Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Karlovitz number

From Wikipedia, the free encyclopedia

In combustion, the Karlovitz number is defined as the ratio of chemical time scale to Kolmogorov time scale , named after Béla Karlovitz.[1][2][3] The number reads as

.

In premixed turbulent combustion, the chemical time scale can be defined as , where is the thermal diffusivity and is the laminar flame speed and the flame thickness is given by , in which case,

where is the Kolmogorov scale. The Karlovitz number is related to Damköhler number as

if the Damköhler number is defined with Kolmogorov scale. If , the premixed turbulent flame falls into the category of corrugated flamelets and wrinkled flamelets, otherwise into the thin reaction zone or broken reaction zone flames.

YouTube Encyclopedic

  • 1/3
    Views:
    1 131
    848
    1 360
  • Damkohler Number & Karlovitz Number | L 8 | Chemical Reaction Engg | Sankalp GATE 2022
  • Lecture 17 - Seg 3, Chapter 4, Isothermal Reactor Design - Damköhler Number
  • Pitsch Day 1 Part 1

Transcription

Klimov–Williams criterion

In premixed turbulent combustion, the Klimov–Williams criterion or Klimov–Williams limit, named after A.M. Klimov[4][5] and Forman A. Williams,[6] is the condition where (assuming a Schmidt number of unity). When , the flame thickness is smaller than the Kolmogorov scale, thus the flame burning velocity is not affected by the turbulence field. Here, the burning velocity is given by the laminar flame speed and these laminar flamelets are called as wrinkled flamelets or corrugated flamelets, depending on the turbulence intensity. When , the turbulent transport penetrates into the preheat zone of the flame (thin reaction zone) or even into the reactive-diffusive zone (distributed flames).

References

  1. ^ Peters, N. (2000). Turbulent combustion. Cambridge university press.
  2. ^ Libby, P. A., & Williams, F. A. (1980). Turbulent reacting flows. Turbulent reacting flows.
  3. ^ Williams, F. A. (2018). Combustion theory. CRC Press.
  4. ^ Klimov, A. M. (1963). Laminar flame in a turbulent flow. Zhur. Prikl. Mekh. Tekh. Fiz, 3, 4958.
  5. ^ Klimov, A. M. (1988). Laminar flame in a turbulent flow (No. FTD-ID (RS) T-0642-88). FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH.
  6. ^ Williams, F. A. (1975). " A Review of Some Theoretical Considerations of Turbulent Flame Structure." in analytical Numerical Methods for Investigation of Flow Fields with Chemical Reactions, Especially Related Fields to Combustion. In AGARD Conference Proceedings, 1975 (Vol. 164).
This page was last edited on 30 July 2021, at 17:46
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.