Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Be/X-ray binary

From Wikipedia, the free encyclopedia

Be/X-ray binaries (BeXRBs) are a class of high-mass X-ray binaries that consist of a Be star and a neutron star. The neutron star is usually in a wide highly elliptical orbit around the Be star. The Be stellar wind forms a disk confined to a plane often different from the orbital plane of the neutron star. When the neutron star passes through the Be disk, it accretes a large mass of hot gas in a short time. As the gas falls onto the neutron star, a bright flare in hard X-rays is seen.[1]

X Persei

X Persei is a binary system containing a γ Cassiopeiae variable and a pulsar. It has a relatively long period and low eccentricity for this type of binary, which means the x-ray emission is persistent and not usually strongly variable. Some strong x-ray flares have been observed, presumably related to changes in the accretion disc, but no correlations have been found with the strong optical variations.[2]

LSI+61°303

LSI+61°303 is a possible example of a Be/X-ray binary star. It is a periodic, radio-emitting binary system that is also the gamma-ray source, CG135+01. It is also a variable radio source characterized by periodic, non-thermal radio outbursts with a period of 26.496 d. The 26.5 d period is attributed to the eccentric orbital motion of a compact object, possibly a neutron star, around a rapidly rotating B0 Ve star. Photometric observations at optical and infrared wavelengths also show a 26.5 d modulation.[3] Although the mass of the compact object in the LS I +61 303 system is not known accurately, it is likely that it is too large to be a neutron star and so it is likely to be a black hole.[4]

Of the 20 or so members of the Be/X-ray binary class, as of 1996, only X Persei and LSI+61°303 have X-ray outbursts of much higher luminosity and harder spectrum (kT ≈ 10–20 keV) vs. (kT ≤ 1 keV). LSI+61°303 also shows strong radio outbursts, more similar to those of the "standard" short-period high-mass X-ray binaries such as SS 433, Cyg X-3 and Cir X-1.[3]

RX J0209.6-7427

RX J0209.6-7427 is a Be/X-ray binary star located in the Magellanic Bridge.[5] A couple of rare outbursts have been observed from this source hosting a neutron star. The last outburst was detected in 2019 after about 26 years. The accreting neutron star in this Be/X-ray binary system is an ultraluminous X-ray Pulsar (ULXP) making it the second closest ULXP and the first ULXP in our neighbouring Galaxy in the Magellanic Clouds.[6][7][8]

Swift J010902.6-723710

Swift J010902.6-723710 is a Be/X-ray binary system detected by the Swift Small Magellanic Cloud (SMC) Survey (S-CUBED). An X-ray outburst, detected on October 10, 2023, had characteristics of Type I and II outbursts. Proposed orbital period is 60.623 days. Companion star of the system is "B0-0.5 star of spectral class Ve". The system's neutron star has large accretion disk.[9][10]

References

  1. ^ Reig, Pablo (2011). "Be/X-ray binaries". Astrophysics and Space Science. 332 (1): 1–29. arXiv:1101.5036. Bibcode:2011Ap&SS.332....1R. doi:10.1007/s10509-010-0575-8.
  2. ^ Li, Hui; Yan, Jingzhi; Zhou, Jianeng; Liu, Qingzhong (2014). "Long-term Optical Observations of the Be/X-Ray Binary X Per". The Astronomical Journal. 148 (6): 113. arXiv:1408.3542. Bibcode:2014AJ....148..113L. doi:10.1088/0004-6256/148/6/113.
  3. ^ a b Taylor AR, Young G, Peracaula M, Kenny HT, Gregory PC (1996). "An X-ray outburst from the radio emitting X-ray binary LSI+61°303". Astron. Astrophys. 305: 817–24. Bibcode:1996A&A...305..817T.
  4. ^ Massi, M; Migliari, S; Chernyakova, M (2017). "The black hole candidate LS I +61°0303". Monthly Notices of the Royal Astronomical Society. 468 (3): 3689. arXiv:1704.01335. Bibcode:2017MNRAS.468.3689M. doi:10.1093/mnras/stx778.
  5. ^ Kahabka, P.; Hilker, M. (2005). "Discovery of an X-ray binary in the outer SMC wing". Astronomy and Astrophysics. 435 (1): 9–16. Bibcode:2005A&A...435....9K. doi:10.1051/0004-6361:20042408.
  6. ^ Chandra, A. D.; Roy, J.; Agrawal, P. C.; Choudhury, M. (2020). "Study of recent outburst in the Be/X-ray binary RX J0209.6−7427 with AstroSat: a new ultraluminous X-ray pulsar in the Magellanic Bridge?". Monthly Notices of the Royal Astronomical Society. 495 (3): 2664–2672. arXiv:2004.04930. Bibcode:2020MNRAS.495.2664C. doi:10.1093/mnras/staa1041.
  7. ^ "Ultra-bright X-ray source awakens near a galaxy not so far away". Royal Astronomical Society. June 2020.
  8. ^ "Ultra-Bright Pulsar Awakens Next Door To The Milky Way After 26-Year Slumber". Alfredo Carpineti. June 2020.
  9. ^ Nowakowski, Tomasz. "Astronomers discover a rare eclipsing X-ray binary". phys.org. Retrieved 28 March 2024.
  10. ^ Gaudin, Thomas M.; Kennea, Jamie A.; Coe, Malcolm J.; Monageng, Itumeleng M.; Udalski, Andrzej; Townsend, Lee J.; Buckley, David A. H.; Evans, Phil A. (2024). "Discovery of a Rare Eclipsing Be/X-ray Binary System, Swift J010902.6-723710 = SXP 182". The Astrophysical Journal. 965 (1): L10. arXiv:2403.05648. Bibcode:2024ApJ...965L..10G. doi:10.3847/2041-8213/ad354a.


This page was last edited on 17 July 2024, at 14:39
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.