Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Large set (combinatorics)

From Wikipedia, the free encyclopedia

In combinatorial mathematics, a large set of positive integers

is one such that the infinite sum of the reciprocals

diverges. A small set is any subset of the positive integers that is not large; that is, one whose sum of reciprocals converges.

Large sets appear in the Müntz–Szász theorem and in the Erdős conjecture on arithmetic progressions.

YouTube Encyclopedic

  • 1/3
    Views:
    563 718
    572 645
    374 661
  • Partitions - Numberphile
  • Permutations and Combinations - word problems 128-1.11
  • Example: 9 card hands | Probability and combinatorics | Precalculus | Khan Academy

Transcription

Examples

  • Every finite subset of the positive integers is small.
  • The set of all positive integers is a large set; this statement is equivalent to the divergence of the harmonic series. More generally, any arithmetic progression (i.e., a set of all integers of the form an + b with a ≥ 1, b ≥ 1 and n = 0, 1, 2, 3, ...) is a large set.
  • The set of square numbers is small (see Basel problem). So is the set of cube numbers, the set of 4th powers, and so on. More generally, the set of positive integer values of any polynomial of degree 2 or larger forms a small set.
  • The set {1, 2, 4, 8, ...} of powers of 2 is a small set, and so is any geometric progression (i.e., a set of numbers of the form of the form abn with a ≥ 1, b ≥ 2 and n = 0, 1, 2, 3, ...).
  • The set of prime numbers is large. The set of twin primes is small (see Brun's constant).
  • The set of prime powers which are not prime (i.e., all numbers of the form pn with n ≥ 2 and p prime) is small although the primes are large. This property is frequently used in analytic number theory. More generally, the set of perfect powers is small; even the set of powerful numbers is small.
  • The set of numbers whose expansions in a given base exclude a given digit is small. For example, the set
of integers whose decimal expansion does not include the digit 7 is small. Such series are called Kempner series.

Properties

  • Every subset of a small set is small.
  • The union of finitely many small sets is small, because the sum of two convergent series is a convergent series. (In set theoretic terminology, the small sets form an ideal.)
  • The complement of every small set is large.
  • The Müntz–Szász theorem states that a set is large if and only if the set of polynomials spanned by is dense in the uniform norm topology of continuous functions on a closed interval in the positive real numbers. This is a generalization of the Stone–Weierstrass theorem.

Open problems involving large sets

Paul Erdős conjectured that all large sets contain arbitrarily long arithmetic progressions. He offered a prize of $3000 for a proof, more than for any of his other conjectures, and joked that this prize offer violated the minimum wage law.[1] The question is still open.

It is not known how to identify whether a given set is large or small in general. As a result, there are many sets which are not known to be either large or small.

See also

Notes

References

  • A. D. Wadhwa (1975). An interesting subseries of the harmonic series. American Mathematical Monthly 82 (9) 931–933. JSTOR 2318503
This page was last edited on 22 June 2024, at 12:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.