Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Metarteriole
Illustration of a capillary system with metarterioles and precapillary sphincters, as is present in the mesenteric microcirculation.
Anatomical terminology

A metarteriole is a short microvessel in the microcirculation that links arterioles and capillaries.[1] Instead of a continuous tunica media, they have individual smooth muscle cells placed a short distance apart, each forming a precapillary sphincter that encircles the entrance to that capillary bed. Constriction of these sphincters reduces or shuts off blood flow through their respective capillary beds. This allows the blood to be diverted to elsewhere in the body.[2]

Metarterioles exist in the mesenteric microcirculation, and the name was originally conceived only to define the "thoroughfare channels" between arterioles and venules. In recent times the term has often been used instead to describe the smallest arterioles directly prior to the capillaries.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    102 241
    1 498
    9 419
  • Pre-capillary sphincters | Circulatory system physiology | NCLEX-RN | Khan Academy
  • Arteries, Arterioles, Metarterioles 2
  • Capillaries: Overview & Definition – Histology | Lecturio

Transcription

So we often talk about capillary beds, but I thought that it would be fun to get really up close and really get a good understanding of how these things work. Couple of neat freaks(?) our body has developed to make sure that blood gets to the areas where it needs to go. So let's start up on the left side. This is an arterial, right. So an arterial is carrying blood that initially came from the heart. It's gonna come down --let's say, this way, through the arterial, and let's say some of the blood is gonna continue down this way, maybe to another capillary bed. But, here we have one right here. So, it's gonna divert and send some of the blood through this way. Now, the first vessels, this tiny little vessel over here, it actually is not a capillary, eventhough we would assume it's a capillary, 'cause it's coming after the arteriola, we call it a metarteriole, a [metarteriole]. And the reason I'm calling it that, is because if you look inside the wall of this metarteriole, it actually has some smooth muscle. And so this by definition then, not a true capillary, because it has some smooth muscle in the wall. The true capillaries are these guys out here. So, all these guys over here, these are the true capillaries. Let me actually-- just gonna call them that. So when we use the word [true capillary], we're really trying to distinguish form that metarteriole. So where is the blood gonna go? It's gonna go into all these true capillaries, right. It's course all the way through here. It's gonna go every which ways, gonna go down this way as well, into all these two capillaries. And it's basically trying to get to all the tissues, all the cells here. These are individual cells, kinda hanging out, all doing their job, and they need --of course-- nutrition. So this is at the sailevel(?) level, this is what it looks like, guys. Just a bunch of cells, put together, trying to get some nutrition, and when you kinda zoom out, you'd say, 'ah, what this is?' obviously, a bit of tissue. So we talk about tissue, is basically just talking about collection of cells like this. I'm not gonna draw them, but you get the idea. And some of the blood, of course, is gonna go and stay in this metateriole, it's gonna go through the other side. And it goes to the other side, the name changes. So, same basic vessel in a way, but its name changes. And it's called the [thoroughfare channel]. So the thoroughfare channel. And the distinction between the thoroughfare channel and the metarteriole, is that the thoroughfare channel does not have smooth muscle. So here you should not be finding any smooth muscle. That's really the key difference between the two sides. So this is really becoming more like a venule. So over here as the blood kinda exits, and goes back towards the heart, and of course it's gonna meet up with other blood coming back, this is the venule, or the vein side. So now you can kind of see how the blood flowing from the arteriole all the way to the venule. Now, here's the really cool thing. What the body does --this is the nifty concept-- is that there're these pre-capillary sphincters. [pre-capillary sphincters] Now I've drawn them as yellow -kinda- cells here. Smooth muscle cells. And these pre-capillary sphincters, what they do is they basically squeeze down. They basically squeeze down. That's these guys I've drawn --I think six sets of them-- but you can see that all basically looking the same. They will squeeze down. And if they do, let's say- we do not want blood to come to this capillary bed, we wanna save the blood for something else. Well, these smooth muscle pre-capillary sphincters, they squeeze down, and as the result, you really don't get any blood flow going through these areas. So these white arrows --they kind of do not exist. Yeah, the last(?) blood going this way. And all(?) the blood will end up just going right trough the middle. It'll just go right through that metarteriole, right through here. And it'll go into the thoroughfare channel. So basically what you're doing is, you're basically completely avoiding this capillary bed, by clamping down on these pre-capillary sphincters. So it's kind of neat use of smooth muscle, to control even at the capillary bed level, where the blood is flowing.

References

  1. ^ a b Sakai T, Hosoyamada Y (September 2013). "Are the precapillary sphincters and metarterioles universal components of the microcirculation? An historical review". The Journal of Physiological Sciences. 63 (5): 319–31. doi:10.1007/s12576-013-0274-7. PMC 3751330. PMID 23824465.
  2. ^ "Structure and Function of Blood Vessels". Anatomy and Physiology II. Lumen Learning. Retrieved 2019-09-23.

External links


This page was last edited on 27 September 2023, at 17:26
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.