Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Free independence

From Wikipedia, the free encyclopedia

In the mathematical theory of free probability, the notion of free independence was introduced by Dan Voiculescu.[1] The definition of free independence is parallel to the classical definition of independence, except that the role of Cartesian products of measure spaces (corresponding to tensor products of their function algebras) is played by the notion of a free product of (non-commutative) probability spaces.

In the context of Voiculescu's free probability theory, many classical-probability theorems or phenomena have free probability analogs: the same theorem or phenomenon holds (perhaps with slight modifications) if the classical notion of independence is replaced by free independence. Examples of this include: the free central limit theorem; notions of free convolution; existence of free stochastic calculus and so on.

Let be a non-commutative probability space, i.e. a unital algebra over equipped with a unital linear functional . As an example, one could take, for a probability measure ,

Another example may be , the algebra of matrices with the functional given by the normalized trace . Even more generally, could be a von Neumann algebra and a state on . A final example is the group algebra of a (discrete) group with the functional given by the group trace .

Let be a family of unital subalgebras of .

Definition. The family is called freely independent if whenever , and .

If , is a family of elements of (these can be thought of as random variables in ), they are called

freely independent if the algebras generated by and are freely independent.

YouTube Encyclopedic

  • 1/3
    Views:
    493 009
    651 178
    375 200
  • Introduction to linear independence | Vectors and spaces | Linear Algebra | Khan Academy
  • Linear combinations and span | Vectors and spaces | Linear Algebra | Khan Academy
  • Span and linear independence example | Vectors and spaces | Linear Algebra | Khan Academy

Transcription

Examples of free independence

  • Let be the free product of groups , let be the group algebra, be the group trace, and set . Then are freely independent.
  • Let be unitary random matrices, taken independently at random from the unitary group (with respect to the Haar measure). Then become asymptotically freely independent as . (Asymptotic freeness means that the definition of freeness holds in the limit as ).
  • More generally, independent random matrices tend to be asymptotically freely independent, under certain conditions.

References

  1. ^ D. Voiculescu, K. Dykema, A. Nica, "Free Random Variables", CIRM Monograph Series, AMS, Providence, RI, 1992

Sources

This page was last edited on 22 June 2020, at 15:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.