Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Kepler-1625
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Cygnus
Right ascension 19h 41m 43.04008s[1]
Declination +39° 53′ 11.4990″[1]
Characteristics
Apparent magnitude (K) 13.916[2]
Astrometry
Proper motion (μ) RA: −2.088(32) mas/yr[1]
Dec.: −4.804(32) mas/yr[1]
Parallax (π)0.4548 ± 0.0289 mas[1]
Distance7,200 ± 500 ly
(2,200 ± 100 pc)
Details
Mass1.04±0.08[3] M
Radius1.73±0.24[3] R
Luminosity (bolometric)2.57±0.68[3] L
Surface gravity (log g)3.99±0.10[3] cgs
Temperature5563±86[3] K
Metallicity [Fe/H]0.06±0.13[3] dex
Age8.7±2.1[3] Gyr
Other designations
Kepler-1625, KOI-5084, KIC 4760478, 2MASS J19414304+3953115[4]
Database references
SIMBADdata

Kepler-1625 is a 14th-magnitude solar-mass star located in the constellation of Cygnus approximately 7,200 light-years (2,200 parsecs) away. Its mass is within 5% of that of the Sun, but its radius is approximately 70% larger reflecting its more evolved state. A candidate gas giant exoplanet was detected by the Kepler Mission around the star in 2015,[5] which was later validated as a real planet to >99% confidence in 2016.[6] In 2018, the Hunt for Exomoons with Kepler project reported evidence for a Neptune-sized exomoon around this planet, based on observations from NASA’s Kepler mission and the Hubble Space Telescope.[7][3] Subsequently, the evidence for and reality of this exomoon candidate has been subject to debate.[8][9][10][11]

YouTube Encyclopedic

  • 1/5
    Views:
    11 082
    1 878
    15 788
    40 733
    22 760
  • First Extra-solar Moon Discovery 2018 Update - Kepler-1625b
  • New Evidence for a Large Exomoon around Kepler-1625b
  • EXOMOON SPECIAL | Evidence for an Exomoon around Kepler-1625b
  • Possible Moon Found Outside Solar System by Hubble and Kepler Telescopes
  • The Science Legacy of NASA's Kepler Space Telescope

Transcription

Stellar characteristics

Kepler-1625 is an approximately solar-mass star and yet is 1.7 times larger in diameter.[3] Its effective temperature is around 5,550 K, slightly lower than that of the Sun.[12][3] These parameters suggest that Kepler-1625 may be a yellow subgiant nearing the end of its life, with an age of approximately 8.7 billion years.[3] The star has been observed to be photometrically quiet, with periodic variability below 0.02%.[10] Kepler-1625 is located approximately 7,200 light-years away[1] in the constellation Cygnus.[12]

Planetary system

The Kepler-1625 planetary system[3]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b ≤11.6[13] MJ 0.98±0.14 287.3727±0.0022 89.97±0.02° 11.4±1.6 R🜨

The star is known to have one validated planet. Designated Kepler-1625b, it is a Jovian-sized planet orbiting its star every 287.3 Earth days. No other candidate transiting planets have been found around the star.[10]

Potential exomoon

The Kepler Mission recorded three planetary transits of Kepler-1625b from 2009 to 2013.[5] From these, anomalous out-of-transit flux decrements indicated the possible existence of a Neptune-sized exomoon, as first reported by the Hunt for Exomoons with Kepler project in 2018.[7] The Kepler data were inconclusive and so the planetary transit was re-observed by the Hubble Space Telescope in October 2018. The light curve from Hubble exhibited evidence for both a moon-like transit and a transit timing variation, both of which were consistent as being caused by the same Neptune-sized moon in orbit of Kepler-1625b.[3] The transit timing variation has been independently recovered by two teams analyzing the same data.[8][9] One of these teams also independently recovered the moon-like transit, but suggest that radial velocity measurements are needed to exclude the possibility of a close-in masquerading planet.[8] The other team are unable to recover the moon-like transit and suggested it may be an artifact of the data reduction.[9] This conclusion was challenged by the original team soon after, who showed that the other analysis exhibits larger systematics that may explain their differing conclusion.[10]

See also

References

  1. ^ a b c d e Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ "NASA Exoplanet archive". Retrieved 2017-07-28.
  3. ^ a b c d e f g h i j k l m Teachey, Alex; Kipping, David M. (2018). "Evidence for a Large Exomoon Orbiting Kepler-1625b" (PDF). Science Advances. 4 (10): eaav1784. arXiv:1810.02362. Bibcode:2018SciA....4.1784T. doi:10.1126/sciadv.aav1784. PMC 6170104. PMID 30306135. Archived from the original (PDF) on 2019-04-25. Retrieved 2019-04-25.
  4. ^ "Kepler-1625". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2020-08-19.
  5. ^ a b Mullally, Fergus; et al. (2015). "Planetary Candidates Observed by Kepler. VI. Planet Sample from Q1--Q16 (47 Months)". The Astrophysical Journal. 217 (2). 31. arXiv:1502.02038. Bibcode:2015ApJS..217...31M. doi:10.1088/0067-0049/217/2/31. S2CID 38448081.
  6. ^ Morton, Timothy D.; et al. (2016). "False Positive Probabilities for all Kepler Objects of Interest: 1284 Newly Validated Planets and 428 Likely False Positives". The Astrophysical Journal. 822 (2). 86. arXiv:1605.02825. Bibcode:2016ApJ...822...86M. doi:10.3847/0004-637X/822/2/86. S2CID 20832201.
  7. ^ a b Teachey, Alex; et al. (2018). "HEK VI: On the Dearth of Galilean Analogs in Kepler and the Exomoon Candidate Kepler-1625b I". The Astronomical Journal. 155 (1). 36. arXiv:1707.08563. Bibcode:2018AJ....155...36T. doi:10.3847/1538-3881/aa93f2. S2CID 118911978.
  8. ^ a b c Heller, Rene; Rodenbeck, Kai; Giovanni, Bruno (2019). "An alternative interpretation of the exomoon candidate signal in the combined Kepler and Hubble data of Kepler-1625". Astronomy and Astrophysics. 624: 95. arXiv:1902.06018. Bibcode:2019A&A...624A..95H. doi:10.1051/0004-6361/201834913. S2CID 119311103.
  9. ^ a b c Kreidberg, Laura; Luger, Rodrigo; Bedell, Megan (June 2019). "No Evidence for Lunar Transit in New Analysis of Hubble Space Telescope Observations of the Kepler-1625 System". The Astrophysical Journal Letters. 877 (2): L15. arXiv:1904.10618. Bibcode:2019ApJ...877L..15K. doi:10.3847/2041-8213/ab20c8. S2CID 129945202.
  10. ^ a b c d Teachey, Alex; Kipping, David M.; Burke, Christopher (2019). "Loose Ends for the Exomoon Candidate Host Kepler-1625b". The Astronomical Journal. 159 (4): 142. arXiv:1904.11896. Bibcode:2020AJ....159..142T. doi:10.3847/1538-3881/ab7001. S2CID 135465103.
  11. ^ Heller, René; Hippke, Michael (December 2023). "Large exomoons unlikely around Kepler-1625 b and Kepler-1708 b". Nature Astronomy. 8 (2): 193–206. arXiv:2312.03786. Bibcode:2024NatAs...8..193H. doi:10.1038/s41550-023-02148-w.
  12. ^ a b Mathur, Savita; Huber, Daniel; Batalha, Natalie M.; Ciardi, David R.; Bastien, Fabienne A.; Bieryla, Allyson; Buchhave, Lars A.; Cochran, William D.; Endl, Michael; Esquerdo, Gilbert A.; Furlan, Elise; Howard, Andrew; Howell, Steve B.; Isaacson, Howard; Latham, David W.; MacQueen, Phillip J.; Silva, David R. (2017). "Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run". The Astrophysical Journal Supplement Series. 229 (2): 30. arXiv:1609.04128. Bibcode:2017ApJS..229...30M. doi:10.3847/1538-4365/229/2/30. S2CID 39426786.
  13. ^ Timmermann, Anina; Heller, Rene; Reiner, Ansgar; Zechmeister, Mathias (2020). "Radial velocity constraints on the long-period transiting planet Kepler-1625 b with CARMENES". Astronomy and Astrophysics. 635: 59. arXiv:2001.10867. Bibcode:2020A&A...635A..59T. doi:10.1051/0004-6361/201937325. S2CID 210942758.
This page was last edited on 11 March 2024, at 10:48
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.