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Abstract—Using the 1998 DARPA BSM data set collected at not always easy to obtain. The training examples may be
MIT’s Lincoln Labs to study intrusion detection systems, the mislabelled when there is no clear distinction between normal
performance of robust support vector machines (RVSMSs) was anq anomalous behavior. More importantly, there is usually
compared with that of conventional support vector machines — L .
and nearest neighbor classifiers in separating normal usage an |n|t|a! training period for an anomaly detector to Iearn_
profiles from intrusive profiles of computer programs. The results the monitored system’s behavior and data collected from this
indicate the superiority of RSVMs not only in terms of high training phase is assumed normal. As hormal behavior changes
intrusion detection accuracy and low false positives but also in gyer time, new examples are periodically incorporated into
terms of their generalization ability in the presence of noise and ;o training data and the anomaly detector undergoes frequent
running fime. . _ _ retraining. If an attack occurred during the training process, the

Keywords_lmnfs'on de,teCt'on’ computer security, robust sup- undesired, intrusive behavior could get established as a part of
port vector machines, noisy data. the anomaly detector's model of normal behavior and thus un-
dermine its ability to detect subsequent occurrences [1] [7] [8].
Machine learning techniques used for anomaly detection, such

The rapid increase in connectivity and accessibility afs neural networks and support vector machines, are sensitive
computer systems has resulted in frequent opportunities fornoise in the training samples. The presence of mislabelled
intrusions and attacks. Anomaly detection and misuse dgata can result in highly nonlinear decision surface and over-
tection are two general approaches to computer intrusifining of the training set. This leads to poor generalization
detection. Unlike misuse detection, which generates an alaaility and classification accuracy.
when a known attack signature is matched, anomaly detectionn this paper, we present a new approach, based on Robust
identifies activities that deviate from the normal behavior @upport Vector Machines (RSVMSs) [9], to anomaly detection
the monitored system (or users) and thus has the potentiabt@r noisy data. RSVMs effectively address the over-fitting
detect novel attacks [1]. problem introduced by the noise in the training data set. With

Over the past decade many anomaly detection techniquRSVMs, the incorporation of an averaging technique in the
including neural networks [2][3], support vector machinestandard support vector machines makes the decision surface
(SVMs) [4], data mining [5] and so on, have been proposed $moother and controls the amount of regularization automat-
capture the system or user’'s normal usage pattern and clasiifilly (see Appendix for details.). Moreover, the number of
new behavior as either normal or abnormal. These techniqwepport vectors of RSVMs is significantly less compared to
can be further categorized agenerativeor discriminative those of standard SVMs. Therefore, RSVMs have a faster
approaches. A generative approach (e.g., [6]) builds a modesting time.
solely based on normal training examples and evaluates eackiVe evaluate this method with the 1998 DARPA BSM data.
testing case to see how well it fits the model. A discriminativd/e compare RSVMs with the standard SVMs and fhe
approach (e.g., [4]), on the other hand, attempts to learn thearest Neighbor classifiekKIN). Our experiments show the
distinction between the normal and abnormal classes. Baihperiority of RSVMs not only in terms of high intrusion
normal and attack examples (attack examples are usually vegtection accuracy and low false positives but also in terms of
rare) are used in training for discriminative approaches. their their generalization ability in the presence of noise and

Regardless of the approach used, most methods curremtigining time.
in use are based on the assumption that the training sample$he rest of this paper is organized as follows. In Section
used by the intrusion detector are untainted and trustable, ile.we review some related work. Section Ill describes the
the labels of training examples are 100% correct. Howevenethod of RSVMs for anomaly detection over DAPAR data
in practice, the data set obtained from real-world audit triatet from MIT Lincoln laboratory. Finally, we will summarize
of systems is hardly the case. First of all, clean data &d discuss our work in Section IV. In appendix section, A

I. INTRODUCTION



brief mathematical description of SVMs and how they diffefeature vectors that lie on the boundary defining this separating

from RSVMs is presented. margin, in the jargon of linear algebra, are called "support

vectors”. Classifiers that exploit this property are therefore
Il. RELATED WORK called support vector machines.

The idea of anomaly detection in computer security could Since the introduction of the original idea, several modifi-
date back to Anderson’s paper [10]. Since then, varioggtions and improvements are made: hard-margin SVMs for
anomaly detection approaches have been implemented separable cases, soft-margin SVMs for non-separable cases
establishing statistical models for user [11]-[14], program [155nd robust SVMs that exhibit good generalization properties
[18] or network behavior [4] [5]. The goal of using machingvhile handling noisy, that is, mis-labelled data. The mathe-
learning techniques for anomaly detection is to develop matical differences in these three formulations are pointed out
generalization capability from limited training data and to bg the appendix.
able to correctly classify future data as normal or abnormal.|n order to test the properties of the RSVMs, it is necessary
Clean training data is usually assumed. that training data sets are carefully prepared with "noise”

More recently Eskin and others [8] [19] proposed unsiexplicitly incorporated into them. Using DARPA data as a

pervised anomaly detection algorithms with unlabelled dat&arting point such noisy data sets are prepared as described
based on the assumption that number of normal instanggst.

is significantly larger than the number of anomalies and
anomalies appear as outliers in the data. B. Pre-processing DARPA Data
Forrest et al. introduced the idea of building program The 1998 DARPA Intrusion Detection System Evaluation
profiles with short sequences of system calls issued by runnig@gram provides a large corpus of computer attacks embed-
programs for intrusion detection [15]. The underlying premisged in normal background traffic [23]. The TCPDUMP and
is that the sequences of system calls during an intrusion @8M (Basic Security Module) audit data were collected on a
noticeably different from normal sequences of system callsimulation network that simulated the traffic of an Air Force
Lee et al. [16] extended the work of Forrest's group andocal Area Network. It consisted of 7 weeks of training data
applied RIPPER, a rule learning program, to the prograghd 2 weeks of testing data. We used the BSM audit data
execution audit data. Warrender et al. [6] introduced a nellected from a victim Solaris machine. The BSM audit logs
data modelling method, based on Hidden Markov Modebntain information on system calls produced by programs
(HMM), and compared it with RIPPER and simple enumeraunning on the Solaris machine. The data were labelled
tion method. Ghosh and others [17] employed artificial neurgith session numbers. Each session corresponds to a TCP/IP
network techniques to learn normal sequences of system cgl#inection between two computers. On each simulation day
for specific UNIX system programs using the 1998 DARPAbout 500 sessions were recorded by the BSM tool of the
BSM data. Liao et al. [18] drew an interesting analogy betwe&plaris machine.
a text document and the sequence of all system calls issued byhe pre-processing of the BSM audit data was described in
a program. System call frequencies, instead of short sequenua@g. For the sake of completeness, we outline the procedure
of system calls, were used to represent program behavior. Thgfte. The names of system calls were extracted for every
the k-nearest neighbor classifier was employed to classify ngy#ssion from the BSM audit logs. Each session usually consists
program behavior as normal or intrusive. of one or more processes. A complete ordered list of system
This paper extends the work of Liao et al. and compareslis was generated for each process. A buffer overflow attack
the intrusion detection performance of RSVMs, the standagdssion, nameéject [24], and the list of system calls of
SVMs and thekNN classifier over the clean training data obne of its processes are shown in Table I.
program behavior profiles. More importantly, we deliberately The numbers of occurrences of individual system calls
form noisy training data and show the robustness of RSVMguring the execution of a process were counted. Liao et al. [18]
1. RSVMS WITH DARPA DATA SET gsed two 'Fext ngghting techniques, namely freql_Jency weight-
. ing andtf -idf weighting, to transform the process into a vector.
A. An Introduction to RSVMs and SVMs The dimension of a process vector was equal to the number
A brief mathematical description of SVMs and how thewf unique system calls. We adopted the frequency weighting
differ from RSVMs is presented in the appendix. More elalmethod, which simply assigns the number of occurrences of
orate tutorial papers can be found in the literature [20] [2H system call during the process execution to a vector entry.
[22] . :
In simple terms a SVM is a perceptron-like neural network- €léan and Noisy Data
and is ideally suitable for binary pattern classification of A careful study of the 1998 DARPA BSM data revealed
patterns that are linearly separable. A perceptron-solutidhat there are 5 simulation days that are free of attacks during
however, is not unique because one can draw a numbertlod seven-week training period. We picked 4 days of data out
possible hyperplanes between the two classes. The main idéthose 5 days as normal samples for training. There are 606
of the SVM is to derive a unique separating hyperplane thdistinct processes drawn from over 2000 sessions during these
maximizes the separating margin between the two classes. Bhdays. Our training normal data set contains 300 out of the



(A)AN INTRUSIVE SESSION(EJECT) SAMPLE AND THE CORRESPONDING PROCESSEB) THE LIST OF SYSTEM CALLS ASSOCIATED WITH THE PROCESS

TABLE |

PWD

[ SessionEject | [ Process namewd |
telnetd close close close close
login open close close execve
tcsh open mmap open mmap
quota mmap  munmap mmap close
cat open mmap mmap  munmap
mail mmap mmap close open
cat mmap mmap  munmap mmap
gce close open mmap close
cpp open mmap mmap  munmap
ccl mmap close close  munmap
as pathdonf stat stat open
Id close open open ioct
ejectexploit Istat Istat close close
pwd close close close exi

@

(b)

606 processesThe other simulation day, the third day of thean intrusion detection method. The ROC curve is a plot of
seventh training week, was chosen for normal testing exampiesusion detection accuracy against the false positive proba-
as no attack was launched on this day. It contains 412 sessibiligy. In our experiments, individual processes are classified as
and 5285 normal processes (We did not require the testingrmal or intrusive. When a process is categorized as intrusive,
processes to be distinct in order to count false alarms for ottee session that the process is associated with is classified
day). as an attack session. The intrusion detection accuracy is then

We carefully selected 28 distinct intrusive processes foalculated as the rate of detected attacks. The false positive
training (12 of them are the same as the ones used probability, on the other hand, is defined as the rate of mis-
[18]) from 55 intrusion sessions in the seven-week trainingassified normal processes [18].

data. These 28 processes cover most attack types of theigure 1 (a) shows the performance of the RSVMs, SVMs
DARPA training data, including the most clearly maliciougndkNN expressed in ROC curves with the clean training data
processes, such agiectexploit ~ , formatexploit ., set. RSVMs and SVMs were implemented with the RBF kernel

ffoexploit and so on. In an intrusive session, only §unction. The curves were obtained by varying the regulation
small part of activities are intrusive. For example, the sessigarameters.

Eject in Table | cosists of 14 processes. We only selected g .\ algorithm was described in [18]. The cosine sim-
t2h2e _procgszejectexplon ‘ as an mtruswke sample.dWe usec*Iarity is used to measure the distance between two processes
Intrusive sessions from the two-week testing data as t1J’ﬁethe form of vectors. Each testing process is compared to the

intrusive samples for testing purpose. intrusive training processes first. Whenever there is a perfect
To Qemonstrqtta_ the robust p“’pefty of RSVM' We prepar atch, i.e., the cosine similarity is equal to 1.0, the new
two different training data sets, as illustrated in Table Il. Foﬁrocess is labelled as intrusive behavior. Otherwise, the testing

the noisy data set_, 16_OUt of the original 2_8 intrusive tra_lininlg ocess is compared with each normal training process. If the
processes were disguised as normal and incorporated mtoéﬁﬁilarity score of one normal training process is equal to

300 truely normal examples, while the testing subset remalj_w:sthe new process would be classified as a normal process

the same. immediately. Otherwise, We calculate the average similarity
TABLE Il value of itsk nearest neighbors (with highest similarity scores)
CLEAN AND NOISY DATA SETS and set a threshold. Only when the average similarity value
S S is above the threshold, is the new process considered normal.
l [ clean data ] noisy data__| Here we sek’s value to 5 and varied the threshold to get the
300 normal processes 316 normal processe$ ROC
training (16 mislabelled) curve.
28 intrusive processe$ 12 intrusive processes As depicted in Figure 1 (a), the attack detection rate of
testing 5285 normal processes, 22 intrusion sessions

RSVMs was 74.7% with zero false positive rate. The detection
rate reached 100% rapidly and the false positive rate remained
as low as 3%. SVMs could detect nearly 50.0% attack sessions

D. RSVMs with Clean Data : o i
. . . . . . with 0% false positive rate and the detection rate reached 100%
In intrusion detection, the Receiver Operating Characterls%

ROC ) I d h ; fh a false positive rate of 14.2%. ThHeNN method gave
( ) curve is usually used to measure the performance 8 atively poor performance. It obtained a low attack detection

IThe reason that we chose 300 processes is to mitigate the unbaldhie (13.6%) at Zero false pOSit.i\{eS. The attack detection rate
between normal and intrusive examples. reached 100% with a false positive rate of 8.6%.
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Fig. 1. Performance of RSVMs, SVMs aidNN expressed in ROC curves over (a) clean training data; (b) noisy training data.

TABLE Il
ATTACK DETECTION RATE OFRSVMSs, SVMs AND kNN METHODS OVER
THE CLEAN TRAINING DATA SET WHEN FALSE POSITIVE RATE IS LESS

as normal immediately without finding itsnearest neighbors.
This testing process was the only process of the testing attack
session. Therefore, this attack session could not be detected

THAN 1%. . ipr .
with our kNN classifier, and the attack detection rate never
[ [ Attack detection Ratd False Positive Ratd reached 100%.
RSVMs 81.8% < 1%
SVMs 81.8% <1% TABLE IV
kNN 63.6% < 1% COMPARISON OF THE NUMBER OF SUPPORT VECTORS AND THE

EXPERIMENTAL RATIO OF RUNNING TIME OFRSVMSs AND SVMS FOR
CLEAN AND NOISY TRAINING DATA SETS.

An intrusion detection system is typically aimed at a false T RSVMs | SVNs | RSVMs TSVs |
positive rate of 1%, as too many false alarms would make ST SRR T =T
the system useless. Table Il shows the attack detection rates Noisy Data 2| 15 40 429%
of RSVMs, SVMs andiNN methods over the clean training
data set with the sfipulation that the false positive rate (.j(.)eSBesides the classification accuracy, another problem that
not exceed 19%. BOth.RSVMS and SVMs showed competitiy.eys to be addressed is the running time of the intrusion
results (attack detection rate 80%). detector. The computational complexity of RSVMs/SVMs is
E. RSVMs with Noisy Data of Iingqr proportion to the number of ;upport vectors. when

_ classifying new examples. As shown in the Appendix, the

Figure 1 (b) presents the ROC curves of RSVMs, SVMgymper of support vectors of RSVMs can be much less
and kNN methods over the noisy training data. RSVMS onlyhan those of the standard SVMs. Therefore, RSVMs require
showed slight decline of performance in the presence of noiggss running time. Table IV shows the number of support
The attack detection rate of RSVMs wa®.0% at zero yectors of RSVMs/SVM with clean/noisy data and the ratio
false positives. It reached 100% with a false positive rajg experimental testing time for the 5285 normal testing
of 8%. Meanwhile, SVMs experienced severe performanggocesses. The number of support vectors of the RSVMs was
deterioration due to the noisy training data. Although theygnificantly less compared to that of the standard SVMs.
could detect54% attacks with zero false positive rate, they the clean training data case, RSVMs’ number of support
attack detection rate could not reach 100% until the fal$gctors was one-third less (30 vs 45) and its testing time was
positive rate approached 100%. These results indicate thay; of that of SVM. In the noisy data case, the testing time
RSVMs effectively suppressed the effect introduced by the 3¢ RsvMs was only 42% of that of SVM due to the greater
mislabelled training examples, while the conventional SVMsifference of their decision surfaces. For theiN classifier,
gave poor generalization ability because of the noise.  the cost of classifying new examples can be much higher than

The kNN method did not manifest any decline in the falsghat of RSVMs and SVMs. This is due to the fact that nearly
positive rate. This is not surprising considering the fact thaf| computation takes place at classification time.
by taking the average of thie neighbors nearest to the testing
process, it can smooth out the impact of isolated noisy training IV. CONCLUSION
examples. However, one testing process happened to matchn this paper, we have proposed a new approach, based
one of the 16 mislabelled intrusive processes. It was classified Robust Support Vector Machines, to anomaly detection in




computer security. Experiments with the 1998 DARPA BSMon-separablecase. Cortes and Vapnik [21] extended this
data set show that RSVMs can provide good generalizatimtea to thenon-separablecase (soft margin SVM or the so
ability and effectively detect intrusions in the presence a@flled standard SVM) by introducing positive slack variables
noise. The running time of RSVMs can also be significantfg;} ¢ = 1,...,¢. “One must admit some training errogs
reduced as they generate fewer support vectors than tbefind the best tradeoff between training error and margin
conventional SVMs. by choosing the appropriate const@ntassociated with slack
Future work involves quantitatively measuring the robustalue” [21] . This error-tolerant property of soft margin SVM
ness of RSVMs over the noisy training data and addressing thakes it very useful in many applications due to its good
fundamental issue of the unbalanced nature between normeaheralization ability. However, when trained with noisy data,
and intrusive training examples for discriminative anomalthe decision hyperplane might deviate from optimal position
detection approaches. (without maximized separating margin) because of the slack
term (sum of misclassification errofs’ ;) in the objective
function of soft margin SVM. This leads to a complicated
Work reported here is supported in part by the Center fgecision surface. which is known as the over-fitting problem.
Digital Security of the University of California at Davis underSong et al [9] proposed the Robust SVM which is aimed
the AFOSR grant F49620-01-1-0327, and by the Institutg address this over-fitting problem by only minimizing the
of Scientific Computing Research of Lawrence Livermorgargin of the weightw instead of minimizing the margin
National Laboratory. and the sum of misclassification errors. A new slack term
) AD?(x;,x* ) is introduced in place of&;} i =1, ..., ¢ in the
APPENDIX SVM vs RSVM soft (margiyﬁ)SVM. HereA > 0 is a prg—{seiected regularization
The main idea of Support Vector Machines (SVMs) is tgarameter measuring the influence of averaged information
derive a hyperplane that maximizes the separating margistance to the class center), abd (x;,x;, ) represents the
between two classes — the positive and the negative [28brmalized distance between data paiptand the center of

A tutorial introduction to SVM can be found in [20]. Thethe respective classesx)(, y; € {+1,—1}), in the feature
promising property of SVM is that it is an approximatepace That is,
implementation of the Structure Risk Minimization principle

V. ACKNOWLEDGEMENTS

based on statistical learning theory rather than the Empirical D2(Xi’xzi) - |¢(Xi) — ¢(X2i)|2 /D2,

Risk Minimization method, in which the classification function

is derived by minimizing the Mean Square Error over the = [(o(xi) - d(xi) — 20(xi) - D(x,)
training data set. +¢(X;) . ¢(X;)]/D3wz (2)

One of the main assumptions of SVM is that all samples in

the training set are independently and identically distributed = [kl xi) = 2k(xi, x3,)

(i.i.d.). However, in practice, the training data are often con- +k(x;;i,x;ji)]/D3nM
taminated with noise. The noisy data makes the validity of o
this i.i.d. assumption questionable. The standard SVM trainimghere {¢(x;)}, ¢ = 1,---,¢ denotes a set of nonlinear

algorithm will make the decision surface deviate from thtransformations from the input space to the feature space
optimal position in thefeature space When mapped back k(x;,x;) = ¢(x;) - #(x;) represents the inner-product kernel
to the input space it results in a highly nonlinear decisionfunction; D, .. = max(D(x;,x;,)) is the maximum distance

i

boundary. Therefore the standard SVM is sensitive to noidestween the center and training data of the respective classes

leading to poor generalization ability. in the feature space;(x;,x*) = ¢(x;) - ¢p(x*) is the kernel
Consider the training samples function in the feature space. Figure 2 illustrates the meanings
) of these terms for the case of a linear separating hyperplane
(x1,91), -y (Reye)s yi€d-1 +1} =10 (1) jq the non-separable case. In this figure, the situationg; of

where {(x;,y:)} i = 1,...,¢ are feature vectors ang; € ¢ =1,...{, the distancg®(x) — ®(x")| of (2) from a point
{=1, +1}, i =1,...,¢ are the corresponding labels. posln solid dot class to its class center and threshold valoé
itive class represents normal behavior and negative clgggeision function (3) are summarized schematically.
represents anomalous behavior. Now the classification problent he formulas discussed above are in gignal space The
can be posed as a constrained optimization problem. T$Rlution can be obtained by solving this optimization problem
primal problems of SVM and Robust SVM are shown in Tablé the dual space— the space of Lagrange multipliers;,
V, wherew is the weight vector of the decision hyperplang., = 1,---,£. Table VI shows the dual problems of SVM
The other terms in the table are explained below. and Robust SVM, which are Quadratic Programming (QP)
Vapnik [22] proposed the initial idea of SVM for theoptimization problems. The decision function now can be
separablecase (hard margin SVM) in which the positive
and negative samples can be definitely separated by a unigieé class +1,6(x;,) = ¢(x7;) = - Zyj:+1¢(xj) , nt s
optimal hyperplane with the largest margin. However, thise number of data in class +1, in class #(x;.) = ¢(x*;) =
algorithm will find no feasible solution when applied to the;= Zyj:_l ¢(x;) , n~ is the number of data in class -1.



TABLE V
PRIMAL PROBLEMS OF STANDARD SVM AND ROBUSTSVM

[ [ Objective Function [ Constrains
Hard margin SVM o(w) = twlw yif(xs) >1
14
Soft margin (standard) SVM ®(w) = swTw +C Y & vif(xi) >1—¢
i=1
Robust SVM d(w) = %WTW yif(x;) >1—AD? (%4, %3,)
° the number of support vectors in the RSVM algorithm will be

reduced and the decision boundary will be smoother.
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