Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Nitrosyl azide

From Wikipedia, the free encyclopedia

Nitrosyl azide
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/N4O/c1-2-3-4-5 checkY
    Key: LHKVDVFVJMYULK-UHFFFAOYSA-N checkY
  • [N-]=[N+]=NN=O
Properties
N3−N=O
Molar mass 72.027 g·mol−1
Appearance Pale yellow solid below −50 °C (−58 °F). Above that temperature it decomposes.
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Nitrosyl azide is an inorganic compound of nitrogen and oxygen with the chemical formula N3−N=O. It is a highly labile nitrogen oxide with the empirical formula N4O.

Synthesis

Nitrosyl azide can be synthesized via the following reaction of sodium azide and nitrosyl chloride at low temperatures:

Properties

Below −50 °C, nitrosyl azide exists as a pale yellow solid. Above this temperature, it decomposes into nitrous oxide N2O and molecular nitrogen N2:[1]

Characterization of the compound with IR and Raman spectroscopy show absorption bands that agree well with calculated values for a trans-structure.[1][2] Quantum chemical calculations show a cis-form higher in energy by 4.2 kJ/mol and an aromatic ring form (oxatetrazole N4O) that is more stable by 205 kJ/mol. However, the cyclization to the ring form would have to surpass the 205 kJ/mol activation energy barrier require to bend the azide group, which might explain why nitrosyl azide is stable enough to be isolated at low temperature.[1]

References

  1. ^ a b c Schulz, Axel; Tornieporth-Oetting, Inis C.; Klapötke, Thomas M. (1993). "Nitrosyl Azide, N4O, an Intrinsically Unstable Oxide of Nitrogen". Angewandte Chemie International Edition in English. 32 (11): 1610–1612. doi:10.1002/anie.199316101.
  2. ^ Lucien, Harold W. (1958). "The Preparation and Properties of Nitrosyl Azide". Journal of the American Chemical Society. 80 (17): 4458–4460. doi:10.1021/ja01550a004.
  • Cotton, F. Albert & Geoffrey Wilkinson (1999). Advanced Inorganic Chemistry (6th ed.). New York: John Wiley & Sons. p. 331. ISBN 0-471-19957-5.
This page was last edited on 17 May 2024, at 17:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.