Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Riesz sequence

From Wikipedia, the free encyclopedia

In mathematics, a sequence of vectors (xn) in a Hilbert space is called a Riesz sequence if there exist constants such that

for all sequences of scalars (an) in the p space2. A Riesz sequence is called a Riesz basis if

.

Alternatively, one can define the Riesz basis as a family of the form , where is an orthonormal basis for and is a bounded bijective operator. Hence, Riesz bases need not be orthonormal, i.e., they are a generalization of orthonormal bases.[1]

Paley-Wiener criterion

Let be an orthonormal basis for a Hilbert space and let be "close" to in the sense that

for some constant , , and arbitrary scalars . Then is a Riesz basis for .[2][3]

Theorems

If H is a finite-dimensional space, then every basis of H is a Riesz basis.

Let be in the Lp space L2(R), let

and let denote the Fourier transform of . Define constants c and C with . Then the following are equivalent:

The first of the above conditions is the definition for () to form a Riesz basis for the space it spans.

See also

Notes

References

  • Antoine, J.-P.; Balazs, P. (2012). "Frames, Semi-Frames, and Hilbert Scales". Numerical Functional Analysis and Optimization. 33 (7–9). arXiv:1203.0506. doi:10.1080/01630563.2012.682128. ISSN 0163-0563.
  • Christensen, Ole (2001), "Frames, Riesz bases, and Discrete Gabor/Wavelet expansions" (PDF), Bulletin of the American Mathematical Society, New Series, 38 (3): 273–291, doi:10.1090/S0273-0979-01-00903-X
  • Mallat, Stéphane (2008), A Wavelet Tour of Signal Processing: The Sparse Way (PDF) (3rd ed.), pp. 46–47, ISBN 9780123743701
  • Paley, Raymond E. A. C.; Wiener, Norbert (1934). Fourier Transforms in the Complex Domain. Providence, RI: American Mathematical Soc. ISBN 978-0-8218-1019-4.
  • Young, Robert M. (2001). An Introduction to Non-Harmonic Fourier Series, Revised Edition, 93. Academic Press. ISBN 978-0-12-772955-8.

This article incorporates material from Riesz sequence on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License. This article incorporates material from Riesz basis on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This page was last edited on 20 March 2024, at 09:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.