 Discovered in 1895 by Wilhelm Conrad Röntgen, who received the first Nobel Prize in Physics in 1901.

X-RAY

X-RAY

COMPUTED TOMOGRAPHY (CT)

 Invented in 1971 by Allan Cormack and Godfrey Hounsfield, who shared the 1979 Nobel Prize for Physiology or Medicine

COMPUTED TOMOGRAPHY (CT)

POSITRON EMISSION TOMOGRAPHY (PET)

 Concept was introduced by David E. Kuhl, Luke Chapman and Roy Edwards in the late 1950s.

 Was further developed by Michel Ter-Pogossian, Michael E. Phelps and others.

POSITRON EMISSION TOMOGRAPHY (PET)

- Inject radioactive tracer, Fluorodeoxy-D-glucose (FDG), an analogue of glucose.
- Pairs of gamma rays emitted by the tracer were detected.
- The concentrations of tracer give tissue metabolic activity proportional to tissue glucose uptake.

POSITRON EMISSION TOMOGRAPHY (PET)

MAGNETIC RESONANCE IMAGING (MRI)

 Paul Lauterbur (University of Illinois) demonstrated first MRI image in living mouse in 1974.

 Peter Mansfield (University of Nottingham) demonstrated first MRI image in human in 1977.

 They won the Nobel Prize for Physiology or Medicine in 2003.

MAGNETIC RESONANCE IMAGING (MRI)

ULTRASONOGRAPHY (US)

- First applied to the human body by Dr. George Ludwig at the Naval Medical Research Institute in 1940s.
- Typically, 2 to 18 megahertz, though frequencies up to 50–100 megahertz have been used experimentally.

ULTRASONOGRAPHY (US)

Outline

Introduction

- > Biomedical Imaging Modalities
- Why Optical Imaging?
- Optical Biopsy with Optical Coherence Tomography (OCT) and Microscopy (OCM)
- Applications in Neuroscience and Developmental Biology
 - > 3D imaging of brain slices
 - Evaluate heart function in fruit flies
- Summary

WHY OPTICAL IMAGING?

Characteristics	X-Ray	СТ	PET	MRI	US	Optical Imaging	
Ionizing Radiation	Yes	Yes	Yes	No	No	No	
Spatial Resolution	mm-cm	mm-cm	cm	mm	100um - mm	Um to sub-um	
Temporal Resolution	second	min	Tens of min	min	Sub- second	Sub-second	
Contrast	Tissue density	Tissue density	Contrast agents	Tissue parametric al property	Tissue mechanical properties	Intrinsic contrast / contrast agents	
Imaging Depth	Deep	Deep	Deep	Deep	Deep	Shallow	
3D capability	No	Yes	Yes	Yes	Yes	Yes	
Cost	\$	\$\$\$	\$\$\$	\$\$\$	\$\$	\$	

Outline

Introduction

- > Biomedical Imaging Modalities
- Why Optical Imaging?
- Optical Biopsy with Optical Coherence Tomography (OCT) and Microscopy (OCM)
- Applications in Neuroscience and Developmental Biology
 - > 3D imaging of brain slices
 - Evaluate heart function in fruit flies
- Summary

BIOPSY

Several days to weeks!!!

Tumor

OBJECTIVE: OPTICAL BIOPSY

 In situ, real-time imaging of tissue microstructure with a resolution approaching that of histology, without the need for tissue excision and processing.

 Especially important in situations where excisional biopsy is either hazardous or impossible, *e.g.*, in ophthalmic or cardiovascular applications, neuroscience and developmental biology.

HIGH RESOLUTION SUBSURFACE IMAGING

IMAGE PENETRATION (log)

OPTICAL COHERENCE TOMOGRAPHY (OCT)

Huang, et al, Science, 254, 1178-1181,1991

OCT IN OPHTHALMOLOGY

Fovea to optic disc

Huang, et al, Science, 254, 1178-1181,1991

HIGH SPEED, ULTRAHIGH RESOLUTION OCT (250,000 – 400,000 A-lines/s)

High Speed, Ultrahigh Resolution OCT of Human Retina

High Speed OCT of Human Anterior Segment

Potsaid, et al, Opt. Express, 18(19), 20029-20048, 2010

Outline

Introduction

- > Biomedical Imaging Modalities
- Why Optical Imaging?
- Optical Biopsy with Optical Coherence Tomography (OCT) and Microscopy (OCM)

•Applications in Neuroscience and Developmental Biology

- > 3D imaging of brain slices
- Evaluate heart function in fruit flies
- Summary

Organotypic Hippocampal Slice Cultures

Cheung and Cardinal BMC Neuroscience 2005

Characteristics:

a. Hippocampus of 7-day old Sprague-Dawley rats

b. ~300µm thick

Collaboration with Dr. Yevgeny Berdichevsky at Lehigh

Comparison of OCM and Confocal Images

Nuclei: anti-NeuN

F. Li, et al, Neurophotonics, 2014

Quantify Neurons in 3D

CA3: Cornuammonis III CA1: Cornuammonis I DG: Dentate gyrus

Chu et al, Journal of Molecular Histology, 2007

Evaluation of seizures-induced neuronal injury as days *in vitro* increased using OCM

Slice thickness measurement as days *in vitro* increased using OCM

Neuroprotective Effects of KYNA

Slice thickness in control and KYNA group

Outline

Introduction

- > Biomedical Imaging Modalities
- Why Optical Imaging?
- Optical Biopsy with Optical Coherence Tomography (OCT) and Microscopy (OCM)
- Applications in Neuroscience and Developmental Biology
 - > 3D imaging of brain slices
 - Evaluate heart function in fruit flies
- Summary

OCT IMAGING OF THE DROSOPHILA HEART

Collaboration with Drs. Rudolph Tanzi and Airong Li at MGH

OCT IMAGING OF THE DROSOPHILA HEART

Longitudinal View

Cross-sectional View - Diastolic Phase

Cross-sectional View

- Systolic Phase

OCT Imaging of the Drosophila Heart

GROUP RESULTS

	7 Day old				30 Day old			
Parameters	24B-GAL4/+ (Control) N=31	UAS-dPsn; 24B-GAL4 N=31	UAS-dPsn ^{RNAi} ; 24B-GAL4 N=24	Total N=86	24B-GAL4/+ (Control) N=30	UAS-dPsn; 24B-GAL4 N=28	UAS-dPsn ^{RNAi} ; 24B-GAL4 N=28	Total N=86
HR (BPM)	262 ± 10	307 ± 11 *** ↑	231 ± 11 *↓	269 ± 7	254 ± 10	284 ± 11 * ↑	190 ± 8 ****## ↓	243 ± 7 ##↓
ESD (µm)	20 ± 2	14 ± 2	17 ± 2	17 ± 1	31 ± 4 ##↑	20 ± 4 *↓	14 ± 3 ****↓	22 ± 2 #↑
EDD (µm)	67 ± 2	56 ± 3 *↓	52 ± 4 **↓	59 ± 2	78 ± 4 #↑	66 ± 4 *↓ #↑	73 ± 4 #### ↑	73 ± 2 ####↑
FS (%)	69 ± 4	76 ± 3	67 ± 4	71 ± 2	62 ± 4	69 ± 5	83 ± 4 *** ↑##↑	71 ± 2

HR: Heart rate; EDD: End-diastolic dimension; ESD: End-systolic dimension; FS: Fractional shortening

*p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001: vs. Age-matched controls; #p<0.05, ## p<0.01, ### p<0.001, #### p<0.0001: vs. 7-day old age group ↑ shows significant increase; ↓ shows significant decrease

Li, Zhou, et al., Curr. Alzheimer Res., 8(3):313-322, 2011

Heart metamorphosis

2nd instar larva – L2

3rd instar larva – L3

Pupa day 1, 8hr – PD1

Pupa day 2, 32hr – PD2

Pupa day 3, 72hr – PD3

Pupa day 4, 88hr – PD4

Adult day 1

DROSOPHILA HEART RATE

A. Alex, et al, under review

Outline

Introduction

- > Biomedical Imaging Modalities
- Why Optical Imaging?
- Optical Biopsy with Optical Coherence Tomography (OCT) and Microscopy (OCM)
- Applications in Neuroscience and Developmental Biology
 - > 3D imaging of brain slices
 - Evaluate heart function in fruit flies

Summary

Summary

- Various imaging modalities can be used for clinical and research applications
- Optical imaging provides unique advantages (resolution, contrast, etc.)
- Optical biopsy can be achieved by OCT and OCM
- None-invasive evaluation of epilepsy models in rat brain slices
- None-invasive characterization of heart function in fruit flies

ECE 368/468, BioE 368/468 Introduction to Biophotonics / Optical Biomedical Imaging

Spring, 2015

Thank you!