Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Benaloh cryptosystem

From Wikipedia, the free encyclopedia

The Benaloh Cryptosystem is an extension of the Goldwasser-Micali cryptosystem (GM) created in 1985 by Josh (Cohen) Benaloh. The main improvement of the Benaloh Cryptosystem over GM is that longer blocks of data can be encrypted at once, whereas in GM each bit is encrypted individually.[1][2][3]

Scheme Definition

Like many public key cryptosystems, this scheme works in the group where n is a product of two large primes. This scheme is homomorphic and hence malleable.

Key Generation

Given block size r, a public/private key pair is generated as follows:

  1. Choose large primes p and q such that and
  2. Set
  3. Choose such that .
Note: If r is composite, it was pointed out by Fousse et al. in 2011[4] that the above conditions (i.e., those stated in the original paper) are insufficient to guarantee correct decryption, i.e., to guarantee that in all cases (as should be the case). To address this, the authors propose the following check: let be the prime factorization of r. Choose such that for each factor , it is the case that .
  1. Set

The public key is then , and the private key is .

Message Encryption

To encrypt message :

  1. Choose a random
  2. Set

Message Decryption

To decrypt a ciphertext :

  1. Compute
  2. Output , i.e., find m such that

To understand decryption, first notice that for any and we have:

To recover m from a, we take the discrete log of a base x. If r is small, we can recover m by an exhaustive search, i.e. checking if for all . For larger values of r, the Baby-step giant-step algorithm can be used to recover m in time and space.

Security

The security of this scheme rests on the Higher residuosity problem, specifically, given z,r and n where the factorization of n is unknown, it is computationally infeasible to determine whether z is an rth residue mod n, i.e. if there exists an x such that .

References

  1. ^ Cohen, Josh; Ficsher, Michael (1985). A Robust and Verifiable Cryptographically Secure Election Scheme (PDF). Proceedings of 26th IEEE Symposium on Foundations of Computer Science. pp. 372–382.
  2. ^ Benaloh, Josh (1987). Verifiable Secret-Ballot Elections (Ph.D. thesis) (PDF).
  3. ^ Benaloh, Josh (1994). Dense Probabilistic Encryption (PDF). Workshop on Selected Areas of Cryptography. pp. 120–128.
  4. ^ Fousse, Laurent; Lafourcade, Pascal; Alnuaimi, Mohamed (2011). "Benaloh's Dense Probabilistic Encryption Revisited". arXiv:1008.2991 [cs.CR].
This page was last edited on 9 September 2020, at 11:00
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.