Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Boron phosphide

From Wikipedia, the free encyclopedia

Boron phosphide
Identifiers
3D model (JSmol)
ECHA InfoCard 100.039.616 Edit this at Wikidata
  • [B+3].[P-3]
  • B#P
Properties
BP
Molar mass 41.7855 g/mol
Appearance maroon powder
Density 2.90 g/cm3
Melting point 1,100 °C (2,010 °F; 1,370 K) (decomposes)
Band gap 2.1 eV (indirect, 300 K)[1]
Thermal conductivity 4.6 W/(cm·K) (300 K)[2]
3.0 (0.63 μm)[1]
Structure
Zinc blende
F43m
Tetrahedral
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Boron phosphide (BP) (also referred to as boron monophosphide, to distinguish it from boron subphosphide, B12P2) is a chemical compound of boron and phosphorus. It is a semiconductor.[3]

YouTube Encyclopedic

  • 1/5
    Views:
    3 988
    159 832
    18 633 532
    3 234
    1 807 923
  • How to Write the Formula for Boron phosphide
  • Boron Tribromide - Periodic Table of Videos
  • White phosphorus is terrifying
  • How to Write the Formula for Boron oxide or Diboron trioxide
  • Calcium carbide is scary

Transcription

History

Crystals of boron phosphide were synthesized by Henri Moissan as early as 1891.[4]

Appearance

Pure BP is almost transparent, n-type crystals are orange-red whereas p-type ones are dark red.[5]

Chemical properties

BP is not attacked by acids or boiling aqueous alkali water solutions. It is only attacked by molten alkalis.[5]

Physical properties

BP is known to be chemically inert and exhibit very high thermal conductivity.[2] Some properties of BP are listed below:

  • lattice constant 0.45383 nm
  • coefficient of thermal expansion 3.65×10−6 /°C (400 K)
  • heat capacity CP ~ 0.8 J/(g·K) (300 K)
  • Debye temperature = 985 K
  • Bulk modulus 152 GPa
  • relatively high microhardness of 32 GPa (100 g load).
  • electron and hole mobilities of a few hundred cm2/(V·s) (up to 500 for holes at 300 K)
  • high thermal conductivity of ~ 460 W/(m·K) at room temperature[2]

See also

References

  1. ^ a b Madelung, O. (2004). Semiconductors: Data Handbook. Birkhäuser. pp. 84–86. ISBN 978-3-540-40488-0.
  2. ^ a b c Kang, J.; Wu, H.; Hu, Y. (2017). "Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications". Nano Letters. 17 (12): 7507–7514. Bibcode:2017NanoL..17.7507K. doi:10.1021/acs.nanolett.7b03437. PMID 29115845.
  3. ^ Popper, P.; Ingles, T. A. (1957). "Boron Phosphide, a III–V Compound of Zinc-Blende Structure". Nature. 179 (4569): 1075. Bibcode:1957Natur.179.1075P. doi:10.1038/1791075a0.
  4. ^ Moissan, H. (1891). "Préparation et Propriétés des Phosphures de Bore". Comptes Rendus. 113: 726–729.
  5. ^ a b Semiconductor Materials. CRC Press. p. 116. ISBN 978-0-8493-8912-2. .

Further reading

  • King, R. B., ed. (1999). Boron Chemistry at the Millennium. Elsevier Science & Technology. ISBN 0-444-72006-5.
  • US patent 6831304, Takashi, U., "P-N Junction Type Boron Phosphide-Based Semiconductor Light-Emitting Device and Production Method thereof", issued 2004-12-14, assigned to Showa Denko 
  • Physical Review Letters. 4 (6): 282–284. Bibcode:1960PhRvL...4..282S. doi:10.1103/PhysRevLett.4.282.


This page was last edited on 23 April 2024, at 20:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.