Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Arthrospira
A single Arthrospira platensis colony
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Cyanobacteria
Class: Cyanophyceae
Order: Oscillatoriales
Family: Microcoleaceae
Genus: Arthrospira
Sitzenberger ex Gomont, 1892
Species

About 35.

Spirulina powder, from the genus Arthrospira, on unstained wet mount under 400x magnification

Arthrospira is a genus of free-floating filamentous cyanobacteria characterized by cylindrical, multicellular trichomes in an open left-hand helix. A dietary supplement is made from A. platensis and A. maxima, known as spirulina.[1] The A. maxima and A. platensis species were once classified in the genus Spirulina. Although the introduction of the two separate genera Arthrospira and Spirulina is now generally accepted, there has been much dispute in the past and the resulting taxonomical confusion is tremendous.[2]

YouTube Encyclopedic

  • 1/5
    Views:
    887 678
    305 745
    20 458
    12 705
    84 253
  • Health Benefits of Spirulina
  • Spirulina VS Chlorella, Which One Should You Take?
  • Spirulina Growing - Make Money Fast With Low Investment
  • Spirulina for Weight Loss | Are Spirulina Benefits Worth it?
  • See What Happens to Your KIDNEYS if You Eat Spirulina Before Bed

Transcription

Hey, guys. Dr. Axe here, doctor of natural medicine and founder of DrAxe.com. In this training video, I'm going to be talking about the health benefits of spirulina, a super blue-green algae with just tremendous, tremendous benefits. Spirulina is something that I use every single day for my health. I'll talk about not only the benefits, but how to use it here, at the end of the video. So spirulina is typically grown in Africa and Mexico, also in Hawaii. In fact, the purest spirulina typically comes out Hawaii today. Actually, in fact, it's not really just an algae. It's also known as a cyanobacteria. So, in a way, it's a probiotic. A lot of people don't realize that about it, but it's a probiotic that is great for your digestive system, and it can actually increase the growth of other probiotics and good microbes in your gut. It's one of the unique properties about it. But spirulina is known as being one of the top super foods in the world today, and one of the reasons is it has a really unique nutrition profile. It is loaded with chlorophyll, which helps alkalize your body. It's also loaded with B vitamins, vitamin K, and also minerals like zinc and magnesium. So again, it's really incredible if you look at that nutritional profile. Also it's one of your highest plant-based sources of protein. So if you're vegan or a vegetarian, it's a great way to get more quality protein in your diet because it has a great amino acid profile. Now, let's talk about the benefits. Number one, spirulina has been shown to help detoxify your body of heavy metals. In fact, a recent study found that it detoxifies your body of the heavy metal arsenic. By the way, of all the heavy metals, we probably get more arsenic in our diet than any other heavy metal. The reason being is pesticides today, especially foods that are sprayed with pesticides in China, have loads and loads of arsenic in them. Spirulina helps detoxify your body of that. Now, if you have too much arsenic in your system, it causes liver failure. It's been linked to kidney degeneration. Also it's been linked to neurological issues like dementia and a number of other brain and neurological health issues. So again, detoxifying your body is critical. Spirulina medically proven to detoxify your body of arsenic. Another medical study out of the journal Chemosphere actually found that spirulina protects your body against radiation poisoning. We've all heard of Fukushima and some of the others. We're exposed to radiation from microwaves to cell phones to things in our food supply on a regular basis. Spirulina has been shown to protect your body against radiation poisoning and help detoxify your body there. So obviously, a lot of benefits and that's one of the reasons why I take it every single day. I didn't mention this earlier with the heavy metals, but I had somebody ask me recently, "Dr. Axe, can I eat fish? Because some fish have many heavy metals." I said, "Well, one of the ways you can get around that, or even if you do eat a healthier or wild-caught fish like salmon, if you are worried about the metals, hey," I said, "have either of scoop of Green Superfood Powder with spirulina in it or a few spirulina tablets, and that will actually help protect your body against the heavy metals or if you're worried about radiation in the fish from the Pacific Ocean." So great benefits there. Also, spirulina has been shown to help fight cancer, big reason because of its detoxification benefits. Also it can help increase the antioxidant in your body called glutathione, which is critical for your health. And last, but not least, it's a nutritional powerhouse. It's been shown to help lower cholesterol, balance blood pressure levels, fight diabetes. There's hardly anything out there, a health condition, that spirulina doesn't help with. It's also something I recommend to patients for boosting their energy levels. If you're a person that sort of gets tired during the day, waking up first thing in the morning, do a green drink with spirulina, and then around the time in the afternoon, a lot of people hit that 2:00 or 3:00 coma, start getting tired, spirulina is great for that. I use spirulina. The number one way and the way to use it is to add a simple scoop of that. Whether that's a combination formula, like a Green Superfood, or spirulina by itself, add it to a superfood smoothie for breakfast. Also sometimes I'll make green pancakes with it. So I'll add it to that and some other things. If you don't love the taste, it actually has a very refreshing taste, but if you don't like it, then you can actually just get it in capsule form and take it that way. But again, if you want to detoxify your body of heavy metals, if you want to detox some radiation, if you want to boost your energy levels, fight cancer, and get one of the most complete superfoods that has protein, vitamins and minerals, and loaded with antioxidants and chlorophyll, then the health benefits of spirulina are absolutely for you. If you want to learn more about the benefits of not just spirulina, but of its cousin, chlorella, then you can actually go to my website, DrAxe.com. That's DrAxe.com. Check out that video. If you want to get more of these videos on the world's greatest superfoods, hey, make sure you subscribe here to this YouTube channel. This has been Dr. Axe talking about the health benefits of spirulina. Thanks for watching.

Taxonomy

The common name, spirulina, refers to the dried biomass of Arthrospira platensis,[3] which belongs to the oxygenic photosynthetic bacteria that cover the groups Cyanobacteria and Prochlorales. These photosynthetic organisms were first considered to be algae, a very large and diverse group of eukaryotic organisms, until 1962 when they were reclassified as prokaryotes and named Cyanobacteria.[4] This designation was accepted and published in 1974 by Bergey's Manual of Determinative Bacteriology.[5] Scientifically, quite a distinction exists between the Spirulina and Arthrospira genera. Stizenberger, in 1852, gave the name Arthrospira based on the presence of septa, its helical form, and its multicellular structure, and Gomont, in 1892, confirmed the aseptate form of the genus Spirulina. Geitler in 1932 reunified both members designating them as Spirulina without considering the septum.[6] Research on microalgae was carried out in the name of Spirulina, but the original species used to produce the dietary supplement spirulina belongs to the genus Arthrospira. This misnomer has been difficult to correct.[5] At present, taxonomy states that the name spirulina for strains which are used as food supplements is inappropriate, and agreement exists that Arthrospira is a distinct genus, consisting of over 30 different species, including A. platensis and A. maxima.[7]

Morphology

The genus Arthrospira comprises helical trichomes of varying size and with various degrees of coiling, including tightly-coiled morphology to a straight form.[1]

The helical parameters of the shape of Arthrospira is used to differentiate between and even within the same species.[8][9] These differences may be induced by changing environmental conditions, such as temperature.[10] The helical shape of the trichomes is only maintained in a liquid environment.[11] The filaments are solitary and reproduce by binary fission, and the cells of the trichomes vary in length from 2 to 12 μm and can sometimes reach 16 μm.

Biochemical composition

Arthrospira is very rich in proteins,[1][11] and constitute 53 to 68 percent by dry weight of the contents of the cell.[12] Its protein harbours all essential amino acids.[11] Arthrospira also contain high amounts of polyunsaturated fatty acids (PUFAs), about 1.5–2 percent, and a total lipid content of 5–6 percent.[11] These PUFAs contain the γ-linolenic acid (GLA), an omega-6 fatty acid.[13] Further contents of Arthrospira include vitamins, minerals and photosynthetic pigments.[11]

Occurrence

Species of the genus Arthrospira have been isolated from alkaline brackish and saline waters in tropical and subtropical regions. Among the various species included in the genus, A. platensis is the most widely distributed and is mainly found in Africa, but also in Asia. A. maxima is believed to be found in California and Mexico.[6] A. platensis and A. maxima occur naturally in tropical and subtropical lakes with alkaline pH and high concentrations of carbonate and bicarbonate.[11] A. platensis occurs in Africa, Asia and South America, whereas A. maxima is confined to Central America. A. pacifica is endemic to the Hawaiian islands.[14] Most cultivated spirulina is produced in open-channel raceway ponds, with paddle-wheels used to agitate the water.[11] The largest commercial producers of spirulina are located in the United States, Thailand, India, Taiwan, China, Pakistan, Myanmar, Greece and Chile.[14]

Present and future uses

Spirulina is widely known as a food supplement, but there are other possible uses for this cyanobacterium. As an example, it is suggested to be used medically for patients for whom it is difficult to chew or swallow food, or as a natural and cheap drug delivery system.[15] Further, promising results in the treatment of certain cancers, allergies and anemia, as well as hepatotoxicity and vascular diseases were found.[16] Spirulina may also be used as a healthy addition to animal feed[17] if the price of its production can be further reduced. Spirulina can be used in technical applications, such as the biosynthesis of silver nanoparticles, which allows the formation of metallic silver in an environmentally friendly way.[18] In the creation of textiles it harbors some advantages, since it can be used for the production of antimicrobial textiles[19] and paper or polymer materials.[19] They also may have an antioxidant effect[20] and may maintain the ecological balance in aquatic bodies and reduces various stresses in the aquatic environment.[21]

Cropping systems

Growth of A. platensis depends on several factors. To achieve maximum output, factors such as the temperature, light and photoinhibition, nutrients and carbon dioxide level, need to be adjusted. In summer the main limiting factor of spirulina growth is light. When growing in water depths of 12–15 cm, self-shading governs the growth of the individual cell. However, research has shown, that growth is also photoinhibited, and can be increased through shading.[22] The level of photoinhibition versus the lack of light is always a question of cell concentration in the medium. The optimal growth temperature for A. platensis is 35–38 °C. This poses a major limiting factor outside the tropics, confining growth to the summer months.[23] A. platensis has been grown in fresh water, as well as in brackish water and sea water.[24] Apart from mineral fertilizer, various sources such as waste effluents, and effluents from fertilizer, starch and noodle factories have been used as a nutrient source.[14] Waste effluents are more readily available in rural locations, allowing small scale production.[25] One of the major hurdles for large scale production is the complicated harvesting process which accounts for 20–30% of the total production costs. Due to their small cell size, and diluted cultures (mass concentration less than 1 g/L) with densities close to that of water microalgae, they are difficult to separate from their growing medium.[26]

Cultivation systems

Open pond

Open pond systems are the most common way to grow A. platensis due to their comparatively low cost. Typically, channels are built in form of a raceway from concrete or PVC coated earth walls, and water is moved by paddle wheels. The open design, however allows contamination by foreign algae and/or microorganisms.[14] Another problem includes water loss due to evaporation. Both of these problems can be addressed by covering the channels with transparent polyethylene film.[5]

Closed system

Closed systems have the advantage of being able to control the physical, chemical and biological environment. This allows for increased yield, and more control of the nutrient level. Typical forms such as tubes or polyethylene bags, also offer a larger surface-to-volume ratios than open pond systems,[27] thus increasing the amount of sunlight available for photosynthesis. These closed systems help expanding the growing period into the winter months, but often lead to overheating in summer.[28]

Market potentials and feasibility

Cultivation of Arthrospira has occurred for a long period of time,[vague] especially in Mexico and around Lake Chad on the African continent. During the 21st century however, its beneficial properties were rediscovered and therefore studies about Arthrospira and its production increased.[11] In the past decades, large-scale production of the cyanobacterium developed.[29] Japan started in 1960, and in the following years Mexico and several other countries over all continents, such as China, India, Thailand, Myanmar and the United States started to produce on large-scale.[11] In little time, China has become the largest producer worldwide.[29] A particular advantage of the production and use of spirulina is that its production can be conducted at a number of different scales, from household culture to intensive commercial production over large areas.

Especially as a small-scale crop, Arthrospira still has considerable potential for development, for example for nutritional improvement.[30] New countries where this could happen, should dispose of alkaline-rich ponds on high altitudes or saline-alkaline-rich groundwater or coastal areas with high temperature.[11] Otherwise, technical inputs needed for new spirulina farms are quite basic.[30]

The international market of spirulina is divided into two target groups: the one includes NGO’s and institutions focusing on malnutrition and the other includes health conscious people. There are still some countries, especially in Africa, that produce at a local level. Those could respond to the international demand by increasing production and economies of scale. Growing the product in Africa could offer an advantage in price, due to low costs of labour. On the other hand, African countries would have to surpass quality standards from importing countries, which could again result in higher costs.[30]

References

  1. ^ a b c Ciferri, O. (1983). "Spirulina, the edible microorganism". Microbiological Reviews. 47 (4): 551–578. doi:10.1128/MMBR.47.4.551-578.1983. PMC 283708. PMID 6420655.
  2. ^ Mühling, Martin (March 2000). Characterization of Arthrospira (Spirulina) Strains (Ph.D.). University of Durham. Archived (PDF) from the original on 2016-01-23. Retrieved 2016-01-23.
  3. ^ Gershwin, ME; Belay, A (2007). Spirulina in human nutrition and health. CRC Press, USA.
  4. ^ Stanier, RY; Van Niel, Y (January 1962). "The concept of a bacterium". Archiv für Mikrobiologie. 42: 17–35. doi:10.1007/bf00425185. PMID 13916221. S2CID 29859498.
  5. ^ a b c Sánchez, Bernal-Castillo; Van Niel, J; Rozo, C; Rodríguez, I (2003). "Spirulina (Arthrospira): an edible microorganism: a review". Universitas Scientiarum. 8 (1): 7–24.
  6. ^ a b Siva Kiran, RR; Madhu, GM; Satyanarayana, SV (2016). "Spirulina in combating Protein Energy Malnutrition (PEM) and Protein Energy Wasting (PEW) - A review". Journal of Nutrition Research. 3 (1): 62–79. doi:10.55289/jnutres/v3i1.5.
  7. ^ Takatomo Fujisawa; Rei Narikawa; Shinobu Okamoto; Shigeki Ehira; Hidehisa Yoshimura; Iwane Suzuki; Tatsuru Masuda; Mari Mochimaru; Shinichi Takaichi; Koichiro Awai; Mitsuo Sekine; Hiroshi Horikawa; Isao Yashiro; Seiha Omata; Hiromi Takarada; Yoko Katano; Hiroki Kosugi; Satoshi Tanikawa; Kazuko Ohmori; Naoki Sato; Masahiko Ikeuchi; Nobuyuki Fujita & Masayuki Ohmori (2010-03-04). "Genomic Structure of an Economically Important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39". DNA Research. 17 (2): 85–103. doi:10.1093/dnares/dsq004. PMC 2853384. PMID 20203057. In its turn, it references: Castenholz R.W.; Rippka R.; Herdman M.; Wilmotte A. (2007). Boone D.R.; Castenholz R.W.; Garrity G.M. (eds.). Bergey's Manual of Systematic Bacteriology (2nd ed.). Springer: Berlin. pp. 542–3.
  8. ^ Rich, F (1931). "Notes on Arthrospira platensis". Revue Algologique. 6: 75–79.
  9. ^ Marty, F; Busson, F (1970). "Données cytologiques sur deux Cyanophycées: Spirulina platensis (Gom.) Geitler et Spirulina geitleri J. de Toni". Schweizerische Zeitschritf für Hydrologie. 32 (2): 559–565. doi:10.1007/bf02502570. S2CID 44855904.
  10. ^ Van Eykelenburg, C (1977). "On the morphology and ultrastructure of the cell wall of Spirulina platensis". Antonie van Leeuwenhoek. 43 (2): 89–99. doi:10.1007/bf00395664. PMID 413479. S2CID 22249310.
  11. ^ a b c d e f g h i j Habib, M. Ahsan B.; Parvin, Mashuda; Huntington, Tim C.; Hasan, Mohammad R. (2008). "A Review on Culture, Production and Use of Spirulina as Food dor Humans and Feeds for Domestic Animals and Fish" (PDF). Food and Agriculture Organization of The United Nations. Retrieved November 20, 2011.
  12. ^ Phang, S. M. (2000). "Spirulina cultivation in digested sago starch factory wastewater". Journal of Applied Phycology. 12 (3/5): 395–400. doi:10.1023/A:1008157731731. S2CID 20718419.
  13. ^ Spolaore, Pauline; et al. (2006). "Commercial applications of microalgae". Journal of Bioscience and Bioengineering. 101 (2): 87–96. doi:10.1263/jbb.101.87. PMID 16569602. S2CID 16896655.
  14. ^ a b c d Vonshak, Avigad (2002). Spirulina platensis (Arthrospira): Physiology, Cell-Biology And Biotechnology. CRC Press. ISBN 9780203483961.
  15. ^ Adiba, B. D.; et al. (2008). "Preliminary characterization of food tablets from date (Phoenix dactylifera L.) and spirulina (Spirulina sp.) powders". Powder Technology. 208 (3): 725–730. doi:10.1016/j.powtec.2011.01.016.
  16. ^ Asghari, A.; et al. (2016). "A Review on Antioxidant Properties of Spirulin". Journal of Applied Biotechnology Reports.
  17. ^ Holman, B. W. B.; et al. (2012). "Spirulina as a livestock supplement and animal feed". Journal of Animal Physiology and Animal Nutrition. 97 (4): 615–623. doi:10.1111/j.1439-0396.2012.01328.x. PMID 22860698.
  18. ^ Mahdieh (2012). "Green biosynthesis of silver nanoparticles by Spirulina platensis". Scientia Iranica. 19 (3): 926–929. doi:10.1016/j.scient.2012.01.010.
  19. ^ a b Mahltig, B; et al. (2013). "Modification of algae with zinc, copper and silver ions for usage as natural composite for antibacterial applications". Materials Science and Engineering. 33 (2): 979–983. doi:10.1016/j.msec.2012.11.033. PMID 25427514.
  20. ^ Kumaresan, Venkatesh; Sannasimuthu, Anbazahan; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Arockiaraj, Jesu (2018). "Molecular insight into the metabolic activities of a protein-rich micro alga, Arthrospira platensis by de novo transcriptome analysis". Molecular Biology Reports. 45 (5): 829–838. doi:10.1007/s11033-018-4229-1. PMID 29978380. S2CID 254835532.
  21. ^ Kumaresan, Venkatesh; Nizam, Faizal; Ravichandran, Gayathri; Viswanathan, Kasi; Palanisamy, Rajesh; Bhatt, Prasanth; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Mala, Kanchana; Arockiaraj, Jesu (2017). "Transcriptome changes of blue-green algae, Arthrospira sp. in response to sulfate stress". Algal Research. 23: 96–103. doi:10.1016/j.algal.2017.01.012.
  22. ^ Vonshak, A; Guy, R (1988). Photoinhibition as a limiting factor in outdoor cultivation of Spirulina platensis. In Stadler et al. eds. Algal Biotechnology. London: Elsevier Applied Sci. Publishers.
  23. ^ Vonshak, A (1997). Spirulina platensis (Arthrospira). In Physiology, Cell Biology and Biotechnology. Basingstoke, Hants, London: Taylor and Francis.
  24. ^ Materassi, R; et al. (1984). "Spirulina culture in sea-water". Applied Microbiology and Biotechnology. 19 (6): 384–386. doi:10.1007/bf00454374. S2CID 31267876.
  25. ^ Laliberte, G; et al. (1997). Mass cultivation and wastewater treatment using Spirulina. In A. Vonshak, ed. Spirulina platensis (Arthrospira platensis) Physiology, Cell Biology and Biotechnology. Basingstoke, Hants, London: Taylor and Francis. pp. 159–174.
  26. ^ Barros, Ana I.; et al. (2015). "Harvesting techniques applied to microalgae: A review". Renewable and Sustainable Energy Reviews. 41: 1489–1500. doi:10.1016/j.rser.2014.09.037. hdl:10216/103426.
  27. ^ Tredici, M; Materassi, R (1992). "From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms". Journal of Applied Phycology. 4 (3): 221–231. doi:10.1007/bf02161208. S2CID 20554506.
  28. ^ Tomaselli, L; et al. (1987). "Recent research on Spirulina in Italy". Hydrobiology. 151/152: 79–82. doi:10.1007/bf00046110. S2CID 9903582.
  29. ^ a b Whitton, B. A. (2012). Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer. pp. 701–711.
  30. ^ a b c Smart Fish (2011). "Spirulina – a livelihood and a business venture". Report: SF/2011.

External links

  • Guiry, M.D.; Guiry, G.M. "Arthrospira". AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.
This page was last edited on 6 March 2024, at 10:46
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.