Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

dNaM
2D structure of dNaM
Names
IUPAC name
(1R)-1,4-Anhydro-2-deoxy-1-(3-methoxynaphthalen-2-yl)-D-erythro-pentitol
Systematic IUPAC name
(2R,3S,5R)-2-(Hydroxymethyl)-5-(3-methoxynaphthalen-2-yl)oxolan-3-ol
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/C16H18O4/c1-19-14-7-11-5-3-2-4-10(11)6-12(14)15-8-13(18)16(9-17)20-15/h2-7,13,15-18H,8-9H2,1H3/t13-,15+,16+/m0/s1
    Key: XVSHFDVHYNHNDU-NUEKZKHPSA-N
  • COc1cc2ccccc2cc1[C@H]3C[C@@H]([C@H](O3)CO)O
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

dNaM is an artificial nucleobase containing a 3-methoxy-2-naphthyl group instead of a natural base.

When it was originally successfully introduced into DNA for replication in an E. coli semi-synthetic organism, it was paired up with d5SICS. For short it is called X whilst the d5SICS being called Y.[1] d5SICS was replaced by dTPT3 in revised versions due to its improved ability to replicate in a wider range of sequence contexts.[2] X pairs with Y using hydrophobic and packing interactions instead of hydrogen bonding, which occurs in natural base pairs. Inside the semi-synthetic organism, methyl directed mismatch repair pathway (MMR) actually fixes unnatural-natural mispairs, whereas recombinational repair actually cuts out the unnatural.[3] The E. coli semi-synthetic organism managed to hold onto the new base for an extended time both while on a plasmid as well as when stored in the chromosome.[4][5] In free DNA, rings of d5SICS and dNaM are placed in parallel planes instead of the same plane, but when inside of a DNA polymerase, they pair using an edge-to-edge conformation.[6] dNaM and dTPT3 can also template transcription of mRNAs and tRNAs by T7 RNA polymerase that have the ability to produce decode at the E. coli ribosome to produce proteins with unnatural amino acids, expanding the genetic code.[7]

References

  1. ^ Sarah Caplan (29 November 2017). "Cells with DNA made in lab lead to 'Holy Grail' of synthetic biology". The Washington Post.
  2. ^ Zhang, Yorke; Lamb, Brian M.; Feldman, Aaron W.; Zhou, Anne Xiaozhou; Lavergne, Thomas; Li, Lingjun; Romesberg, Floyd E. (2017-01-23). "A semisynthetic organism engineered for the stable expansion of the genetic alphabet". Proceedings of the National Academy of Sciences. 114 (6): 1317–1322. Bibcode:2017PNAS..114.1317Z. doi:10.1073/pnas.1616443114. ISSN 0027-8424. PMC 5307467. PMID 28115716.
  3. ^ Ledbetter, Michael P.; Karadeema, Rebekah J.; Romesberg, Floyd E. (2018-01-17). "Reprograming the Replisome of a Semisynthetic Organism for the Expansion of the Genetic Alphabet". Journal of the American Chemical Society. 140 (2): 758–765. doi:10.1021/jacs.7b11488. ISSN 0002-7863. PMC 5793209. PMID 29309130.
  4. ^ "Bacterium survives unnatural DNA transplant". Rsc.org. Retrieved July 29, 2015.
  5. ^ Malyshev, Denis A.; Dhami, Kirandeep; Quach, Henry T.; Lavergne, Thomas; Ordoukhanian, Phillip; Torkamani, Ali; Romesberg, Floyd E. (2012). "Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet". Proceedings of the National Academy of Sciences. 109 (30): 12005–12010. Bibcode:2012PNAS..10912005M. doi:10.1073/pnas.1205176109. PMC 3409741. PMID 22773812. S2CID 26653524.
  6. ^ Betz, Karin; et al. (2013). "Structural Insights into DNA Replication Without Hydrogen-Bonds". J Am Chem Soc. 135 (49): 18637–43. doi:10.1021/ja409609j. PMC 3982147. PMID 24283923.
  7. ^ Zhang, Yorke; Ptacin, Jerod L.; Fischer, Emil C.; Aerni, Hans R.; Caffaro, Carolina E.; San Jose, Kristine; Feldman, Aaron W.; Turner, Court R.; Romesberg, Floyd E. (November 2017). "A semi-synthetic organism that stores and retrieves increased genetic information". Nature. 551 (7682): 644–647. Bibcode:2017Natur.551..644Z. doi:10.1038/nature24659. ISSN 1476-4687. PMC 5796663. PMID 29189780.


This page was last edited on 21 May 2024, at 23:28
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.