Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Counting measure

From Wikipedia, the free encyclopedia

In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity  if the subset is infinite.[1]

The counting measure can be defined on any measurable space (that is, any set along with a sigma-algebra) but is mostly used on countable sets.[1]

In formal notation, we can turn any set into a measurable space by taking the power set of as the sigma-algebra that is, all subsets of are measurable sets. Then the counting measure on this measurable space is the positive measure defined by

for all where denotes the cardinality of the set [2]

The counting measure on is σ-finite if and only if the space is countable.[3]

Integration on with counting measure

Take the measure space , where is the set of all subsets of the naturals and the counting measure. Take any measurable . As it is defined on , can be represented pointwise as

Each is measurable. Moreover . Still further, as each is a simple function

Hence by the monotone convergence theorem

Discussion

The counting measure is a special case of a more general construction. With the notation as above, any function defines a measure on via

where the possibly uncountable sum of real numbers is defined to be the supremum of the sums over all finite subsets, that is,
Taking for all gives the counting measure.

See also

References

  1. ^ a b Counting Measure at PlanetMath.
  2. ^ Schilling, René L. (2005). Measures, Integral and Martingales. Cambridge University Press. p. 27. ISBN 0-521-61525-9.
  3. ^ Hansen, Ernst (2009). Measure Theory (Fourth ed.). Department of Mathematical Science, University of Copenhagen. p. 47. ISBN 978-87-91927-44-7.


This page was last edited on 7 May 2024, at 07:37
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.