Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Azirine
Names
IUPAC name
2H-Azirine
Identifiers
3D model (JSmol)
1633516
ChEBI
ChemSpider
  • InChI=1S/C2H3N/c1-2-3-1/h1H,2H2
    Key: NTJMGOWFGQXUDY-UHFFFAOYSA-N
  • C1C=N1
Properties
C2H3N
Molar mass 41.053 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Azirines are three-membered heterocyclic unsaturated (i.e. they contain a double bond) compounds containing a nitrogen atom and related to the saturated analogue aziridine.[1] They are highly reactive yet have been reported in a few natural products such as Dysidazirine. There are two isomers of azirine: 1H-Azirines with a carbon-carbon double bond are not stable and rearrange to the tautomeric 2H-azirine, a compound with a carbon-nitrogen double bond. 2H-Azirines can be considered strained imines and are isolable.

YouTube Encyclopedic

  • 1/3
    Views:
    7 985
    1 351
    1 007
  • Mod-01 Lec-21 Carbenes and Nitrenes
  • Mod-27 Lec-31 Pyrrole Synthesis - II
  • Neber Rearrangement

Transcription

Preparation

2H-Azirine is most often obtained by the thermolysis of vinyl azides.[2] During this reaction, a nitrene is formed as an intermediate. Alternatively, they can be obtained by oxidation of the corresponding aziridine. Azirine can be generated during photolysis of isoxazole.[3] Due to the weak N-O bond, the isoxazole ring tends to collapse under UV irradiation, rearranging to azirine. [4]

Azirine synthesis

Substituted azirines can be produced via the Neber rearrangement.

Reactions

Photolysis of azirines (under 300 nm) is a very efficient way to generate nitrile ylides. These nitrile ylides are dipolar compounds and can be trapped by a variety of dipolarophiles to yield heterocyclic compounds, e.g. pyrrolines.

The strained ring system also undergoes reactions that favor ring opening and can act as a nucleophile or an electrophile.

Azirines readily hydrolyse to give aminoketones which are themselves susceptible to self-condensation.

See also

  • Dysidazirine, one of only a few naturally-occurring azirines

References

  1. ^ Teresa M. V. D. Pinho e Melo and Antonio M. d’A. Rocha Gonsalves (2004). "Exploiting 2-Halo-2H-Azirine Chemistry". Current Organic Synthesis. 1 (3): 275–292. doi:10.2174/1570179043366729. Archived from the original on 2006-09-28.
  2. ^ Palacios F, Ochoa de Retana AM, Martinez de Marigorta E, de los Santos JM (2001). "2H-Azirines as synthetic tools in organic chemistry". Eur. J. Org. Chem. 2001 (13): 2401–2414. doi:10.1002/1099-0690(200107)2001:13<2401::AID-EJOC2401>3.0.CO;2-U.
  3. ^ Edwin F. Ullman (1966). "Photochemical Transposition of Ring Atoms in Five-Membered Heterocycles. The Photorearrangement of 3,5-Diphenylisoxazole". J. Am. Chem. Soc. 88 (8): 1844–1845. doi:10.1021/ja00960a066.
  4. ^ Cheng, K.; Qi, J.; Ren, X.; Zhang, J.; Li, H.; Xiao, H.; Wang, R.; Liu, Z.; Meng, L; Ma, N.; Sun, H. (2022). "Developing Isoxazole as a Native Photo-Cross-Linker for Photoaffinity Labeling and Chemoproteomics". Angew. Chem. Int. Ed. 61 (47): e202209947. doi:10.1002/anie.202209947.
This page was last edited on 5 April 2024, at 19:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.