Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In mathematics, and in particular the study of Hilbert spaces, a crinkled arc is a type of continuous curve. The concept is usually credited to Paul Halmos.

Specifically, consider where is a Hilbert space with inner product We say that is a crinkled arc if it is continuous and possesses the crinkly property: if then that is, the chords and are orthogonal whenever the intervals and are non-overlapping.

Halmos points out that if two nonoverlapping chords are orthogonal, then "the curve makes a right-angle turn during the passage between the chords' farthest end-points" and observes that such a curve would "seem to be making a sudden right angle turn at each point" which would justify the choice of terminology. Halmos deduces that such a curve could not have a tangent at any point, and uses the concept to justify his statement that an infinite-dimensional Hilbert space is "even roomier than it looks".

Writing in 1975, Richard Vitale considers Halmos's empirical observation that every attempt to construct a crinkled arc results in essentially the same solution and proves that is a crinkled arc if and only if, after appropriate normalizations,

where is an orthonormal set. The normalizations that need to be allowed are the following: a) Replace the Hilbert space H by its smallest closed subspace containing all the values of the crinkled arc; b) uniform scalings; c) translations; d) reparametrizations. Now use these normalizations to define an equivalence relation on crinkled arcs if any two of them become identical after any sequence of such normalizations. Then there is just one equivalence class, and Vitale's formula describes a canonical example.

See also

References

  • Halmos, Paul R. (8 November 1982). A Hilbert Space Problem Book. Graduate Texts in Mathematics. Vol. 19 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-90685-0. OCLC 8169781.
  • Halmos, Paul R. (1982), A Hilbert Space Problem Book, Graduate Texts in Mathematics, vol. 19, Springer-Verlag, doi:10.1007/978-1-4615-9976-0, ISBN 978-1-4615-9978-4
  • Vitale, Richard A. (1975), "Representation of a crinkled arc", Proceedings of the American Mathematical Society, 52: 303–304, doi:10.1090/S0002-9939-1975-0388056-1
This page was last edited on 28 January 2024, at 01:17
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.