Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In computer science, FINO is a humorous scheduling algorithm. It is an acronym for first in, never out as opposed to traditional first in, first out (FIFO) and last in, first out (LIFO) algorithms.[1][2] A similar acronym is "FISH", for first in, still here.

FINO works by withholding all scheduled tasks permanently. No matter how many tasks are scheduled at any time, no task ever actually takes place.

A stateful FINO queue can be used to implement a memory leak.[citation needed]

The first mention of FINO appears in the Signetics 25120 write-only memory joke datasheet.[2][3]

YouTube Encyclopedic

  • 1/3
    Views:
    441 045
    749 109
    328 127
  • The fundamental theorem of arithmetic | Computer Science | Khan Academy
  • How exactly does binary code work? - José Américo N L F de Freitas
  • Wires, cables, and WiFi | Internet 101 | Computer Science | Khan Academy

Transcription

Imagine we are living in prehistoric times. Now, consider the following. How did we keep track of time without a clock? All clocks are based on some repetitive pattern which divides the flow of time into equal segments. To find these repetitive patterns, we look towards the heavens. The sun rising and falling each day is the most obvious. However, to keep track of longer periods of time, we looked for longer cycles. For this we looked to the moon, which seemed to gradually grow and shrink over many days. When we count the number of days between full moons, we arrive at the number 29. This is the origin of a month. However, if we try to divide 29 into equal pieces, we run into a problem. It is impossible. The only way to divide 29 into equal pieces is to break it back down into single units. 29 is a prime number. Think of it as unbreakable. If a number can be broken down into equal pieces greater than one, we call it a composite number. Now, if we are curious, we may wonder how many prime numbers are there, and how big do they get? Let's start by dividing all numbers into two categories. We list the primes on the left, and the composites on the right. At first they seem to dance back and forth. There is no obvious pattern here. So let's use a modern technique to see the big picture. The trick is to use a Ulam spiral. First we list all possible numbers in order in a growing spiral. Then we color all the prime numbers blue. Finally, we zoom out to see millions of numbers. This is the pattern of primes, which goes on and on forever. Incredibly, the entire structure of this pattern is still unsolved today. We are on to something. So let's fast forward to around 300 BC in ancient Greece. A philosopher known as Euclid of Alexandria understood that all numbers could be split into these two distinct categories. He began by realizing that any number can be divided down over and over until you reach a group of smallest equal numbers. And by definition, these smallest numbers are always prime numbers. So he knew that all numbers are somehow built out of smaller primes. To be clear, imagine the universe of all numbers, and ignore the primes. Now, pick any composite number and break it down, and you are always left with prime numbers. So Euclid knew that every number could be expressed using a group of smaller primes. Think of these as building blocks. No matter what number you choose, it can always be built with an addition of smaller primes. This is the root of his discovery, known as the fundamental theorem of arithmetic, as follows. Take any number, say 30, and find all the prime numbers it divides into equally. This we know as factorization. This will give us the prime factors. In this case, 2, 3, and 5 are the prime factors of 30. Euclid realized that you could then multiply these prime factors a specific number of times to build the original number. In this case, you simply multiply each factor once to build 30. 2 times 3 times 5 is the prime factorization of 30. Think of it as a special key, or combination. There is no other way to build 30 using some other groups of prime numbers multiplied together. So every possible number has one, and only one prime factorization. A good analogy is to imagine each number as a different lock. The unique key for each lock would be its prime factorization. No two locks share a key. No two numbers share a prime factorization.

See also

References

  1. ^ "FINO - First In Never Out (accounting)". Acronym Finder. Retrieved 22 June 2022.
  2. ^ a b "First In Never Out (FINO) scheduling in Operating System". GeeksforGeeks. Retrieved 22 June 2022.
  3. ^ ""Signetics 25120 Data Sheet"" (PDF). Archived from the original (PDF) on March 17, 2006. Retrieved 2012-03-16. (alternate copy)
This page was last edited on 22 June 2022, at 11:19
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.