Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In mathematics, a shift matrix is a binary matrix with ones only on the superdiagonal or subdiagonal, and zeroes elsewhere. A shift matrix U with ones on the superdiagonal is an upper shift matrix. The alternative subdiagonal matrix L is unsurprisingly known as a lower shift matrix. The (i, j )th component of U and L are

where is the Kronecker delta symbol.

For example, the 5 × 5 shift matrices are

Clearly, the transpose of a lower shift matrix is an upper shift matrix and vice versa.

As a linear transformation, a lower shift matrix shifts the components of a column vector one position down, with a zero appearing in the first position. An upper shift matrix shifts the components of a column vector one position up, with a zero appearing in the last position.[1]

Premultiplying a matrix A by a lower shift matrix results in the elements of A being shifted downward by one position, with zeroes appearing in the top row. Postmultiplication by a lower shift matrix results in a shift left. Similar operations involving an upper shift matrix result in the opposite shift.

Clearly all finite-dimensional shift matrices are nilpotent; an n × n shift matrix S becomes the zero matrix when raised to the power of its dimension n.

Shift matrices act on shift spaces. The infinite-dimensional shift matrices are particularly important for the study of ergodic systems. Important examples of infinite-dimensional shifts are the Bernoulli shift, which acts as a shift on Cantor space, and the Gauss map, which acts as a shift on the space of continued fractions (that is, on Baire space.)

YouTube Encyclopedic

  • 1/2
    Views:
    469
    2 550
  • Workshop: Bit Shift Matrix
  • 4x4 Home made LED Matrix with Arduino

Transcription

Properties

Let L and U be the n × n lower and upper shift matrices, respectively. The following properties hold for both U and L. Let us therefore only list the properties for U:

The following properties show how U and L are related:

  • LT = U; UT = L
  • The null spaces of U and L are
  • The spectrum of U and L is . The algebraic multiplicity of 0 is n, and its geometric multiplicity is 1. From the expressions for the null spaces, it follows that (up to a scaling) the only eigenvector for U is , and the only eigenvector for L is .
  • For LU and UL we have
    These matrices are both idempotent, symmetric, and have the same rank as U and L
  • LnaUna + LaUa = UnaLna + UaLa = I (the identity matrix), for any integer a between 0 and n inclusive.

If N is any nilpotent matrix, then N is similar to a block diagonal matrix of the form

where each of the blocks S1S2, ..., Sr is a shift matrix (possibly of different sizes).[2][3]

Examples

Then,

Clearly there are many possible permutations. For example, is equal to the matrix A shifted up and left along the main diagonal.

See also

Notes

References

  • Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
  • Herstein, I. N. (1964), Topics In Algebra, Waltham: Blaisdell Publishing Company, ISBN 978-1114541016

External links

This page was last edited on 14 December 2023, at 00:22
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.