Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In geometry, the polar sine generalizes the sine function of angle to the vertex angle of a polytope. It is denoted by psin.

YouTube Encyclopedic

  • 1/2
    Views:
    23 000
    1 775
  • How do you sketch a polar curve (cardioid)?
  • House of Cardioids Graphing Polar Curves

Transcription

Definition

n vectors in n-dimensional space

The interpretations of 3D volumes for left: a parallelepiped (Ω in polar sine definition) and right: a cuboid (Π in definition). The interpretation is similar in higher dimensions.

Let v1, ..., vn (n ≥ 1) be non-zero Euclidean vectors in n-dimensional space (Rn) that are directed from a vertex of a parallelotope, forming the edges of the parallelotope. The polar sine of the vertex angle is:

where the numerator is the determinant

which equals the signed hypervolume of the parallelotope with vector edges[1]

and where the denominator is the n-fold product

of the magnitudes of the vectors, which equals the hypervolume of the n-dimensional hyperrectangle with edges equal to the magnitudes of the vectors ||v1||, ||v2||, ... ||vn|| rather than the vectors themselves. Also see Ericksson.[2]

The parallelotope is like a "squashed hyperrectangle", so it has less hypervolume than the hyperrectangle, meaning (see image for the 3d case):

as for the ordinary sine, with either bound being reached only in the case that all vectors are mutually orthogonal.

In the case n = 2, the polar sine is the ordinary sine of the angle between the two vectors.

In higher dimensions

A non-negative version of the polar sine that works in any m-dimensional space can be defined using the Gram determinant. It is a ratio where the denominator is as described above. The numerator is

where the superscript T indicates matrix transposition. This can be nonzero only if mn. In the case m = n, this is equivalent to the absolute value of the definition given previously. In the degenerate case m < n, the determinant will be of a singular n × n matrix, giving Ω = 0 and psin = 0, because it is not possible to have n linearly independent vectors in m-dimensional space when m < n.

Properties

Interchange of vectors

The polar sine changes sign whenever two vectors are interchanged, due to the antisymmetry of row-exchanging in the determinant; however, its absolute value will remain unchanged.

Invariance under scalar multiplication of vectors

The polar sine does not change if all of the vectors v1, ..., vn are scalar-multiplied by positive constants ci, due to factorization

If an odd number of these constants are instead negative, then the sign of the polar sine will change; however, its absolute value will remain unchanged.

Vanishes with linear dependencies

If the vectors are not linearly independent, the polar sine will be zero. This will always be so in the degenerate case that the number of dimensions m is strictly less than the number of vectors n.

Relationship to pairwise cosines

The cosine of the angle between two non-zero vectors is given by

using the dot product. Comparison of this expression to the definition of the absolute value of the polar sine as given above gives:

In particular, for n = 2, this is equivalent to

which is the Pythagorean theorem.

History

Polar sines were investigated by Euler in the 18th century.[3]

See also

References

  1. ^ Lerman, Gilad; Whitehouse, J. Tyler (2009). "On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions". Journal of Approximation Theory. 156: 52–81. arXiv:0805.1430. doi:10.1016/j.jat.2008.03.005. S2CID 12794652.
  2. ^ Eriksson, F (1978). "The Law of Sines for Tetrahedra and n-Simplices". Geometriae Dedicata. 7: 71–80. doi:10.1007/bf00181352. S2CID 120391200.
  3. ^ Euler, Leonhard. "De mensura angulorum solidorum". Leonhardi Euleri Opera Omnia. 26: 204–223.

External links

This page was last edited on 24 January 2024, at 17:56
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.