Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Memory footprint

From Wikipedia, the free encyclopedia

Memory footprint refers to the amount of main memory that a program uses or references while running.[1]

The word footprint generally refers to the extent of physical dimensions that an object occupies, giving a sense of its size. In computing, the memory footprint of a software application indicates its runtime memory requirements, while the program executes. This includes all sorts of active memory regions like code segment containing (mostly) program instructions (and occasionally constants), data segment (both initialized and uninitialized),[1] heap memory, call stack, plus memory required to hold any additional data structures, such as symbol tables, debugging data structures, open files, shared libraries mapped to the current process, etc., that the program ever needs while executing and will be loaded at least once during the entire run.[2]

Larger programs have larger memory footprints. An application's memory footprint is roughly proportionate to the number and sizes of shared libraries or classes it loads, whereas static libraries, executable programs and static data areas contribute to a fixed (constant) portion. Programs themselves often do not contribute the largest portions to their own memory footprints; rather, structures introduced by the run-time environment take up most of the memory. For example, a C++ compiler inserts vtables, type info objects and many temporary and anonymous objects that are active during a program's execution. In a Java program, the memory footprint is predominantly made up of the runtime environment in the form of Java virtual machine (JVM) itself that is loaded indirectly when a Java application launches. In addition, on most operating systems, disk files opened by an application too are read into the application's address space, thereby, contributing to its footprint.

YouTube Encyclopedic

  • 1/3
    Views:
    983
    6 259
    308
  • "Dude, Where's My RAM?" — A deep dive into how Python uses memory
  • How do I make my pandas DataFrame smaller and faster?
  • Next-Generation AMR

Transcription

Usage trend

During the 1990s, computer memory became cheaper and programs with larger memory footprints became commonplace. This trend has been mostly due to the widespread use of computer software, from large enterprise-wide applications that consume vast amounts of memory (such as databases), to memory intensive multimedia authoring and editing software. To tackle the ever increasing memory needs, virtual memory systems were introduced that divide the available memory into equally sized portions and loads them from "pages" stored on the hard-disk on an as-and-when required basis.

This approach to support programs with huge-memory-footprints has been quite successful. Most modern operating systems including Microsoft Windows, Apple's macOS, and all versions of Linux and Unix provide virtual memory systems.

In embedded systems

Traditionally, low-memory-footprint programs were of importance to running applications on embedded systems where memory would often be a constrained resource[1] – so much so that developers typically sacrificed efficiency (processing speeds) just to make program footprints small enough to fit into the available RAM. For example, Sun Microsystems brought out a version of its Java Virtual Machine (JVM) for such constrained devices; it goes by the name of KVM. The KVM works on platforms where memory is in kilobytes as opposed to the megabytes (or even gigabytes) of memory available on a regular home PC or more modern mobile phones and tablets.

See also

References

  1. ^ a b c "Definition of: memory footprint". PC Mag. Retrieved 1 August 2012.
  2. ^ "Reduce your Linux memory footprint". IBM developerWorks. Retrieved 1 August 2012.
This page was last edited on 10 February 2024, at 15:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.