The Probability of a Run-Off Election when Three Equally-Favored Candidates Vie for Two Slots

Dennis P. Walsh *Department of Mathematical Sciences Middle Tennessee State University*

Suppose n voters each cast two votes for two candidates when three candidates are vying for two slots on a county commission. If the candidates are equally-favored, we may assume the two votes per voter are random. Hence there are $\binom{3}{2}^n$ possible ballot \overline{n} results. After presenting an example below, we will provide the number of ballot results that end in a tie for the second slot, necessitating a run-off election.

Example. For $n = 6$ voters, a ballot result that ends in a tie for the second slot can come in two types:

Type 1: {6,3,3}

We have $\binom{3}{1}$ ways to choose the candidate that gets the 6 votes. We have $\binom{6}{3}$ ways to choose the voters who vote for the remaining two candidates. Hence there are 3(2)=60 ballot results of type 1.

Type 2: {4,4,4}

		Candidate A Candidate B Candidate C		Totals
Voter 1	X	X		
Voter 2	X	X		◠
Voter 3	X		X	
Voter 4	X		X	
Voter 5		X	X	ി
Voter 6		X	X	ി
Totals				

We have $\binom{6}{4}$ ways to choose the voters who vote for candidate A. The voters who did not vote for candidate A must vote for candidates B and C. Then we have $\binom{4}{2}$ ways to choose the remaining voters that vote for candidates B and C. Hence there are $6(15)=90$ ballot results of type 2.

Therefore, for $n = 6$ voters, there are 60+90=150 ballot results that necessitate a run-off election, and the probability $p(n)$ of a run-off in this case is given by

$$
p(6) = \frac{150}{3^6} \approx .20576
$$

Theorem. The number of ballot results, say $r(n)$, that necessitate a run-off election is given by

$$
r(n) = 3\sum_{k=0}^{u(n)} \binom{n}{2\lceil\frac{n-1}{2}\rceil - 2k} \binom{2\lceil\frac{n-1}{2}\rceil - 2k}{\lceil\frac{n-1}{2}\rceil - k} - 2\binom{n}{2n/3} \binom{2n/3}{n/3} I[3|n]
$$

where $u(n) = \lfloor \frac{n+2}{2} \rfloor - \lfloor \frac{n+2}{3} \rfloor - 1$ and indicator function $I[statement]$ takes on value 1 if the statement is true and 0 otherwise.

Proof. A type 1 tie occurs when the last two candidates tie (as seen in the example above) and is of the form (x, y, y) . There $\binom{n}{x}$ ways to choose the voters who vote for the top winner, and then $\begin{pmatrix} x \\ x/2 \end{pmatrix}$ to choose the voters who vote for the remaining tied candidates. Since there are 3 choices for the candidate who gets the x votes, we have $3\binom{n}{x}\binom{x}{x/2}$ number of ballots of the form (x, y, y) .

When a type 2 tie occurs, we have vote totals $\{2n/3, 2n/3, 2n/3\}$ which happens only when n is a multiple of 3. In this case, there are not 3 choices for the most votes, hence we must subtract $2\binom{n}{x}\binom{x}{x/2}$ from our total.

Since, in general, $n \ge x \ge y > 1$ and $x + 2y = 2n$, x can run from n (when n is even) or $n-1$ (when n is odd) down to $2(n-\lfloor \frac{2n}{3} \rfloor)$ in increments of 2. Note that

$$
2\lceil \frac{n-1}{2} \rceil = \begin{cases} n & \text{for even } n \\ n-1 & \text{for odd } n \end{cases}
$$
 (1)

and

$$
2\lceil \frac{n-1}{2} \rceil - 2u(n) = 2\lceil \frac{n-1}{2} \rceil - 2\left(\lfloor \frac{n+2}{2} \rfloor - \lfloor \frac{n+2}{3} \rfloor - 1\right)
$$

$$
= 2(n - \lfloor \frac{2n}{3} \rfloor). \tag{2}
$$

Therefore, we have

$$
r(n) = \sum_{x} 3 {n \choose x} {x \choose x/2} - 2 {n \choose 2n/3} {2n/3 \choose n/3} I[3|n]
$$

where x runs from $2(n - \lfloor \frac{2n}{3} \rfloor)$ up to n or $n - 1$ in increments of 2.

However, reversing the order of summation, and using the identities in (1) and (2) , we obtain

$$
r(n) = 3 \sum_{k=0}^{u(n)} {n \choose 2\lceil \frac{n-1}{2} \rceil - 2k} {2\lceil \frac{n-1}{2} \rceil - 2k \choose \lceil \frac{n-1}{2} \rceil - k} - 2 {n \choose 2n/3} {2n/3 \choose n/3} I[3|n]. \square
$$

Let $r(0) = 1$ because if no voters show up on election day all three candidates are tied with 0 votes each and a run-off is needed. Also, $r(1) = 0$, since two of the three candidates will clearly win with one vote each. Thus we have the following sequence of values for $r(n)$, $n = 0, \dots, 40$:

1, 0, 6, 6, 18, 90, 150, 420, 1890, 3570, 10206, 42966, 87318, 252252, 1019304, 2172456, 6319170, 24810786, 54712086, 159906318, 614406078, 1390381278, 4077926034, 15403838346, 35579546262, 104633453340, 389788932240, 915500037120, 2698033909680, 9934966920960, 23662402088400, 69853956443460, 254691586091970, 613858758011010, 1814737822473510, 6560221819413870, 15974712728822070, 47281700283443910, 169643060817818490, 416825614497182130, 1234958443451187390.

Corollary. When there are *n* voters, the probability $p(n)$ of a run-off election is given by

$$
p(n) = \frac{r(n)}{3^n}
$$

Appendix

Generation of sequence values for $r(n)$ using Maple

>ind:=n->piecewise(n mod 3=0,1,0); ind := $n \rightarrow piecewise(n \mod 3 = 0, 1, 0)$ >u:=n->floor(n/2+1)-floor(n/3+2/3)-1; $u := n \rightarrow$ floor(1/2 $n + 1$) - floor(1/3 $n + 2/3$) - 1 > r:=n->3*sum(binomial(n,2*ceil((n-1)/2)-2*k)*binomial(2*ceil((n-1)/2)-2*k,ceil((n- $1)/2$)-k), $k=0..u(n)$)-ind(n)*2*binomial(n,2*n/3)*binomial(2*n/3,n/3); $/u(n)$ |----- $\| \cdot \|$ $r := n \rightarrow 3$) binomial(n, 2 ceil(1/2 n - 1/2) - 2 k) | / |----- $\kappa = 0$ \mathcal{L} and \mathcal{L} and | | binomial(2 ceil(1/2 n - 1/2) - 2 k, ceil(1/2 n - 1/2) - k) | | / $- 2$ ind(n) binomial(n, 2/3 n) binomial(2/3 n, 1/3 n) $>$ seq($r(n)$, $n=2...40$); 6, 6, 18, 90, 150, 420, 1890, 3570, 10206, 42966, 87318, 252252,

__

```
 1019304, 2172456, 6319170, 24810786, 54712086, 159906318,
614406078, 1390381278, 4077926034, 15403838346, 35579546262,
104633453340, 389788932240, 915500037120, 2698033909680,
9934966920960, 23662402088400, 69853956443460,
254691586091970, 613858758011010, 1814737822473510,
6560221819413870, 15974712728822070, 47281700283443910,
169643060817818490, 416825614497182130, 1234958443451187390
```
__