Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Riemann–Lebesgue lemma

From Wikipedia, the free encyclopedia

In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis.

YouTube Encyclopedic

  • 1/5
    Views:
    8 357
    401
    1 635
    831
    4 106
  • Riemann-Lebesgue Lemma
  • Math 131 Spring 2022 050422 Riemann-Lebesgue lemma; Classical Fourier Series.
  • Riemann Lebesgue Lemma | Fourier Series | BSc mathematics
  • State and prove the Riemann Lebesgue Lemma
  • Riemann-Lebesgue Lemma

Transcription

Statement

Let be an integrable function, i.e. is a measurable function such that

and let be the Fourier transform of , i.e.

Then vanishes at infinity: as .

Because the Fourier transform of an integrable function is continuous, the Fourier transform is a continuous function vanishing at infinity. If denotes the vector space of continuous functions vanishing at infinity, the Riemann–Lebesgue lemma may be formulated as follows: The Fourier transformation maps to .

Proof

We will focus on the one-dimensional case , the proof in higher dimensions is similar. First, suppose that is continuous and compactly supported. For , the substitution leads to

.

This gives a second formula for . Taking the mean of both formulas, we arrive at the following estimate:

.

Because is continuous, converges to as for all . Thus, converges to 0 as due to the dominated convergence theorem.

If is an arbitrary integrable function, it may be approximated in the norm by a compactly supported continuous function. For , pick a compactly supported continuous function such that . Then

Because this holds for any , it follows that as .

Other versions

The Riemann–Lebesgue lemma holds in a variety of other situations.

  • If , then the Riemann–Lebesgue lemma also holds for the Laplace transform of , that is,
as within the half-plane .
  • A version holds for Fourier series as well: if is an integrable function on a bounded interval, then the Fourier coefficients of tend to 0 as . This follows by extending by zero outside the interval, and then applying the version of the Riemann–Lebesgue lemma on the entire real line.
  • However, the Riemann–Lebesgue lemma does not hold for arbitrary distributions. For example, the Dirac delta function distribution formally has a finite integral over the real line, but its Fourier transform is a constant and does not vanish at infinity.

Applications

The Riemann–Lebesgue lemma can be used to prove the validity of asymptotic approximations for integrals. Rigorous treatments of the method of steepest descent and the method of stationary phase, amongst others, are based on the Riemann–Lebesgue lemma.

References

  • Bochner S., Chandrasekharan K. (1949). Fourier Transforms. Princeton University Press.
  • Weisstein, Eric W. "Riemann–Lebesgue Lemma". MathWorld.
This page was last edited on 10 March 2024, at 16:50
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.