Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Jacobi's four-square theorem

From Wikipedia, the free encyclopedia

In number theory, Jacobi's four-square theorem gives a formula for the number of ways that a given positive integer n can be represented as the sum of four squares (of integers).

YouTube Encyclopedic

  • 1/3
    Views:
    4 916
    959
    4 469
  • Number Theory | Sums of squares: Part 6.
  • 11 2 Sums of Four Squares
  • Number Theory | Sums of Squares Part 7.

Transcription

History

The theorem was proved in 1834 by Carl Gustav Jakob Jacobi.

Theorem

Two representations are considered different if their terms are in different order or if the integer being squared (not just the square) is different; to illustrate, these are three of the eight different ways to represent 1:

The number of ways to represent n as the sum of four squares is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e.

We may also write this as

where the second term is to be taken as zero if n is not divisible by 4. In particular, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[1]

Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n) can be arbitrarily large: indeed, r4(n) is infinitely often larger than [1]

Proof

The theorem can be proved by elementary means starting with the Jacobi triple product.[2]

The proof shows that the Theta series for the lattice Z4 is a modular form of a certain level, and hence equals a linear combination of Eisenstein series.

See also

Notes

  1. ^ a b Williams 2011, p. 119.
  2. ^ Hirschhorn, Michael D. (2000). "Partial Fractions and Four Classical Theorems of Number Theory". The American Mathematical Monthly. 107 (3): 260–264. CiteSeerX 10.1.1.28.1615. doi:10.2307/2589321. JSTOR 2589321.

References

External links

This page was last edited on 25 May 2024, at 21:56
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.