

Emerging Diseases

Biosciences in the 21st Century

Dr. Amber Rice

November 23, 2015

Outline

- Disease emergence: a case study
- How do pathogens shift hosts?
- Evolution within hosts: The evolution of virulence
- Treatments: the evolution of drug resistance

Disease emergence: a case study

Ebola Virus

- First identified in Zaire, 1976
- Outbreaks in mid-90s, early 2000s, mid 2000s, 2014
- Average 50% fatality rate

Outline

- Disease emergence: a case study
- How do pathogens shift hosts?
- Evolution within hosts: The evolution of virulence
- Treatments: the evolution of drug resistance

Reading a phylogenetic tree

No currently existing species is ancestral to any other

There is no linear ancestor-descendent relationship! Humans did not evolve from cats or fish!

Phylogeny of HIV

Three separate introductions from chimpanzees

Back to our case study: Ebola's natural reservoir

Shifting to another host species

- phi 6: virus that infects bacteria (bacteriophage)
- phi 6 only infects Pseudomonas syringae

Shifting to another host species

- Could phi 6 switch hosts?
- Plated on 14 different Pseudomonas species
- A few viruses infected and survived
- All had mutation in protein for attaching to

host

Shifting to another host species

- Once in a new host, must adapt quickly
- Slow growth can lead to extinction

Outline

- Disease emergence: a case study
- How do pathogens shift hosts?
- Evolution within hosts: The evolution of virulence
- Treatments: the evolution of drug resistance

What is evolution?

Evolution is a change in a population's allele frequencies over time.

Mechanisms of evolution: sources of variation

Mutation: a change in DNA sequence, gene order, or chromosome number

- Random
- Increases genetic variation within populations
- Types of mutations:
 - Point mutations
 - Insertions
 - Deletions
 - Gene duplications
 - Chromosomal inversions
 - Polyploidy

Mechanisms of evolution: sources of variation

Gene flow (or migration): movement of genes between populations

- Increases genetic variation within populations
- Makes populations more similar to each other

Mechanisms of evolution

Natural selection: differential reproductive success

- Non-random
- Not forward-looking, can only work with existing variation
- Only adaptive mechanism of evolution

Evolution by natural selection

Ingredients needed for evolution by natural selection

- Variation in traits
- Inheritance
- Differential reproduction (natural selection)

End result: Traits that increase reproductive success increase in frequency in a population.

Evolution within the host species

- Once in a new host, must adapt quickly
- Slow growth can lead to extinction
- Host switching leads to strong selection:
 - Infection
 - Evade immune system and replicate
- What factors allow pathogens to evolve quickly?

Back to our case study: the transmission of Ebola, 2014-15

Evolution of virulence: a trade-off

Selection **within host** favors rapid replication (increased virulence).

Selection **across hosts** favors reduced virulence.

Mode of transmission affects virulence

Direct transmission, vectorborne, waterborne

Mode of transmission affects virulence

Evolution of virulence: implications for public health

Select for <u>lower</u> virulence by interfering with transmission

Selection within host favors

- Improve hygiene
- Wear masks
- Provide clean water
- Widespread vaccination

Competition Transmission to new hosts

rapid replication (increased virulence).

Selection across hosts favors reduced virulence.

Outline

- Disease emergence: a case study
- How do pathogens shift hosts?
- Evolution within hosts: The evolution of virulence
- Treatments: the evolution of drug resistance

Evolution within the host species

- Once in a new host, must adapt quickly
- Slow growth can lead to extinction
- Host switching leads to strong selection:
 - Infection
 - Evade immune system and replicate
- What's another source of strong selection?

The evolution of drug resistance by natural selection

Estimates of Burden of Antibacterial Resistance

Global information is insufficient to show complete disease burden impact and costs

Resistance to "last resort" antibiotics

THE LANCET Infectious Diseases

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Yi-Yun Liu, BS[†], Yang Wang, PhD[†], Prof Timothy R Walsh, DSc, Ling-Xian Yi, BS, Rong Zhang, PhD, James Spencer, PhD, Yohei Doi, MD, Guobao Tian, PhD, Baolei Dong, BS, Xianhui Huang, PhD, Lin-Feng Yu, BS, Danxia Gu, PhD, Hongwei Ren, BS, Xiaojie Chen, MS, Luchao Lv, MS, Dandan He, MS, Hongwei Zhou, PhD, Prof Zisen Liang, MS, Prof Jian-Hua Liu, PhD

† Contributed equally

Published Online: 18 November 2015

E. Coli Bacteria Can Transfer Antibiotic Resistance To Other Bacteria

Updated November 20, 2015 - 1:07 PM ET @

Avoiding more widespread resistance

- 1. Avoid contracting infections
- 2. Minimize transmission of resistant microbes
- 3. Improve use of antimicrobial drugs
 - Take only when appropriate (i.e., don't take an antibiotic for the flu!)
 - Use antibacterial soaps/cleaners ONLY around people with weakened immune systems
 - Avoid broad-spectrum antibiotics if possible.
 - Take ALL of the medication
 - Reduce agricultural use of antibiotics

Why can reducing inappropriate use of antimicrobial drugs combat resistance?

Resistant bacteria escape livestock, spread to humans

Current research aims

- Can we predict which pathogens are more likely to shift to humans?
- What makes some strains so much more deadly than others?
- How can we develop effective new vaccines and drugs?
- What is the mechanism of resistance?
- How can we develop better and faster diagnostic tools?