Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Nagell–Lutz theorem

From Wikipedia, the free encyclopedia

In mathematics, the Nagell–Lutz theorem is a result in the diophantine geometry of elliptic curves, which describes rational torsion points on elliptic curves over the integers. It is named for Trygve Nagell and Élisabeth Lutz.

Definition of the terms

Suppose that the equation

defines a non-singular cubic curve with integer coefficients a, b, c, and let D be the discriminant of the cubic polynomial on the right side:

Statement of the theorem

If P = (x,y) is a rational point of finite order on C, for the elliptic curve group law, then:

  • 1) x and y are integers
  • 2) either y = 0, in which case P has order two, or else y divides D, which immediately implies that y2 divides D.

Generalizations

The Nagell–Lutz theorem generalizes to arbitrary number fields and more general cubic equations.[1] For curves over the rationals, the generalization says that, for a nonsingular cubic curve whose Weierstrass form

has integer coefficients, any rational point P=(x,y) of finite order must have integer coordinates, or else have order 2 and coordinates of the form x=m/4, y=n/8, for m and n integers.

History

The result is named for its two independent discoverers, the Norwegian Trygve Nagell (1895–1988) who published it in 1935, and Élisabeth Lutz (1937).

See also

References

  1. ^ See, for example, Theorem VIII.7.1 of Joseph H. Silverman (1986), "The arithmetic of elliptic curves", Springer, ISBN 0-387-96203-4.
This page was last edited on 21 May 2023, at 04:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.