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1. Introduction

For s1, . . . , sk in Z with s1 ≥ 2,

ζ(s1, . . . , sk) =
∑

n1>···>nk≥1

n−s11 · · ·n−skk .

k = 1 integer values of Riemann zeta function ζ(s).

Euler: ζ(s)π−s ∈ Q for s even ≥ 2.

Fact: No known other algebraic relations between
values of Riemann zeta function at positive integers.

Expected: there is no further relation :

Are the numbers

π, ζ(3), ζ(5), . . . , ζ(2n+ 1), . . .

algebraically independent?

Means:
For n ≥ 0 and P ∈ Q[X0, X1, . . . , Xn] \ {0},

P
(
π, ζ(3), ζ(5), . . . , ζ(2n+ 1)

)
6= 0 ?
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F. Lindemann (1882): π is transcendental.

R. Apéry (1978): ζ(3) is irrational.

T. Rivoal (2000): infinitely many irrational numbers
among ζ(3), ζ(5), . . . , ζ(2n+ 1), . . .

Theorem (T. Rivoal). Let ε > 0. For any suffi-
ciently large n, the Q-vector space spanned by the n
numbers

ζ(3), ζ(5), . . . , ζ(2n+ 1)

has dimension

≥ 1− ε
1 + log 2

· log n.

The proof also yields:

There exists on odd integer j with 5 ≤ j ≤ 169 such
that the three numbers

1, ζ(3), ζ(j)

are linearly independent over Q.
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2. Sketch of Proof of Rivoal’s Theorem

Goal: Given a sufficiently large odd integer a, con-
struct a sequence of linear forms in (a + 1)/2 vari-
ables, with integer coefficients, such that the numbers

`n = p0n +

(a−1)/2∑

i=1

pinζ(2i+ 1)

satisfy, for n→∞,

|`n| = α−n+o(n)

and
|pin| ≤ βn+o(n)

with
α ' a2a and β ' (2e)2a.

It will follow that the (a+ 1)/2 numbers

1, ζ(3), ζ(5), . . . , ζ(a)

span a Q-vector space of dimension at least

1 +
logα

log β
' log a

1 + log 2

(Nesterenko’s Criterion).
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Explicit construction of the linear forms

Previous works of R. Apéry, F. Beukers,
E. Nikishin, K. Ball, D. Vasilyev, . . .

Pochammer symbol: (m)0 = 1 and, for k ≥ 1,

(m)k = m(m+ 1) . . . (m+ k − 1).

Set r =
[
a(log a)−2

]
. Define

dm = l.c.m. of {1, 2, . . . ,m},

Rn(t) = n!a−2r (t− rn+ 1)rn(t+ n+ 2)rn
(t+ 1)an+1

,

Sn =

∞∑

k=0

Rn(k), `n = da2nS2n.

Write the partial fraction expansion

Rn(t) =

a∑

i=1

n∑

j=0

cijn
(t+ j + 1)i

with

cijn =
1

(a− i)!

(
d

dt

)a−i (
Rn(t)(t+ j + 1)a

)
|t=−j−1

.
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Set pin = d2nqi,2n where

q0,n = −
a∑

i=1

n∑

j=1

cijn

j−1∑

k=0

1

(k + 1)i

and

qin =
n∑

j=0

cijn (1 ≤ i ≤ a).

Estimate for |pin|:

cijn =
1

2πi

∫

|t+j+1|=1/2

Rn(t)(t+ j + 1)i−1dt.

Estimate for |`n|:

Sn =

(
(2r + 1)n+ 1

)
!

n!2r+1
· In,

In =

∫

[0,1]a+1

F (x) · dx1dx2 . . . dxa+1

(1− x1x2 · · ·xa+1)2
,

F (x1, x2, . . . , xa+1) =

( ∏a+1
i=1 x

r
i (1− xi)

(1− x1x2 · · ·xa+1)2r+1

)n
.
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3. Shuffle Product for Series

Reflexion Formula:

ζ(s)ζ(s′) =
∑

n≥1

n−s ·
∑

n′≥1

(n′)−s
′

=
∑

n>n′≥1

n−s(n′)−s
′
+

∑

n′>n≥1

n−s (n′)−s
′

+
∑

n≥1

n−s−s
′

= ζ(s, s′) + ζ(s′, s) + ζ(s+ s′).

Example:

ζ(s)2 = 2ζ(s, s) + ζ(2s).

For s = 2: ζ(2) = π2/6, ζ(4) = π4/90,

ζ(2, 2) =
∑

m>n≥1

(mn)−2 =
π4

120
·

Other example:

ζ(2)ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5).
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Shuffle relations arising from the
series representation.

ζ(s)ζ(s′) =
∑

σ

ζ(σ),

where σ = (σ1, . . . , σh) ranges over the tuples ob-
tained as follows:

s→ ( s1 0 s2 · · · sk )
s′ → ( 0 s′1 s′2 · · · 0 )

σ = ( s1 s′1 s2 + s′2 · · · sk )

Hence max{k, k′} ≤ h ≤ k + k′.

Example: k = k′ = 1, s = s, s′ = s′, then

s→ (s 0) (0 s) s
s′ → (0 s) (s′ 0) s′

σ = (s s′) (s′ s) s+ s′

so that

{σ1, σ2, σ3} = {(s, s′), (s′, s), s+ s′}.
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Other Description:

Alphabet with two letters X = {x0, x1}.

Words: X∗ = {xa1
0 xb11 · · ·xah0 xbh1 }.

Non-commutative polynomials: Q〈X〉.
For s ≥ 1 set ys = xs−1

0 x1.

For s = (s1, . . . , sk) with si ≥ 1, set

xs = ys1 · · · ysk
= xs1−1

0 x1x
s2−1
0 x1 · · ·xsk−1

0 x1.

The number k of factors x1 is the depth of the word
xs and of the tuple s.
The number p = s1 + · · ·+sk of letters is the weight .

The set of such xs’s is X∗x1 togeether with the null
word e (corresponds to ∅ with k = 0).

Convergent words: x0X
∗x1

⋃{e}.
Set ζ(w) = ζ(s) for w = xs with ζ(∅) = ζ(e) = 1.

Convergent polynomials: Q〈X〉conv ⊂ Q〈X〉.
Extend ζ by linearity to Q〈X〉conv.
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Law ∗ on Q〈X〉conv:

e ∗ w = w for w ∈ X∗x1

and, for s ≥ 1 and t ≥ 1, w and w′ in X∗x1,

(ysw) ∗ (ytw
′) =

ys(w ∗ ytw′) + yt(ysw ∗ w′) + ys+t(w ∗ w′).
Then

xs ∗ xs′ =
∑

σ

xσ.

Proposition. For w and w′ in x0X
∗x1,

ζ(w)ζ(w′) = ζ(w ∗ w′).

Connection with quasi-symmetric functions

Commutative infinite alphabet: t = {t1, t2, . . .}
Formal power series: Q[[t]].

To w = xs ∈ X∗x1 associate

Fw(t) =
∑

n1>···>nk≥1

ts1n1
· · · tsknk .

Then for w and w′ in X∗x1 we have

Fw(t)Fw′(t) = Fw∗w′(t).

For w ∈ x0X
∗x1, ζ(w) is the value of Fw(t) with

tn = 1/n, (n ≥ 1).
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4. Shuffle Product for Integrals

Let s = (s1, . . . , sk) with si ≥ 1; set p = s1 + · · ·+sk.
Define εi ∈ {0, 1} for 1 ≤ i ≤ p by

xs = xε1 · · ·xεp .
For instance for s = (2, 3) with p = 5:

x(2,3) = x0x1x
2
0x1, (ε1, . . . , ε5) = (0, 1, 0, 0, 1).

Define differential forms:

ω0(t) =
dt

t
et ω1(t) =

dt

1− t ·

Let ∆p be the simplex in Rp:

∆p = {t ∈ Rp ; 1 > t1 > · · · > tp > 0}.
Proposition. For s1 ≥ 2,

ζ(s) =

∫

∆p

ωε1(t1) · · ·ωεp(tp).

Example:

ζ(2, 3) =

∫

∆5

dt1
t1
· dt2

1− t2
· dt3
t3
· dt4
t4
· dt5

1− t5
·

Proof. Expand 1/(1− t) =
∑
s≥0 t

s.
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Shuffle on X∗:

ettw = wtte = w,

and, for i and j in {0, 1}, u and v in X∗,

(xiu)tt(xjv) = xi(uttxjv) + xj(xiuttv)

Example. Computation of y2tty3 = x0x1ttx2
0x1:

get x0x1x
2
0x1 once, x2

0x1x0x1 three times and x3
0x

2
1

six times. Hence

y2tty3 = y2y3 + 3y3y2 + 6y4y1.

Corollary.

ζ(w)ζ(w′) = ζ(wttw′)

for w and w′ in x0X
∗x1.

Proof. The Cartesian product ∆p×∆p′ is the union
of (p+ p′)!/p!p′! simplices.
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Example. From

y2tty3 = y2y3 + 3y3y2 + 6y4y1

we deduce

ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1).

On the other hand the shuffle relation for series gives

ζ(2)ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5),

hence
ζ(5) = 2ζ(3, 2) + 6ζ(4, 1).

There are further relations.

Example:

x1ttx0x1 = x1x0x1 + 2x0x
2
1

and
x1 ∗ x0x1 = x1x0x1 + x0x

2
1 + x2

0x1,

hence

x1ttx0x1 − x1 ∗ x0x1 = x0x
2
1 − x2

0x1.

Fact: ζ(x0x
2
1) = ζ(x2

0x1).

Euler : ζ(2, 1) = ζ(3).
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Proposition. For w and w′ in x0X
∗x1,

ζ(w)ζ(w′) = ζ(w ∗ w′),

ζ(w)ζ(w′) = ζ(wttw′)

and
ζ(x1ttw − x1 ∗ w) = 0.

5. Symbolic Multizeta

Define Ze(s) for each s = (s1, . . . , sk), with k ≥ 0
and si ≥ 1. Next define Ze(w) for w in X∗x1 by
Ze(xs) = Ze(s). Convergent symbols: Ze(s) with
s1 ≥ 2 or k = 0; these are the Ze(w) with w in
x0X

∗x1 together with Ze(e) = Ze(∅).

Algebra of Convergent MZV:
MZVconv is the commutative algebra over Q gener-
ated by the convergent symbols Ze(s) with the rela-
tions

Ze(w)Ze(w′) = Ze(w ∗ w′),
Ze(w)Ze(w′) = Ze(wttw′)

and
Ze(x1ttw − x1 ∗ w) = 0

for w and w′ in x0X
∗x1.
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Main Diophantine Conjecture. The specializa-
tion morphism from MZVconv into C which maps
Ze(s) onto ζ(s) is injective.

Algebras MZV∗ and MZVtt: generators Ze(s) with
s = (s1, . . . , sk), k ≥ 0, sj ≥ 1, and ∗ (resp. tt)
defined by

Ze(w) ∗ Ze(w′) = Ze(w ∗ w′)

resp.
Ze(w)ttZe(w′) = Ze(wttw′)

for w ∈ X∗x1.

Remark.

x1 ∗ x1 = 2x2
1 + x0x1 and x1ttx1 = 2x2

1,

hence

Ze(x1) ∗ Ze(x1) = 2Ze(x2
1) + Ze(x0x1)

while
Ze(x1)ttZe(x1) = 2Ze(x2

1)

and ζ(x0x1) = ζ(2) 6= 0.
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Conjecture of

Zagier, Drinfeld, Kontsevich and Goncharov.

For p ≥ 2 let dp denote the dimension of the Z-
module in MZVconv spanned by the 2p−2 elements
Ze(s) for s = (s1, . . . , sk) of length p and s1 ≥ 2.

Conjecture. We have

d1 = 0, d2 = d3 = d4 = 1

and
dp = dp−2 + dp−3 for p ≥ 4.

For each p ≥ 1, define Zp as the Q-vector space
spanned by the Ze(s) with s convergent of weight p;
set Z0 = Q. Then the sum of Zp (p ≥ 0) is direct,
and the conjecture means

∑

p≥0

qp dimQZp =
1

1− q2 − q3
·

Remark: dp →∞ by Rivoal’s result.
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6. Further Results

Écalle: for weight ≤ 10, independent generators are

Ze(2), Ze(3), Ze(5), Ze(7), Ze(9),

Ze(6, 2), Ze(8, 2).

Polylogarithms
Classical: for s ≥ 1 and |z| < 1,

Lis(z) =
∑

n≥1

zn

ns
.

Higher dimension: for s = (s1, . . . , sk) with si ≥ 1,

Lis(z) =
∑

n1>···>nk≥1

zn1

ns11 · · ·nskk

Then
Liuttv(z) = Liu(z)Liv(z)

If s1 ≥ 2, then Lis(1) = ζ(s).

Work of Petitot (Lille): the functions Liw, with w
in X∗, are linearly independent over C.
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7. Related Topics

Further connections with:

Combinatoric (theory of quasisymmetric functions,
Radford’s Theorem and Lyndon words)

Lie and Hopf algebras

Resurgent series (Écalle’s theory)

Mixed Tate motives on SpecZ (Goncharov’s work)

Monodromy of differential equations

Fundamental group of the projective line minus three
points and Belyi’s Theorem

Absolute Galois group of Q

Group of Grothendieck-Teichmüller

Knots theory and Vassiliev invariants

K-theory

Feynman diagrams and quantum field theory

Quasi-triangular quasi-Hopf algebras

Drinfeld’s associator ΦKZ (connexion of Knizhnik-
Zamolodchikov).


