Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Chandelier cell

From Wikipedia, the free encyclopedia

Chandelier cell
Reconstruction of a mouse chandelier cell. Soma and dendrites are labeled in blue, axon arbor in red. (Woodruff & Yuste, 2008, PLoS Biology)[1]
Anatomical terms of neuroanatomy
Hypothesized Propagation of Activity in Human Neocortex:[1]
An action potential in a pyramidal neuron (cell 1) elicits a spike in a chandelier cell (2) via a strong connection, in turn evoking a third-order spike in a downstream pyramidal cell (3). This spike results in a trisynaptic EPSP being recorded in a postsynaptic pyramidal cell (cell 4, event A). At the same time, cell 3 drives both a basket cell (5) and chandelier cell (6) to threshold. The basket cell evokes a hyperpolarizing IPSP on the postsynaptically recorded pyramidal cell (cell 4, event B), four synapses removed from the original spike. The spiking chandelier cell (6) triggers yet another pyramidal neuron to fire (7), which produces an EPSP on the recorded neuron (cell 4, event C), five synapses away from the original spike. The result seen in the postsynaptic pyramidal neuron (cell 4) is a delayed EPSP-IPSP-EPSP sequence (events A, B, and C), traveling through three, four, and five synapses respectively. Molnár et al. propose[2] that polysynaptic pathways similar to this one can be activated by a single action potential in a cortical pyramidal cell.

Chandelier cells or chandelier neurons are a subset of GABAergic cortical interneurons. They are described as parvalbumin-containing and fast-spiking to distinguish them from other subtypes of GABAergic neurons, although some studies have suggested that only a subset of chandelier cells test positive for parvalbumin by immunostaining.[3] The name comes from the specific shape of their axon arbors, with the terminals forming distinct arrays called "cartridges". The cartridges are immunoreactive to an isoform of the GABA membrane transporter, GAT-1, and this serves as their identifying feature.[4][5] GAT-1 is involved in the process of GABA reuptake into nerve terminals, thus helping to terminate its synaptic activity. Chandelier neurons synapse exclusively to the axonal initial segment of pyramidal neurons, near the site where action potential is generated.[6] It is believed that they provide inhibitory input to the pyramidal neurons, but there is data showing that in some circumstances the GABA from chandelier neurons could be excitatory. [7]

The axon cartridges formed by chandelier cells are one of the synapse types that show the most dramatic changes during normal adolescence,[8] and could potentially be relevant to the adult onset of psychiatric disease. Furthering this link, in schizophrenia, scientists have observed changes in their form and functionality, such as 40% decrease in the axon terminal density.[9]

YouTube Encyclopedic

  • 1/3
    Views:
    355 254
    20 499 079
    1 450 133
  • I bought an ELECTRIC pickup truck from China (seriously!)
  • Handyman Tips & Hacks That Work Extremely Well ▶3
  • 10 SHOPPING SECRETS IKEA Doesn't Want You to Know!

Transcription

See also

List of distinct cell types in the adult human body

References

  1. ^ a b Woodruff A, Yuste R (September 2008). "Of Mice and Men, and Chandeliers". PLoS Biol. 6 (9): e243. doi:10.1371/journal.pbio.0060243. PMC 2553849. PMID 18816168.
  2. ^ Molnár G, Oláh S, Komlósi G, Füle M, Szabadics J, Varga C, Barzó P, Tamás G (September 2008). Yuste R (ed.). "Complex events initiated by individual spikes in the human cerebral cortex". PLoS Biol. 6 (9): e222. doi:10.1371/journal.pbio.0060222. PMC 2528052. PMID 18767905.
  3. ^ Taniguchi H, Lu J, Huang ZJ (January 2013). "The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex". Science. 339 (6115): 70–4. Bibcode:2013Sci...339...70T. doi:10.1126/science.1227622. PMC 4017638. PMID 23180771.
  4. ^ Borden, L. A. (1996). "GABA transporter heterogeneity: Pharmacology and cellular localization". Neurochemistry International. 29 (4): 335–356. doi:10.1016/0197-0186(95)00158-1. PMID 8939442. S2CID 25089539.
  5. ^ Hardwick, C.; French, S. J.; Southam, E.; Totterdell, S. (2005). "A comparison of possible markers for chandelier cartridges in rat medial prefrontal cortex and hippocampus". Brain Research. 1031 (2): 238–244. doi:10.1016/j.brainres.2004.10.047. PMID 15649449. S2CID 25594278.
  6. ^ Contreras, D. (2004). "Electrophysiological classes of neocortical neurons". Neural Networks. 17 (5–6): 633–646. doi:10.1016/j.neunet.2004.04.003. PMID 15288889.
  7. ^ Szabadics, J.; Varga, C.; Molnár, G.; Oláh, S.; Barzó, P.; Tamás, G. (2006). "Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits". Science. 311 (5758): 233–235. Bibcode:2006Sci...311..233S. doi:10.1126/science.1121325. PMID 16410524. S2CID 40744562.
  8. ^ Anderson, S.A.; Classey, J.D.; Condé, F.; Lund, J.S.; Lewis, D.A. (1995). "Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex". Neuroscience. 67 (1): 7–22. doi:10.1016/0306-4522(95)00051-J. ISSN 0306-4522. PMID 7477911. S2CID 25474218.
  9. ^ Pierri, J. N.; Chaudry, A. S.; Woo, T. U.; Lewis, D. A. (1999). "Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects". The American Journal of Psychiatry. 156 (11): 1709–1719. doi:10.1176/ajp.156.11.1709. PMID 10553733.

External links

This page was last edited on 27 April 2024, at 21:40
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.