Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Central charge

From Wikipedia, the free encyclopedia

In theoretical physics, a central charge is an operator Z that commutes with all the other symmetry operators.[1] The adjective "central" refers to the center of the symmetry group—the subgroup of elements that commute with all other elements of the original group—often embedded within a Lie algebra. In some cases, such as two-dimensional conformal field theory, a central charge may also commute with all of the other operators, including operators that are not symmetry generators.[citation needed]

YouTube Encyclopedic

  • 1/3
    Views:
    76 660
    5 444
    2 935
  • Physics - Gauss' Law (9 of 11) Spherical Conductor with Cavity and Central Charge
  • Gauss Law Problems, Hollow Charged Spherical Conductor With Cavity, Electric Field, Physics
  • charge distributions on a conductor

Transcription

Overview

More precisely, the central charge is the charge that corresponds, by Noether's theorem, to the center of the central extension of the symmetry group.

In theories with supersymmetry, this definition can be generalized to include supergroups and Lie superalgebras. A central charge is any operator which commutes with all the other supersymmetry generators. Theories with extended supersymmetry typically have many operators of this kind. In string theory, in the first quantized formalism, these operators also have the interpretation of winding numbers (topological quantum numbers) of various strings and branes.

In conformal field theory, the central charge is a c-number (commutes with every other operator) term that appears in the commutator of two components of the stress–energy tensor.[2] As a result, conformal field theory is characterized by a representation of Virasoro algebra with central charge c.

Gauss sums and higher central charge

For conformal field theories that are described by modular category, the central charge can be extracted from the Gauss sum. In terms of anyon quantum dimension da and topological spin θa of anyon a, the Gauss sum is given by[3]

and equals[4] , where is central charge.

This definition allows extending the definition to a higher central charge,[4][5] using the higher Gauss sums:[6]

The vanishing higher central charge is a necessary condition for the topological quantum field theory to admit topological (gapped) boundary conditions.[4]

See also

References

  1. ^ Weinberg, Steven; Weinberg, S. (1995). Quantum Theory of Fields. Cambridge University Press. doi:10.1017/CBO9781139644167. ISBN 978-1-139-64416-7.
  2. ^ Ginsparg, Paul (1991). "Applied Conformal Field Theory". arXiv:hep-th/9108028.
  3. ^ Ng, Siu-Hung; Rowell, Eric C.; Wang, Yilong; Zhang, Qing (August 2022). "Higher central charges and Witt groups". Advances in Mathematics. 404: 108388. arXiv:2002.03570. doi:10.1016/j.aim.2022.108388.
  4. ^ a b c Kaidi, Justin; Komargodski, Zohar; Ohmori, Kantaro; Seifnashri, Sahand; Shao, Shu-Heng (26 September 2022). "Higher central charges and topological boundaries in 2+1-dimensional TQFTs". SciPost Physics. 13 (3). arXiv:2107.13091. doi:10.21468/SciPostPhys.13.3.067.
  5. ^ Kobayashi, Ryohei; Wang, Taige; Soejima, Tomohiro; Mong, Roger S. K.; Ryu, Shinsei (2023). "Extracting higher central charge from a single wave function". arXiv:2303.04822 [cond-mat.str-el].
  6. ^ Ng, Siu-Hung; Schopieray, Andrew; Wang, Yilong (October 2019). "Higher Gauss sums of modular categories". Selecta Mathematica. 25 (4). arXiv:1812.11234. doi:10.1007/s00029-019-0499-2.


This page was last edited on 17 April 2024, at 11:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.