Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

HD 69830 b
Discovery
Discovered byC. Lovis et al.[1]
Discovery dateMay 18, 2006
Radial velocity
Orbital characteristics
0.0764 ± 0.0017 AU (11,430,000 ± 250,000 km)[2]
Eccentricity0.128±0.028[2]
8.66897±0.00028 d[2]
2,453,496.8 ± 0.06
340 ± 26
Semi-amplitude3.4±0.1 m/s[2]
StarHD 69830
Physical characteristics
Mass≥10.1+0.38
−0.37
 M🜨
[2]
Temperature~804 K

HD 69830 b is a Neptune-mass or super-Earth-mass exoplanet orbiting the star HD 69830. It is at least 10 times more massive than Earth. It also orbits very close to its parent star and takes 82/3 days to complete an orbit.

Based on theoretical modeling in the 2006 discovery paper, this is likely to be a rocky planet, not a gas giant.[1] However, other work has found that if it had formed as a gas giant, it would have stayed that way,[3] and it is now understood that planets this massive are rarely rocky.[4]

If HD 69830 b is a terrestrial planet, models predict that tidal heating would produce a heat flux at the surface of about 55 W/m2. This is 20 times that of Io.[5]

YouTube Encyclopedic

  • 1/1
    Views:
    1 251
  • BBC News - Lightest exoplanet is discovered

Transcription

References

  1. ^ a b Lovis, Christophe; et al. (2006). "An extrasolar planetary system with three Neptune-mass planets" (PDF). Nature. 441 (7091): 305–309. arXiv:astro-ph/0703024. Bibcode:2006Natur.441..305L. doi:10.1038/nature04828. PMID 16710412. S2CID 4343578. Archived from the original (PDF) on 2016-03-03. Retrieved 2013-11-22.
  2. ^ a b c d e Laliotis, Katherine; Burt, Jennifer A.; et al. (February 2023). "Doppler Constraints on Planetary Companions to Nearby Sun-like Stars: An Archival Radial Velocity Survey of Southern Targets for Proposed NASA Direct Imaging Missions". The Astronomical Journal. 165 (4): 176. arXiv:2302.10310. Bibcode:2023AJ....165..176L. doi:10.3847/1538-3881/acc067.
  3. ^ H. Lammer; et al. (2007). "The impact of nonthermal loss processes on planet masses from Neptunes to Jupiters" (PDF). Geophysical Research Abstracts. 9 (7850).
  4. ^ Chen, Jingjing; Kipping, David (2017). "Probabilistic Forecasting of the Masses and Radii of Other Worlds". The Astrophysical Journal. 834 (1): 17. arXiv:1603.08614. Bibcode:2017ApJ...834...17C. doi:10.3847/1538-4357/834/1/17. S2CID 119114880.
  5. ^ Jackson, Brian; Richard Greenberg; Rory Barnes (2008). "Tidal Heating of Extra-Solar Planets". Astrophysical Journal. 681 (2): 1631. arXiv:0803.0026. Bibcode:2008ApJ...681.1631J. doi:10.1086/587641. S2CID 42315630.


This page was last edited on 27 November 2023, at 23:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.