Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In mathematics, a bioctonion, or complex octonion, is a pair (p,q) where p and q are biquaternions.

The product of two bioctonions is defined using biquaternion multiplication and the biconjugate p → p*:

The bioctonion z = (p,q) has conjugate z* = (p*, – q).

Then norm N(z) of bioctonion z is z z* = p p* + q q*, which is a complex quadratic form with eight terms.

The bioctonion algebra is sometimes introduced as simply the complexification of real octonions, but in abstract algebra it is the result of the Cayley–Dickson construction that begins with the field of complex numbers, the trivial involution, and quadratic form z2. The algebra of bioctonions is an example of an octonion algebra.

For any pair of bioctonions y and z,

showing that N is a quadratic form admitting composition, and hence the bioctonions form a composition algebra.

Guy Roos explained how bioctonions are used to present the exceptional symmetric domains:[1]

The explicit description of the exceptional domains ... involves 3x3 matrices with entries in the Cayley-Graves algebra OC of complex octonions ... The space of such matrices which are Hermitian with respect to the Cayley conjugation can be endowed with the structure of a Jordan algebra using a product that generalizes in a natural way the symmetrized product of ordinary square matrices. This algebra is known as the Albert algebra or exceptional Jordan algebra. It is the natural place to describe the exceptional symmetric domain of dimension 27. The second exceptional symmetric domain (of complex dimension 16) lives in the space of 2x1 matrices with octonion entries.

Complex octonions have been used to describe the generations of quarks and leptons.[2]

References

  1. ^ Guy Roos (2005) "Exceptional Symmetric Domains", page 158 in Symmetries in Complex Analysis, editors Bruce Gilligan and Guy J. Roos, Contemporary Mathematics #468, American Mathematical Society ISBN 978-0-8218-4459-5
  2. ^ C. Furey (2016) Standard Model Physics from an Algebra ?
This page was last edited on 27 July 2023, at 15:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.