Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Sazonov's theorem

From Wikipedia, the free encyclopedia

In mathematics, Sazonov's theorem, named after Vyacheslav Vasilievich Sazonov (Вячесла́в Васи́льевич Сазо́нов), is a theorem in functional analysis.

It states that a bounded linear operator between two Hilbert spaces is γ-radonifying if it is a Hilbert–Schmidt operator. The result is also important in the study of stochastic processes and the Malliavin calculus, since results concerning probability measures on infinite-dimensional spaces are of central importance in these fields. Sazonov's theorem also has a converse: if the map is not Hilbert–Schmidt, then it is not γ-radonifying.

Statement of the theorem

Let G and H be two Hilbert spaces and let T : GH be a bounded operator from G to H. Recall that T is said to be γ-radonifying if the push forward of the canonical Gaussian cylinder set measure on G is a bona fide measure on H. Recall also that T is said to be a Hilbert–Schmidt operator if there is an orthonormal basis { ei : iI } of G such that

Then Sazonov's theorem is that T is γ-radonifying if it is a Hilbert–Schmidt operator.

The proof uses Prokhorov's theorem.

Remarks

The canonical Gaussian cylinder set measure on an infinite-dimensional Hilbert space can never be a bona fide measure; equivalently, the identity function on such a space cannot be γ-radonifying.

See also

References

  • Schwartz, Laurent (1973), Radon measures on arbitrary topological spaces and cylindrical measures., Tata Institute of Fundamental Research Studies in Mathematics, London: Oxford University Press, pp. xii+393, MR 0426084
This page was last edited on 2 February 2023, at 04:53
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.